DIRECT AND INVERSE THEOREMS FOR SZÂSZ-LUPAS TYPE OPERATORS IN SIMULTANEOUS APPROXIMATION. Naokant Deo. 1. Introduction

Similar documents
Journal of Inequalities in Pure and Applied Mathematics

SIMULTANEOUS APPROXIMATION BY A NEW SEQUENCE OF SZÃSZ BETA TYPE OPERATORS

Journal of Inequalities in Pure and Applied Mathematics

Rate of convergence for certain families of summation integral type operators

International Journal of Pure and Applied Mathematics Volume 60 No ,

Some Approximation Properties of Szasz-Mirakyan-Bernstein Operators

MOMENTS OF A q BASKAKOV BETA OPERATORS IN CASE 0 < q < Introduction

V. Gupta, A. Aral and M. Ozhavzali. APPROXIMATION BY q-szász-mirakyan-baskakov OPERATORS

ON THE (p, q) STANCU GENERALIZATION OF A GENUINE BASKAKOV- DURRMEYER TYPE OPERATORS

On the operators defined by Lupaş with some parameters based on q-integers

SPACES ENDOWED WITH A GRAPH AND APPLICATIONS. Mina Dinarvand. 1. Introduction

ON APPROXIMATION TO FUNCTIONS IN THE

arxiv: v3 [math.ca] 26 Nov 2015

W. Lenski and B. Szal ON POINTWISE APPROXIMATION OF FUNCTIONS BY SOME MATRIX MEANS OF CONJUGATE FOURIER SERIES

ON WEAK AND STRONG CONVERGENCE THEOREMS FOR TWO NONEXPANSIVE MAPPINGS IN BANACH SPACES. Pankaj Kumar Jhade and A. S. Saluja

Uniform convergence of N-dimensional Walsh Fourier series

On the mean values of an analytic function

Absolutely convergent Fourier series and classical function classes FERENC MÓRICZ

APPROXIMATION BY MODIFIED SZÁSZ-MIRAKYAN OPERATORS

arxiv: v2 [math.ca] 23 Feb 2016

SOME RESULTS FOR MAX-PRODUCT OPERATORS VIA POWER SERIES METHOD. 1. Introduction

L p -convergence of Bernstein Kantorovich-type operators. by Michele Campiti (Bari) and Giorgio Metafune (Lecce)

Commentationes Mathematicae Universitatis Carolinae

ON A CLASS OF LINEAR POSITIVE BIVARIATE OPERATORS OF KING TYPE

JACOBI TYPE AND GEGENBAUER TYPE GENERALIZATION OF CERTAIN POLYNOMIALS. Mumtaz Ahmad Khan and Mohammad Asif. 1. Introduction

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

2 K cos nkx + K si" nkx) (1.1)

Two-Step Iteration Scheme for Nonexpansive Mappings in Banach Space

Rate of approximation for Bézier variant of Bleimann-Butzer and Hahn operators

Lecture 4: Numerical solution of ordinary differential equations

Journal of Inequalities in Pure and Applied Mathematics

THE DEGREE OF APPROXIMATION OF FUNCTIONS FROM EXPONENTIAL WEIGHT SPACES RZĄD APROKSYMACJI FUNKCJI Z WYKŁADNICZYCH PRZESTRZENI WAGOWYCH

Viscosity Iterative Approximating the Common Fixed Points of Non-expansive Semigroups in Banach Spaces

Notes on uniform convergence

APPROXIMATION OF ENTIRE FUNCTIONS OF SLOW GROWTH ON COMPACT SETS. G. S. Srivastava and Susheel Kumar

Error formulas for divided difference expansions and numerical differentiation

EXISTENCE OF THREE WEAK SOLUTIONS FOR A QUASILINEAR DIRICHLET PROBLEM. Saeid Shokooh and Ghasem A. Afrouzi. 1. Introduction

Almost Sure Convergence of the General Jamison Weighted Sum of B-Valued Random Variables

RELATION BETWEEN SMALL FUNCTIONS WITH DIFFERENTIAL POLYNOMIALS GENERATED BY MEROMORPHIC SOLUTIONS OF HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

Weak and strong convergence theorems of modified SP-iterations for generalized asymptotically quasi-nonexpansive mappings

Existence of homoclinic solutions for Duffing type differential equation with deviating argument

Shape Preserving Approximation: the Final Frontier???

Existence and Uniqueness of Anti-Periodic Solutions for Nonlinear Higher-Order Differential Equations with Two Deviating Arguments

I and I convergent function sequences

A NOTE ON THE COMPLETE MOMENT CONVERGENCE FOR ARRAYS OF B-VALUED RANDOM VARIABLES

Convergence of greedy approximation I. General systems

A NOTE ON RATIONAL OPERATOR MONOTONE FUNCTIONS. Masaru Nagisa. Received May 19, 2014 ; revised April 10, (Ax, x) 0 for all x C n.

Abdulmalik Al Twaty and Paul W. Eloe

P.S. Gevorgyan and S.D. Iliadis. 1. Introduction

Analysis Comprehensive Exam Questions Fall F(x) = 1 x. f(t)dt. t 1 2. tf 2 (t)dt. and g(t, x) = 2 t. 2 t

FRACTIONAL BOUNDARY VALUE PROBLEMS ON THE HALF LINE. Assia Frioui, Assia Guezane-Lakoud, and Rabah Khaldi

Upper and lower solution method for fourth-order four-point boundary value problems

On the statistical and σ-cores

On some shift invariant integral operators, univariate case

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim

COMMON FIXED POINTS IN b-metric SPACES ENDOWED WITH A GRAPH. Sushanta Kumar Mohanta. 1. Introduction

Czechoslovak Mathematical Journal

On Some Estimates of the Remainder in Taylor s Formula

STRONG CONVERGENCE OF AN IMPLICIT ITERATION PROCESS FOR ASYMPTOTICALLY NONEXPANSIVE IN THE INTERMEDIATE SENSE MAPPINGS IN BANACH SPACES

Math 321 Final Examination April 1995 Notation used in this exam: N. (1) S N (f,x) = f(t)e int dt e inx.

On Co-Positive Approximation of Unbounded Functions in Weighted Spaces

Some sequence spaces in 2-normed spaces defined by Musielak-Orlicz function

NON-EXTINCTION OF SOLUTIONS TO A FAST DIFFUSION SYSTEM WITH NONLOCAL SOURCES

Some Fixed Point Theorems for Certain Contractive Mappings in G-Metric Spaces

NEWMAN S INEQUALITY FOR INCREASING EXPONENTIAL SUMS

Complete moment convergence of weighted sums for processes under asymptotically almost negatively associated assumptions

INEQUALITIES FOR SUMS OF INDEPENDENT RANDOM VARIABLES IN LORENTZ SPACES

MODULUS OF CONTINUITY OF THE DIRICHLET SOLUTIONS

Convergence to Common Fixed Point for Two Asymptotically Quasi-nonexpansive Mappings in the Intermediate Sense in Banach Spaces

Convergence theorems for mixed type asymptotically nonexpansive mappings in the intermediate sense

ON STRONGLY PRE-OPEN SETS AND A DECOMPOSITION OF CONTINUITY. Chandan Chattopadhyay

On the uniform convergence and $L$convergence of double Fourier series with respect to the Walsh-Kaczmarz system

Existence of Positive Periodic Solutions of Mutualism Systems with Several Delays 1

be the set of complex valued 2π-periodic functions f on R such that

On pointwise estimates for maximal and singular integral operators by A.K. LERNER (Odessa)

SZEGÖ ASYMPTOTICS OF EXTREMAL POLYNOMIALS ON THE SEGMENT [ 1, +1]: THE CASE OF A MEASURE WITH FINITE DISCRETE PART

On boundary value problems for fractional integro-differential equations in Banach spaces

Deficiency And Relative Deficiency Of E-Valued Meromorphic Functions

NORMAL FAMILIES OF HOLOMORPHIC FUNCTIONS ON INFINITE DIMENSIONAL SPACES

CONVERGENCE THEOREMS FOR STRICTLY ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS IN HILBERT SPACES. Gurucharan Singh Saluja

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

UNIQUENESS OF MEROMORPHIC FUNCTIONS SHARING THREE VALUES

OSCILLATORY SINGULAR INTEGRALS ON L p AND HARDY SPACES

CLOSED RANGE POSITIVE OPERATORS ON BANACH SPACES

Herz (cf. [H], and also [BS]) proved that the reverse inequality is also true, that is,

Some new fixed point theorems in metric spaces

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

AN IMPROVED MENSHOV-RADEMACHER THEOREM

Patryk Pagacz. Characterization of strong stability of power-bounded operators. Uniwersytet Jagielloński

Graph Convergence for H(, )-co-accretive Mapping with over-relaxed Proximal Point Method for Solving a Generalized Variational Inclusion Problem

SMOOTHING ESTIMATES OF THE RADIAL SCHRÖDINGER PROPAGATOR IN DIMENSIONS n 2

Random Bernstein-Markov factors

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER NONLINEAR HYPERBOLIC SYSTEM

Viscosity approximation methods for nonexpansive nonself-mappings

Abstract. We characterize Ramsey theoretically two classes of spaces which are related to γ-sets.

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T

The Hilbert Transform and Fine Continuity

NON-MONOTONICITY HEIGHT OF PM FUNCTIONS ON INTERVAL. 1. Introduction

MATH 5640: Fourier Series

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books.

Transcription:

MATEMATIQKI VESNIK 58 26), 19 29 UDK 517.984 originalni nauqni rad research paper DIRECT AND INVERSE THEOREMS FOR SZÂSZ-LUPAS TYPE OPERATORS IN SIMULTANEOUS APPROXIMATION Naokant Deo Abstract. In this paper we give the direct and inverse theorems for Szâsz-Lupas operators and study the simultaneous approximation for a new modification of the Szâsz operators with the weight function of Lupas operators. 1. Introduction Let f be a function defined on the interval [, ) with real values. For f [, ) andn N, the Szâsz operator S n f,x) is defined as follows: S n f,x) = s n,k x)fk/n), where s n,k x) = e nx nx) k. k! The Szâsz-type operator L n f,x) is defined by L n f,x) = s n,k x)φ n,k f), where { f), for k = φ n,k f) = n s n,k t)ft)dt, for k =1, 2,... In [1], Mazhar and Totik introduced the Szâsz-type operator and showed some approximation theorems. Lupas proposed a family of linear positive operators mapping C [, ) intoc [, ), the class of all bounded and continuous functions on [, ) namely, ) B n f)x) = n + k 1 x k p n,k x)fk/n), where p n,k x) = k 1 + x) n+k. AMS Subject Classification: 41A35 Keywords and phrases: Linear positive operators, linear combination, integral modulus of smoothness, Steklow means. 19

2 N. Deo Motivated by the integration of Bernstein polynomials of Derriennic [4], Sahai and Prasad [11] modified the operators B n for function integrable on [, ) as M n f)x) =n 1) p n,k x) p n,k t)ft) dt. Now we consider another modification of operators with the weight function of Lupas operators, which are defined as V n f)x) =n 1) s n,k x) p n,k t)ft) dt. 1.1) The norm. Cα on the space C α [, ) ={f C [, ) : ft) Kt α for some α>andk>} is defined by f Cα = sup ft) t α. t< To improve the saturation order On 1 ) for the operator 1.1), we use the technique of linear combination as described below: V n f,k,x) = k Cj, k)v djnf,x), where Cj, x) = k i= i j j= d j d j d i for k andc, ) = 1 and d,d 1,d 2,...,d k are k+1) arbitrary, fixed and distinct positive integers. For our convenience we shall write the operator 1.1) as where V n f,x) = W n, x, t)ft) dt, W n, x, t) =n 1) s n,k x)p n,k t). The function f is said to belong to the generalized Zygmund class Liz α, k, a, b) if there exists a constant M such that ω 2k f,η,a,b) Mη αk,η>, where ω 2k f,η,a,b) denotes the modulus of continuity of 2k-th order of fx) onthe interval [a, b]. The class Liz α, 1,a,b) is more commonly denoted by Lip*α, a, b). Let f C α [, ) and <a 1 <a 2 <a 3 <b 3 <b 2 <b 1 <. Then for m N the Steklov mean f η,m of the m-th order corresponding to f, for sufficiently small values of η> is defined by η/2 ) m { f η,m x) =η m fx)+ 1) m 1 m m η/2 i=1 } m fx) dx i, 1.2) x i i=1 where x [a 1,b 1 ]and m η fx) isthem-th order forward difference with step length η.

Theorems for Szâsz-Lupas type operators 21 The direct results in ordinary and simultaneous approximation for such type of modified Szâsz-Mirakyan operators were studied by many researchers see e.g. [2], [5], [6] and [12]. 2. Auxiliary results In this section, we shall give some basic results, which will be useful in proving the main results. Lemma 2.1. [9] For m N {}, let the m-th order moment for the Szâsz operator be defined by ) µ n,m x) = m k s n,k x) n x. Then we have µ n, x) =1, µ n,1 x) =and nµ n,m+1 x) =x µ n,mx)+mµ n,m 1 x) ), for n N. Consequently, i) µ n,m x) is a polynomial in x of degree [m/2]; ii) for every x [, ), µ n,m x) =O n [m+1)/2]),where[β] denotes the integral part of β. Lemma 2.2. Let the m-th moment for the Szâsz operator be defined by µ n,m x) =n 1) s n,k x) p n,k t)t x) m dt. Then i) µ n, x) =1,µ n,1 x) = 1+2x) n 2), n > 2; ii) n m 2)µ n,m+1 x) =x [ µ n,mx)+m2 + x)µ n,m 1 x) ] +m +1) 1 + 2x)µ n,m x) iii) µ n,m x) =O n [m+1)/2]) for all x [, ). Proof. By the definition of µ n,m x), we can easily obtain i). Now the proof of ii) goes as follows: xµ n,mx) =n 1) xs n,k x) p n,k t)t x) m dt mxµ n,m 1 x). Using relations t1+t)p n,k t) =k nt)p n,kt) andxs n,k x) =k nx)s n,kx), we get x [ µ n,mx)+mµ n,m 1 x) ] =n 1) k nx) s n,k x) p n,k t)t x) m dt

22 N. Deo =n 1) s n,k x) =n 1) s n,k x) =n 1) s n,k x) [k nt)+n t x)] p n,k t)t x) m dt t 1 + t) p n,kt)t x) m dt + nµ n,m+1 x) [ 1 + 2x)t x)+t x) 2 + x1 + x) ] p n,kt)t x) m dt + nµ n,m+1 x) = m + 1)1 + 2x)µ n,m x) m +2)µ n,m+1 x) mx1 + x)µ n,m 1 x) + nµ n,m+1 x) This leads to proof of ii). The proof of iii) easily follows from i) and ii). Lemma 2.3. If f is differentiable r times r =1, 2, 3,...) on [, ), then we have ) V n r) f x) = nr n r 1)! s n,k x) p n,k t)f r) t) dt. n 2)! Proof. By Leibnitz s theorem in 1.1) ) ) V n r) f x) =n 1) r r 1) r i n i e nx nx) k i p n,k t)ft) dt i= k=i i k 1)! ) =n 1) r i= 1) r i r n r s n,k x) p n,k+i t)ft) dt i =n 1) { r ) } r s n,k x) 1) r 1) i n r p n,k+i t)t) ft) dt. i= i Again using Leibnitz s theorem ) p n,k+i t), V r) n f p r) n 1)! r n r,k+r t) = n r 1)! ) x) = nr n r 1)! s n,k x) n 2)! i= 1) i r i integrating by parts r times, we get the required result. 1) r p r) n r,k+r t)ft) dt, Lemma 2.4. For the function f η,m x) defined in 1.2), there hold: i) f η,m C[a 1,b 1 ]; ii) r) f η,m M C[a2,b 2] rη r ω r f,η,a 1,b 1 ), r =1, 2,...,m; iii) f fη,mc[a2,b M 2] m+1ω m f,η,a 1,b 1 ); iv) f C[a2,b η,m M m+2f M 2] C[a2,b f 2] Cα, where M i are certain constants independent of f and η. For the proof of the above properties of the function f η,m x) we refer to [12, page 167].

Theorems for Szâsz-Lupas type operators 23 Lemma 2.5. [8, 9] There exist polynomials q i,j,r x) independent of n and k such that x r dr dx r [ e nx nx) k] = 2i+j r i,j n i k nx j qi,j,r x) [ e nx nx) k] Lemma 2.6. Let f C α [, ). Iff 2k+2) exists at a point x, ), then lim n nk+1 {V n f,k,x) fx)} = 2k+2 Qp, k, x)f p) x), p= where Qp, k, x) is a certain polynomial in x of degree p. The proof of Lemma 2.6 follows along the lines of [7]. Lemma 2.7. Let δ and γ be any two positive numbers and [a, b] [, ). Then, for any m> there exists a constant M m such that V n f,x)t γ dt M m n m. C[a,b] t x δ The proof of this result follows easily by using Schwarz inequality and Lemma 2.7 from [1]. 3. Main results Theorem 3.1. Direct Theorem) Let f C α [, ). Then, for sufficiently large n, there exists a constant M independent of f and n such that Vn f,k,.) f { max C[a2,b 2] C 1 ω 2k+2 f; n 1/2,a 1,b 1 )C 2 n k+1) } fcα, where C 1 = C 1 k) and C 2 = C 2 k, f). Proof. By linearity property Vn f,k,.) f Vn C[a2,b 2] f f 2k+2,η ),k,.) C[a2,b 2] + V n f 2k+2,η,k,.) f 2k+2,η C[a2,b 2] + f f 2k+2,η C[a2,b 2] = A 1 + A 2 + A 3, say. By property iii) of Steklov mean, we get Next, by Lemma 2.6, we get A 3 C 1 ω 2k+2 f,η,a 1,b 1 ). A 2 C 2 n k+1) f2k+2,η C[a1,b 1].

24 N. Deo Using the interpolation property [5] and properties of Steklov mean, A 2 C 3 n k+1){ } fcα + η 2k+2) ω 2k+2 f,η). To estimate A 1, we choose a 2,b 2 such that <a 1 <a 2 <a 3 <b 3 <b 2 <b 1 <. Also let ψt) be the characteristic function of the interval [a 2,b 2 ], then A 1 Vn ψt)ft) f 2k+2,η t)),k,.) C[a3,b 3] + Vn 1 ψt)) ft) f 2k+2,η t)),k,.) C[a3,b 3] = A 4 + A 5, say. We note that in order to estimate A 4 and A 5, it is sufficient to consider their expressions without the linear combination. It is clear that by Lemma 2.3, we obtain V n ψt)ft) f 2k+2,η t)),x) =n 1) s n,k x) p n,k t)ψt)ft) f 2k+2,η t)) dt. Hence, V n ψt)ft) f 2k+2,η t)),.) C C[a1,b 4f f C[a2,b 2k+2,η. 1] 2] Now for x [a 3,b 3 ]andt [, ) / [a 2,b 2 ] we can choose an η 1 satisfying t x η1. Therefore by Lemma 2.5 and Schwarz inequality, we have I V n 1 ψt)) ft) f 2k+2,η t)),x) n 1) 2i+j r i,j C 5 f Cα n 1) n i φ i,j,r x) x r s n,k x) k nx j p n,k t)1 ψt)) ft) f2k+2,η t) dt 2i+j r i,j C 5 η 2s fcα n 1) 1 n i 2i+j r i,j n i s n,k x) k nx j t x η 1 p n,k t) dt s n,k x) k nx j ) 1/2 p n,k t) dt p n,k t)t x) 4s dt C 5 η1 2s f { } 1/2 Cα n i s n,k x)k nx) 2j 2i+j r i,j n 1) s n,k x) ) 1/2 p n,k t)t x) 4s dt) 1/2.

Theorems for Szâsz-Lupas type operators 25 Hence, by Lemma 2.1 and Lemma 2.2, we have I C 6 f Cα n i+ j 2 s) C 6 n q f Cα where q = s m/2). Now choose s > such that q k + 1. Then I C 6 n k+1) fcα. Therefore by property iii) of Steklov mean, we get A 1 C 7 f f2k+2,η C[a2,b 2] + C 6n k+1) f Cα C 8 ω 2k+2 f,η,a 1,b 1 )+C 6 n k+1) f Cα Hence with η = n 1/2, the theorem follows. Theorem 3.2. Inverse Theorem) If <α<2 and f C α [, ) then in the following statements i) ii): i) Vn f,k,x) fx) = O C[a1,b n αk+1)/2),wheref C α [a, b], 1] ii) f Lizα, k +1,a 2,b 2 ). Proof. Let us choose points a,a,b,b in such a way that a 1 <a <a < a 2 <b 2 <b <b <b 1. Also suppose g C with suppg) [a,b ]andgx) =1 for x [a a,b 2 ]. It is sufficient to show that Vn fg,k,.) fg C[a,b ] = O n αk+1)/2) ii). 3.1) Using F in place of fg for all the values of r>, we get 2k+2 r F C[a,b ] 2k+2 r F V n F, k,.)) C[a,b ] + 2k+2 r V n F, k,.) C[a,b ] 3.2) By the definition of 2k+2 r, 2k+2 r V n F, k,.) C[a,b ] r r = V n F, k, x + 2k+2 ) x i dx 1...dx 2k+2 i=1 C[a,b ] r 2k+2 V 2k+2) n F, k,.) C[a,b +2k+2)r] r 2k+2{ V n 2k+2) F F η,2k+2,k,.) C[a,b +2k+2)r] + V 2k+2) n F η,2k+2,k,.) C[a, 3.3),b +2k+2)r] where F η,2k+2 is the Steklov mean of 2k + 2)-th order corresponding to F. By Lemma 3 from [1], we get 2k+2 x 2k+2 W nt, x) dt 2i+j 2k+2 i,j n 1) n i k nx qi,j,2k+2 j x) x 2k+2 s n,k x) } p n,k t) dt.

26 N. Deo Since p n,k t) dt = 1 n 1, by Lemma 2.1, s n,k x)k nx) 2j = n 2j ) 2j k s n,k x) n x = On j ) 3.4) Using Schwarz inequality and Lemma 2.1, we obtain V 2k+2) n F F η,2k+2,k,.) K C[a,b +2k+2)r] 1n k+1 F Fη,2k+2C[a,b ] 3.5) By Lemma 2 from [1], we get [ ] k x k W nt, x) t x) i dt =, for k>i. 3.6) By Taylor s expansion, we obtain F i) F η,2k+2 t) = 2k+1 η,2k+2 x) t x) i + F 2k+2) x)2k+2 η,2k+2 ξ)t, 3.7) i= i! 2k + 2)! where t<ξ<x. By 3.6) and 3.7), we get 2k+2 x 2k+2 V n F η,2k+2,k,.) C[a,b +2k+2)r] k Cj, k) [ ] F 2k+2) 2k+2 η,2k+2 2k + 2)! C[a,b ] x 2k+2 W d jnt, x) t x) 2k+2 dt C[a,b ]. j= Again applying Schwarz inequality for integration and summation and Lemma 3 from [1], we obtain I 2k+2 x 2k+2 W nt, x) t, x)2k+2 dt n 1) n i s n,k x) k nx j q i,j,2k+2 x) p n,k t)t x) 2k+2 dt 2i+j 2k+2 i,j 2i+j 2k+2 i,j n i qi,j,2k+2 x) x 2k+2 { n 1) s n,k x) { x 2k+2 } 1/2 s n,k x)k nx) 2j p n,k t)t x) 4k+4 dt} 1/2. 3.8) Using Lemma 2 from [1], n 1) s n,k x) p n,k t)t x) 4k+4 dt = T n,4k+4 x) =O n 2k+2)). 3.9) Using 3.4) and 3.9) in 3.8), we obtain I n i qi,j,2k+2 x) On j/2 )O n k+1)) = O1). 2i+j 2k+2 i,j x k+1

Theorems for Szâsz-Lupas type operators 27 Hence W n 2k+2) F η,2k+2,k,.) K C[a,b +2k+2)r] 2 F 2k+2) η,2k+2 On combining 3.2), 3.3), 3.5) and 3.1) it follows 2k+2 r F C[a 2k+2,b ] r F V n F, k,.)) C[a,b ] + K 3 r 2k+2 n k+1 F Fη,2k+2 C[a,b ] + F 2k+2) 3.1) C[a,b ]. η,2k+2) C[a,b ] Since for small values of r the above relation holds, it follows from the properties of F η,2k+2 and 3.1) that ω 2k+2 F, h, [a,b ]) K 4 {n αk+1)/2 + h 2k+2 n k+1 + η 2k+2) } F, η, [a,b ]). ω 2k+2 Choosing η is such a way that n<η 2 < 2r and following Berens and Lorentz [3], we obtain w 2k+2 F, h, [a,b ]) = Oh αk+1) ). 3.11) Since F x) =fx) in[a 2,b 2 ], from 3.11) we have w 2k+2 f,h,[a 2,b 2 ]) = Oh αk+1) ), i.e., f Lizα, k +1,a 2,b 2 ). Let us assume i). Putting τ = αk + 1), we first consider the case <τ 1. For x [a,b ], we get V n fg,k,x) fx)gx) =gx)v n ft) fx)),k,x)+ + k b1 C j, k) W dj,nt, x)fx)gt) gx)) dt + O n k+1)) j= a 1 = I 1 + I 2 + O n k+1)), 3.12) where the O-term holds uniformly for x [a,b ]. Now by assumption Vn f,k,.) f C[a1,b n = O τ/2), 1] we have I1C[a,b ] gc[a Vn f,k,.) f K,b ] C[a,b ] 5n τ/2. 3.13) By the Mean Value Theorem, we get I 2 = k b1 Cj, k) W dj,nt, x)ft) {g ξ)t x)} dt. j= a 1 Once again applying Cauchy-Schwarz inequality and Lemma 2 from [1], we get I2C[a,b ] fc[a1,b g k ) 1] Cj, k) C[a,b ] j= 1/2 max W dj,nt, x)t x) 2 dt = O n τ/2). 3.14) j k C[a,b ] Combining 3.12 3.14), we obtain Vn fg,k,.) fg C[a,b ] = O n τ/2), for <τ 1. ).

28 N. Deo Now to prove the implication for <τ<2k + 2, it is sufficient to assume it for τ m 1,m) and prove if for τ m, m +1), m =1, 2, 3,...,2k + 1). Since the result holds for τ m 1,m), we choose two points x 1,y 1 in such a way that a 1 <x 1 <a <b <y 1 <b 1. Then in view of assumption i) ii) for the interval m 1,m) and equivalence of ii) it follows that f m 1) exists and belongs to the class Lip1 δ, x 1,y 1 ) for any δ>. Let g C be such that gx) =1on[a,b ]andsupp g [a,b ]. Then with χ 2 t) denoting the characteristic function of the interval [x 1,y 1 ], we have Vn f,g,k,.) fg Vn C[a gx)ft) fx)),k,.) +,b ] C[a,b ] + Vn ft)gt) gx))χt),k,.) C[a,b ] + O n k+1)). 3.15) Now Vn gx)ft) fx)),k,.) gc[a,b ] Vn f,k,.) f C[a,b ] C[a1,b 1] = O n τ/2). 3.16) Applying Taylor s expansion of f, wehave I 3 Vn ft)gt) gx))χt),k,.) = C[a,b ] [ { m 1 f m 1) ξ) f m 1) x) } V n i= f i) x) t x) i + i! m 1)! ] ) gt) gx))χt),k,. C[a,b ] where ξ lies between t and x. Since f m 1) Lip1 δ, x 1,y 1 ), f m 1) ξ) f m 1) x) K6 ξ x 1 δ K6 t x 1 δ, where K 6 is the Lip1 δ, x 1,y 1 ) constant for f m 1),wehave m 1 I 3 V f i) x) n t x) i gt) gx))χt),k,.) i= i! + K 6 g k m 1)! C[a,b ] j= Cj, k) C[a,b ] ) V dj,n t x m+1 δ χt),.) C[a,b ] = I 4 + I 5 say. 3.17) By Taylor s expansion of g and Lemma 2.6, we have I 4 = O n k+1)). 3.18) Also, by Hölder s expansion of g and Lemma 2 from [1], we have K 6 I 5 k g m 1)! C[a,b ] Cj, k) ) j= y1 max W dj,nt x) t x m+1 δ dt j k K 7 max = O x 1 y1 j k x 1 n m+1 δ)/2) = O W dj,nt x)t x) 2m+1) dt C[a,b ] m+1 δ) 2m+1) C[a,b ] n τ/2), 3.19)

Theorems for Szâsz-Lupas type operators 29 by choosing δ such that < δ < m + 1 δ. Combining the estimates 3.15 3.19), we get V n fg,k,.) fg C[a n = O τ/2).,b ] This completes the proof of the Theorem 3.2. Acknowledgment. The author is extremely thankful to the referee for his valuable comments and suggestions, leading to a better presentation of the paper. The author is also thankful to Professor Mila Mršević for special attention. REFERENCES [1] Agrawal, P. N. and Thamer, K. J., Approximation of unbounded functions by a new sequence of linear positive operators, J. Math. Anal. Appl., 225 1998), 66 672. [2] Agrawal,P.N.andThamer,K.J.,Degree of approximation by a new sequence of linear operators, KyungpookMath. J., 41 21), 65 73. [3] Berens, H. and Lorentz, G. G., Inverse theorems for Bernstein polynomials, Indiana Univ. Math. J., 21 1972), 693 78. [4] Derriennic, M. M., Sur l approximation de functions integrable sur [, 1] par des polynomes de Bernstein modifies, J. Approx. Theory, 31 1981), 325 343. [5] Goldberg, S. and Meir, V., Minimum moduli of differentiable operators, Proc. London Math. Soc., 23 1971), 1 15. [6] Gupta, V., AnoteonmodifiedSzâsz operators, Bull Inst. Math. Academia Sinica, 21 3) 1993), 275 278. [7] Gupta, V. and Srivastava, G. S., Simultaneous approximation by Baskakov-Szâsz type operators, Bull. Math. Dela Soc. Sci Math de Roumanie N. S.), 37 85) 1993), 73 85. [8] Gupta, V. and Srivastava, G. S., On the convergence of derivative by Szâsz-Mirakyan Baskakov type operators, The Math. Student, 64 1 4) 1995), 195 25. [9] Kasana, H. S., Prasad, G., Agrawal, P. N. and Sahai, A., Modified Szâsz operators,conference on Mathematica Analysis and its Applications, Kuwait, Pergamon Press, Oxford, 1985, 29 41. [1] Mazhar, S. M. and Totil, V., Approximation by modified Szâsz operators, Acta Sci. Math. Szeged), 49 1985), 257 269. [11] Sahai, A. and Prasad, G., On simultaneous approximation by modified Lupas operators, J. Approx. Theory, 45 1985), 122 128. [12] Timan,A.F.,Theory of Approximation of Functions of Real Variable English translation), Pergamon Press Long Island City, N. Y., 1963. received 7.4.24, in revised form 29.1.26) Department of Applied Mathematics, Delhi College of Engineering, Bawana Road, Delhi-1142, India. Presently at: School of Information Science and Engineering, Graduate School of the Chinese Academy of Sciences, No.3 Nanyitiao, Zhongguancun Haidian District, Beijing-18, P. R. China. E-mail: dr naokant deo@yahoo.com