Theory of Nonequilibrium Superconductivity *

Similar documents
On the Higgs mechanism in the theory of

Green's Function in. Condensed Matter Physics. Wang Huaiyu. Alpha Science International Ltd. SCIENCE PRESS 2 Beijing \S7 Oxford, U.K.

The Superfluid Phase s of Helium 3

TRIBUTE TO LEV GORKOV

Baruch Rosenstein Nat. Chiao Tung University

Preface Introduction to the electron liquid

Contents Preface Physical Constants, Units, Mathematical Signs and Symbols Introduction Kinetic Theory and the Boltzmann Equation

There are two main theories in superconductivity: Ginzburg-Landau Theory. Outline of the Lecture. Ginzburg-Landau theory

Lecture 10: Supercurrent Equation

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. Appendix A Strong limit and weak limit 35. Appendix B Glauber coherent states 37. Appendix C Generalized coherent states 41

Superconductivity. S2634: Physique de la matière condensée & nano-objets. Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom

BCS in Russia: the end of 50 s early 60 s

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases

The Ginzburg-Landau Theory

Field Theories in Condensed Matter Physics. Edited by. Sumathi Rao. Harish-Chandra Research Institute Allahabad. lop

Time-Dependent Ginzburg Landau: From Single Particle to Collective Behavior

TDGL Simulation on Dynamics of Helical Vortices in Thin Superconducting Wires in the Force-Free Configuration

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Lecture 9: Macroscopic Quantum Model

Superconducting metals and insulators

Note that some of these solutions are only a rough list of suggestions for what a proper answer might include.

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA

Electron Correlation

Chapter 1. Macroscopic Quantum Phenomena

Quantum Theory of Matter

Superconducting phase transition

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

Superinsulator: a new topological state of matter

Many-Body Problems and Quantum Field Theory

Interaction between atoms

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Chapter 1. Macroscopic Quantum Phenomena

FEYNMAN DIAGRAM TECHNIQUES IN CONDENSED MATTER PHYSICS

Strongly correlated Cooper pair insulators and superfluids

Lecture 4: Superfluidity

Vortex States in a Non-Abelian Magnetic Field

Topological Insulators

Anomalous Hall Effect in Chiral Superconductors

Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM

Ginzburg-Landau length scales

Is Sr2RuO4 a triplet superconducor? ---analysis of specific heat under fields---

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES

Key symmetries of superconductivity

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

Superfluidity and superconductivity. IHP, Paris, May 7 and 9, 2007

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Fundamentals and New Frontiers of Bose Einstein Condensation

Condensed matter theory Lecture notes and problem sets 2012/2013

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

What s so super about superconductivity?

Superconductivity and the BCS theory

Analytic Density of States in the Abrikosov-Gorkov Theory

Quantum Oscillations in underdoped cuprate superconductors

Waves in plasma. Denis Gialis

Electrical Transport in Nanoscale Systems

For a complex order parameter the Landau expansion of the free energy for small would be. hc A. (9)

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

CONDENSED MATTER: towards Absolute Zero

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

List of Comprehensive Exams Topics

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Localized states near the Abrikosov vortex core in type-ii superconductors within zero-range potential model

The Nernst effect in high-temperature superconductors

Statistical Mechanics

1 Interaction of Quantum Fields with Classical Sources

NPTEL

Spin Superfluidity and Graphene in a Strong Magnetic Field

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

General relativity and the cuprates

Abrikosov vortex lattice solution

Conductor Insulator Quantum

Physics 7240: Advanced Statistical Mechanics Lecture 1: Introduction and Overview

Schematic for resistivity measurement

Optical Characterization of Solids

1 Quantum Theory of Matter

Enhancing Superconductivity by Disorder

Advances in Physics Theories and Applications ISSN X (Paper) ISSN (Online) Vol.27, 2014

A possibility of kinetic energy economy at the transition of a two-dimensional conductor to the superconducting state. I. N.

Contents. 6 Summary Sumenvatting 67. List of abbreviations 71. References 75. Curriculum Vitae 82. List of publications 84

Superfluidity. v s. E. V. Thuneberg Department of Physical Sciences, P.O.Box 3000, FIN University of Oulu, Finland (Dated: June 8, 2012)

Classical and quantum regimes of the superfluid turbulence.

Benchmarking the Many-body Problem

Helium-3, Phase diagram High temperatures the polycritical point. Logarithmic temperature scale

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

Collective Effects. Equilibrium and Nonequilibrium Physics

Topological insulator part I: Phenomena

14.4. the Ginzburg Landau theory. Phys520.nb Experimental evidence of the BCS theory III: isotope effect

Collective Effects. Equilibrium and Nonequilibrium Physics

Principles of Electron Tunneling Spectroscopy

MASTER OF SCIENCE IN PHYSICS

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

Electronic and Optoelectronic Properties of Semiconductor Structures

Superconductivity. Superconductivity. Superconductivity was first observed by HK Onnes in 1911 in mercury at T ~ 4.2 K (Fig. 1).

Basic Semiconductor Physics

Theory of thermoelectric phenomena in superconductors

Transcription:

Theory of Nonequilibrium Superconductivity * NIKOLAI B.KOPNIN Low Temperature Laboratory, Helsinki University of Technology, Finland and L.D. Landau Institute for Theoretical Physics, Moscow, Russia CLARENDON PRESS OXFORD 2001

CONTENTS I GREEN FUNCTIONS IN THE BCS THEORY Introduction 3 1.1 Superconducting variables 3 1.1.1 Ginzburg-Landau theory 4 1.1.2 Example: Vortices in type II superconductors 8 1.1.3 Bogoliubov-de Gennes equations 15 1.1.4 Quasiclassical approximation 16 1.2 Nonstationary phenomena 18 1.2.1 Time-dependent Ginzburg-Landau theory 18 1.2.2 Microscopic argumentation 21 1.2.3 Boltzmann kinetic equation 23 1.3 Outline of the contents 25 Green functions 27 2.1 Second quantization 27 2.1.1 Schrödinger and Heisenberg operators 29 2.2 Imaginary-time Green function 30 2.2.1 Definitions 30 2.2.2 Example: Free particles 34 2.2.3 The Wick theorem 36 2.3 The real-time Green functions 38 2.3.1 Definitions 38 2.3.2 Analytical properties 39 The BCS model 42 3.1 BCS theory and Gor'kov equations 42 3.1.1 Magnetic field 47 3.1.2 Frequency and momentum representation 48 3.1.3 Order parameter of a d-wave superconductor 52 3.2 Derivation of the Bogoliubov-de Gennes equations 53 3.3 Thermodynamic potential 55 3.4 Example: Homogeneous state 57 3.4.1 Green functions 57 3.4.2 Gap equation for an s-wave superconductor 58 3.5 Perturbation theory 60 3.5.1 Diagram technique 60 3.5.2 Electric current 61

X CONTENTS Superconducting alloys 64 4.1 Averaging over impurity positions 64 4.1.1 Magnetic impurities 70 4.2 Homogeneous state of an s-wave superconductor 71 II QUASICLASSICAL METHOD General principles of the quasiclassical approximation 77 5.1 Quasiclassical Green functions 77 5.2 Density, current, and order parameter 81 5.3 Homogeneous state 84 5.4 Real-frequency representation 86 5.4.1 Example: Homogeneous state 86 5.5 Eilenberger equations 88 5.5.1 Self-energy 90 5.5.2 Normalization 92 5.6 Dirty limit. Usadel equations 94 5.7 Boundary conditions 96 5.7.1 Diffusive surface 96 Quasiclassical methods in stationary problems 101 6.1 s-wave superconductors with impurities 101 6.1.1 Small currents in a uniform state 101 6.1.2 Ginzburg-Landau theory 103 6.1.3 The upper critical field in a dirty alloy 107 6.2 Gapless s-wave superconductivity 109 6.2.1 Critical temperature 110 6.2.2 Gap in the energy spectrum 111 6.3 Aspects of d-wave superconductivity 113 6.3.1 Impurities and d-wave superconductivity 113 6.3.2 Impurity-induced gapless excitations 114 6.3.3 The Ginzburg-Landau equations 115 6.4 Bound states in vortex cores 117 6.4.1 Superconductors with s-wave pairing 118 6.4.2 d-wave superconductors 122 Quasiclassical method for layered superconductors 125 7.1 Quasiclassical Green functions 125 7.2 Eilenberger equations for layered systems 128 7.3 Lawrence Doniach model 129 7.3.1 Order parameter 130 7.3.2 Free energy and the supercurrent 132 7.3.3 Microscopic derivation of the supercurrent 134 7.4 Applications of the Lawrence Doniach model 135 7.4.1 Upper critical field 136 7.4.2 Intrinsic pinning 137

CONTENTS XI III NONEQUILIBRIUM SUPERCONDUCTIVITY 8 Nonstationary theory 143 8.1 The method of analytical continuation 143 8.1.1 Clean superconductors 145 8.1.2 Impurities 149 8.1.3 Order parameter, current, and particle density 152 8.2 The phonon model 152 8.2.1 Self-energy 152 8.2.2 Order parameter 157 8.3 Particle particle collisions 159 8.4 Transport-like equations and the conservation laws 161 8.5 The Keldysh diagram technique 163 8.5.1 Definitions of the Keldysh functions 163 8.5.2 Dyson equation 167 8.5.3 Keldysh functions in the BCS theory 168 9 Quasiclassical method for nonstationary phenomena 170 9.1 Eliashberg equations 170 9.1.1 Self-energies 172 9.1.2 Order parameter, current, and particle density 174 9.1.3 Normalization of the quasiclassical functions 174 9.2 Generalized distribution function 175 9.3 s-wave superconductors with a short mean free path 177 9.4 Stimulated superconductivity 181 10 Kinetic equations 186 10.1 Gauge-invariant Green functions 186 10.1.1 Equations of motion for the invariant functions 188 10.2 Quasiclassical kinetic equations 192 10.2.1 Superconductors in electromagnetic fields 194 10.2.2 Discussion 197 10.3 Observables in the gauge-invariant representation 199 10.3.1 The electron density and charge neutrality 201 10.4 Collision integrals 203 10.4.1 Impurities 204 10.4.2 Electron-phonon collision integral 205 10.4.3 Electron-electron collision integral 207 10.5 Kinetic equations for dirty s-wave superconductors 209 10.5.1 Small gradients without magnetic impurities 210 10.5.2 Heat conduction 211 11 The time-dependent Ginzburg Landau theory 213 11.1 Gapless superconductors with magnetic impurities 213 11.2 Generalized TDGL equations 215 11.3 TDGL theory for d-wave superconductors 221 11.4 d.c. electric field in superconductors. Charge imbalance 226

Xll CONTENTS IV VORTEX DYNAMICS 12 Time-dependent Ginzburg-Landau analysis 231 12.1 Introduction 231 12.2 Energy balance 233 12.3 Moving vortex 234 12.4 Force balance 236 12.5 Flux flow 238 12.5.1 Single vortex: Low fields 238 12.5.2 Dense lattice: High fields 240 12.5.3 Direction of the vortex motion 242 12.6 Anisotropic superconductors 243 12.6.1 Low fields 245 12.6.2 High fields 246 12.7 Flux flow in layered superconductors 246 12.7.1 Motion of pancake vortices 247 12.7.2 Intrinsic pinning 247 12.8 Flux flow within a generalized TDGL theory 248 12.8.1 Dirty superconductors 248 12.8.2 d-wave superconductors 251 12.8.3 Discussion: Flux flow conductivity 252 12.9 Flux flow Hall effect 253 12.9.1 Modified TDGL equations 254 12.9.2 Hall effect: Low fields 255 12.9.3 High fields 256 12.9.4 Discussion: Hall effect 256 13 Vortex dynamics in dirty superconductors 259 13.1 Microscopic derivation of the force on moving vortices 259 13.1.1 Variation of the thermodynamic potential 259 13.1.2 Force on vortices 260 13.2 Diffusion controlled flux flow 263 13.2.1 Discussion 269 14 Vortex dynamics in clean superconductors 271 14.1 Introduction 271 14.1.1 Boltzmann kinetic equation approach 272 14.1.2 Forces in s-wave superconductors 274 14.2 Spectral representation for the Green functions 277 14.3 Useful identities 279 14.4 Distribution function 282 14.4.1 Localized excitations 282 14.4.2 Delocalized excitations 287 14.5 Flux flow conductivity 290 14.6 Discussion 292 14.6.1 Conductivity: Low temperatures 292

CONTENTS xiii 14.6.2 Conductivity: Arbitrary temperatures 293 14.6.3 Forces 298 15 Boltzmann kinetic equation 303 15.1 Canonical equations 303 15.2 Uniform order parameter 303 15.2.1 Boltzmann equation in presence of vortices 306 15.3 Quasiparticles in the vortex core 307 15.3.1 Transformation into the Boltzmann equation 307 15.4 Vortex mass 311 15.4.1 Equation of vortex dynamics 312 15.4.2 Vortex momentum 314 15.5 Vortex dynamics in d-wave superconductors 315 15.5.1 Distribution function 315 15.5.2 Conductivity 318 References 320 Index 325