Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Similar documents
Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Neutrinos as Probes of new Physics

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

Neutrino Physics: Lecture 12

Updated three-neutrino oscillation parameters from global fits

Status and prospects of neutrino oscillations

Neutrinos and Astrophysics

Overview of cosmological constraints on neutrino mass, number, and types

Long & Very Long Baseline Neutrino Oscillation Studies at Intense Proton Sources. Jeff Nelson College of William & Mary

Sterile Neutrinos in July 2010

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter

Neutrinos as a Unique Probe: cm

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB

Cosmic Neutrinos. Chris Quigg Fermilab. XXXV SLAC Summer Institute Dark Matter 10 August 2007

Neutrino Oscillation and CP violation

Sterile neutrinos. Stéphane Lavignac (IPhT Saclay)

MINOS Result. The ND analysis predicts: events in the Far Detector 54 observed, 0.7σ excess. 49.1±7.0(stat.)±2.7(syst.

Solar and atmospheric ν s

Phenomenological Status of Neutrino Mixing


Particle Physics WS 2012/13 ( )

NEUTRINOS II The Sequel

The NOνA Experiment and the Future of Neutrino Oscillations

On Minimal Models with Light Sterile Neutrinos

Sensitivity to sterile ν mixings at a ν Factory --Side business of a ν Factory --

The future of neutrino physics (at accelerators)

Neutrino Oscillations

Andrey Formozov The University of Milan INFN Milan

1 Neutrinos. 1.1 Introduction

Neutrino Anomalies & CEνNS

Neutrino oscillation experiments: Recent results and implications

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

Future Reactor Expts. The Challenge. DoubleChooz. In France. Stanley Wojcicki. Far Detector m ~50 events/day

1. Neutrino Oscillations

Neutrino Oscillations

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006

Neutrino Physics After the Revolution. Boris Kayser PASI 2006 October 26, 2006

Review of νe Appearance Oscillation Experiments

Neutrino Mass: Overview of ββ 0ν, Cosmology and Direct Measurements Carlo Giunti

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Neutrinos: Yesterday, Today and Tomorrow. Stanley Wojcicki SLAC Summer Institute 2010 August 13, 2010

PLAN. Lecture I: Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings. Lecture III: The quest for leptonic CP violation

Neutrino Physics: Lecture 1

Puzzles of Neutrinos and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Hong-Jian He

Particle Physics: Neutrinos part II

Neutrino physics. Evgeny Akhmedov. Max-Planck-Institut für Kernphysik, Heidelberg & Kurchatov Institute, Moscow

Finding an Upper Bound on Neutrinos Mass

Prospects of Reactor ν Oscillation Experiments

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter

Finding Neutrinos Mass Upper Bound

- Future Prospects in Oscillation Physics -

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Neutrino Oscillation Physics

Neutrinos and CP Violation. Silvia Pascoli

Latest Results from MINOS and MINOS+ Will Flanagan University of Texas on behalf of the MINOS+ Collaboration

Chapter 2 Neutrino Oscillation

Searching for non-standard interactions at the future long baseline experiments

The Effect of Cancellation in Neutrinoless Double Beta Decay

Cosmological Family Asymmetry and CP violation

T2K and other long baseline experiments (bonus: reactor experiments) Justyna Łagoda

The Nature and Magnitude of Neutrino Mass

Neutrino oscillation phenomenology

Overview of Reactor Neutrino

Puzzles of Neutrino Mixing and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Shao-Feng Ge

Review of Neutrino Oscillation Experiments

Neutrinos. Thanks to Ian Blockland and Randy Sobie for these slides. spin particle with no electric charge; weak isospin partners of charged leptons

arxiv: v2 [hep-ph] 2 Mar 2018

Neutrinos: status, models, string theory expectations

Solar Neutrinos: Status and Prospects. Marianne Göger-Neff

Chart of Elementary Particles

arxiv: v1 [hep-ph] 6 Mar 2014

Recent Discoveries in Neutrino Physics

Updating the Status of Neutrino Physics

Neutrino History ... and some lessons learned

Long baseline experiments

NEUTRINO PROPERTIES PROBED BY LEPTON NUMBER VIOLATING PROCESSES AT LOW AND HIGH ENERGIES *

Neutrinos in Nuclear Physics

NEUTRINO COSMOLOGY. ν e ν µ. ν τ STEEN HANNESTAD UNIVERSITY OF AARHUS PARIS, 27 OCTOBER 2006

Neutrinos & Large Extra Dimensions. Renata Zukanovich Funchal Universidade de São Paulo, Brazil

Higgs Bosons Phenomenology in the Higgs Triplet Model

Neutrino Oscillations

Status of Solar Neutrino Oscillations

Impact of light sterile!s in LBL experiments "

arxiv:hep-ph/ v1 26 Jul 2006

X N 1. + e X N+1. + e +

University College London. Frank Deppisch. University College London

M.Nakahata. Kamioka observatory ICRR/IPMU, Univ. of Tokyo. 2016/11/8 M. Nakahata: Neutrino experiments - 30 years at Kamioka 1

Recent results from Super-Kamiokande

10 Neutrino Oscillations

Probing Neutrino Properties with Astrophysics: Neutrino Masses

Sterile Neutrinos. Carlo Giunti

Neutrino Phenomenology. Boris Kayser ISAPP July, 2011 Part 1

Testing the low scale seesaw and leptogenesis

Status of Light Sterile Neutrinos Carlo Giunti

Marco Drewes, Université catholique de Louvain. The Other Neutrinos IAP Meeting. Université libre de Bruxelles

Recent Results from T2K and Future Prospects

Neutrinos and the Universe

Grand Unification Theories

Transcription:

Neutrino Physics II Neutrino Phenomenology Arcadi Santamaria IFIC/Univ. València TAE 2014, Benasque, September 19, 2014

Neutrino Physics II Outline 1 Neutrino oscillations phenomenology Solar neutrinos and KamLAND Atmospheric neutrinos and MINOS Results on θ 13 and global fits (Close) future: measurement of sign( m 2 31 ) and δ

Neutrino Physics II Outline 1 Neutrino oscillations phenomenology Solar neutrinos and KamLAND Atmospheric neutrinos and MINOS Results on θ 13 and global fits (Close) future: measurement of sign( m 2 31 ) and δ 2 Absolute Mass Scale Cosmological Bounds Beta and double beta decays

Neutrino Physics II Outline 1 Neutrino oscillations phenomenology Solar neutrinos and KamLAND Atmospheric neutrinos and MINOS Results on θ 13 and global fits (Close) future: measurement of sign( m 2 31 ) and δ 2 Absolute Mass Scale Cosmological Bounds Beta and double beta decays 3 Other neutrino properties Limit on N ν Sterile ν s, NSI and magnetic moments Supernova neutrinos BAU from Leptogenesis

Neutrino Physics II Outline 1 Neutrino oscillations phenomenology Solar neutrinos and KamLAND Atmospheric neutrinos and MINOS Results on θ 13 and global fits (Close) future: measurement of sign( m 2 31 ) and δ 2 Absolute Mass Scale Cosmological Bounds Beta and double beta decays 3 Other neutrino properties Limit on N ν Sterile ν s, NSI and magnetic moments Supernova neutrinos BAU from Leptogenesis 4 Summary of neutrino properties

Neutrino Physics II Outline 1 Neutrino oscillations phenomenology Solar neutrinos and KamLAND Atmospheric neutrinos and MINOS Results on θ 13 and global fits (Close) future: measurement of sign( m 2 31 ) and δ 2 Absolute Mass Scale Cosmological Bounds Beta and double beta decays 3 Other neutrino properties Limit on N ν Sterile ν s, NSI and magnetic moments Supernova neutrinos BAU from Leptogenesis 4 Summary of neutrino properties 5 Conclusions

1 Neutrino oscillations phenomenology Solar neutrinos and KamLAND Atmospheric neutrinos and MINOS Results on θ 13 and global fits (Close) future: measurement of sign( m 2 31 ) and δ 2 Absolute Mass Scale 3 Other neutrino properties 4 Summary of neutrino properties 5 Conclusions

Solar neutrino experiments 6 Experiment Reaction Threshold Homestake ν e 37 Cl e 37 Ar E > 0.814 MeV SAGE, Gallex/GNO ν e 71 Ga e 71 Ge E > 0.233 MeV Super-Kamiokande ν e,x e ν e,x e E > 5.5 MeV SNO ES: ν e,x e ν e,x e CC: ν e D ppe NC: ν x D ν x pn E > 5.5 MeV s -1 cm -2 ) φ µτ ( 10 6 5 4 BS05 φssm 68% C.L. NC φµτ 68%, 95%, 99% C.L. 3 SNO φcc 68% C.L. 2 SNO φnc 68% C.L. SNO 1 φes 68% C.L. SK φes 68% C.L. 0 0 0.5 1 1.5 2 2.5 3 3.5 6 φ ( 10 cm -2 s -1 e ) Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 1/22

Tests with reactor neutrinos: KamLAND Terrestrial anti-neutrinos from nuclear reactors in Japan with E 1 MeV and average L 180Km ( m21 2 L/(4E) 1) ν e p e + n, E νe = E e + + m n m p Measurement of P( ν e ν e ) as a function of the energy! Survival Probability 1 0.8 0.6 0.4 Data - BG - Geo! e Expectation based on osci. parameters determined by KamLAND 0.2 0 20 30 40 50 60 70 80 90 100 L 0 /E!e (km/mev) Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 2/22

Global results 5 90% CL 0 15 solar m 2 21 [ 10-5 ev 2 ] 10 5 global KamLAND 0 0.2 0.4 0.6 0.8 sin 2 12 0 LMA MSW solution Oscillations ν e ν µ,τ Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 3/22

Atmospheric neutrino: SuperKamiokande π + µ + ν µ e + ν e ν µ ν µ. Same with π. If ν s are not distinguished from ν s: 2ν µ for each ν e Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 4/22

L 10 Km to 10 4 Km and E 0.1 GeV To 10 GeV. Ideal to have oscillations with m 2 10 3 ev 2. SuperKamiokande ν ei + N e i + N detects e i by Cherenkov: It does not see the charge It allows to obtain the direction of ν ei its energy and the flavour Results: ν e flux not changed and no dependence in L Oscillations ν µ ν x x τ (no much space for steriles or ν decays) Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 5/22

Test in accelerators SuperK results confirmed by neutrinos produced in accelerators: MINOS, K2K,Opera Opera: ν µ ν τ L = 732 Km E 17 GeV K2K: ν µ ν µ L = 250km E 1 GeV MINOS: ν µ ν µ L = 735km E 3 GeV Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 6/22

m 2 31 [ 10-3 ev 2 ] 3.5 3 2.5 2 90,99% CL MINOS T2K global Two solutions: m 2 31 > 0 Normal hierarchy (NH) m 2 31 < 0 Inverted hierarchy (IH) Octant ambiguity in θ 23 1.5 0.3 0.4 0.5 0.6 0.7 sin 2 θ 23 Oscillations ν µ ν τ Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 7/22

Results on θ 13 and δ θ 13 has been measured since 2012 to be different from zero by using reactor anti-neutrino disappearance (Daya Bay and RENO) as well as accelerator appearance and disappearance (MINOS and T2K) From Global fits some indirect information on δ Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 8/22

The two mass orderings Ν e Ν Μ Ν Τ Neutrino Mass Squared 2 m atm 2 m sol 3 sin 2 Θ13 2 1 sin 2 Θ12 sin 2 Θ23 NORMAL sinθ13 cos 1 1 1 1 1 1 sinθ13 2 m sol 2 m atm 2 1 3 sin 2 Θ13 sin 2 Θ12 sin 2 Θ23 sinθ13 INVERTED cos 1 1 1 1 sinθ13 1 1 Fractional Flavor Content varying cos m21 2 = 7.6 10 5 ev 2 (2.5% sin 2 θ 12 = 0.32 (4%) { m31 2 = 2.48 10 3 ev 2 sin 2 θ 23 = 0.57 (11%) 2.38 10 3 ev 2 (2.5%) sin 2 θ 13 = 0.021 (5%) Octant ambiguity in θ 23 δ still not well determinded from the fits but a hint for δ 3π/2 Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 9/22

(Close) future: measurement of sign( m 2 31 ) and δ Noνa (ν µ ν e And ν µ ν e ): sign( m 2 31 ) (Earth MSW effects) δ ( ν e vs ν e ) Strong dependece on θ 23 Also: ν-factories (NF), Super Beams (SB), Beta Beams (BB) Direct CP asymmetry A CP αβ (P(ν α ν β ) P( ν α ν β ))/(P(ν α ν β ) + P( ν α ν β )) difficult: depends on J = s 12 c 12 s 23 c 23 s 13 c13 2 sinδ and the two mass differences m21 2 and m2 31 Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 10/22

1 Neutrino oscillations phenomenology 2 Absolute Mass Scale Cosmological Bounds Beta and double beta decays 3 Other neutrino properties 4 Summary of neutrino properties 5 Conclusions

Cosmic Neutrino Background ν s decouple at T f 1MeV and present ν density is n ν = 3ζ (3)g ν 4π 2 T 3 ν 112cm 3, kt ν 10 4 ev if m ν 0, ν s contribute to the mass density of the universe Ω νi = n ν i m νi ρ c Ω ν h 2 = i m νi 94eV, h 0.7,Ω 0.3 m νi 14eV i Refined using CMB and LSS (depends on hypothesis) m νi < 0.2 2 ev i Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 11/22

Beta decay β decay of tritium: 3 H 3 He + e + ν e Very little available energy (order few kev) very sensitive to m ν dn de = U ei 2 Γ(m 2 ν i,e) = Γ(m 2 ν,e) Γ( m 2 ν,e) m 2 ν e m 2 ν = U ei 2 m 2 ν i = (M νm ν ) ee = c 2 13 (m2 1 c2 12 +m2 2 s2 12 )+m2 3 s2 13 3 Bound from MAINZ and TROITSK 1 in ev mνe 0.3 0.1 0.03 0.01 Sensitivity of KATRIN m 2 23 0 m 2 23 0 99 CL 1 dof 0.003 10 3 0.01 0.1 disfavoured by cosmology Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 12/22

Neutrinoless 2β decay 2νββ observed with T 2νββ 10 20 year 0νβ β requires Majorana ν masses (does not conserve LN) Suppressed by m ν but enhanced by phase space A 0νββ G 2 F m ββ q 2, q 100MeV m ββ = Vei 2 m i = ( ) VM diag V T = ( M ) ν = ee ee = c13 2 (m 1c12 2 + m 2s12 2 e2iα ) + m 3 s13 2 e2i(β δ) Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 13/22

Present limits (HM,IGEX) give m ββ 0.3 0.4eV. Improved recently by KamLAND-Zen (and EXO-200) m ββ 0.12 0.25eV Future (KamLAND2-Zen,nEXO,Majorana,GERDA2,CUORE,... ): m ββ 0.01eV Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 14/22

Present limits (HM,IGEX) give m ββ 0.3 0.4eV. Improved recently by KamLAND-Zen (and EXO-200) m ββ 0.12 0.25eV Future (KamLAND2-Zen,nEXO,Majorana,GERDA2,CUORE,... ): m ββ 0.01eV Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 14/22

Present limits (HM,IGEX) give m ββ 0.3 0.4eV. Improved recently by KamLAND-Zen (and EXO-200) m ββ 0.12 0.25eV Future (KamLAND2-Zen,nEXO,Majorana,GERDA2,CUORE,... ): m ββ 0.01eV Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 14/22

Present limits (HM,IGEX) give m ββ 0.3 0.4eV. Improved recently by KamLAND-Zen (and EXO-200) m ββ 0.12 0.25eV Future (KamLAND2-Zen,nEXO,Majorana,GERDA2,CUORE,... ): m ββ 0.01eV Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 14/22

1 Neutrino oscillations phenomenology 2 Absolute Mass Scale 3 Other neutrino properties Limit on N ν Sterile ν s, NSI and magnetic moments Supernova neutrinos BAU from Leptogenesis 4 Summary of neutrino properties 5 Conclusions

Limit on N ν N ν = 2.982 ± 0.008 Light (m ν 45GeV) Active (full Z couplings) Any other light particle coupling to the Z will contribute A fourth generation with m ν4 < 45GeV: N ν = 1 (excluded) Triplet majorons (Y = 1): N ν = 2 (excluded) Doublet majorons, light sneutrinos: N ν = 1/2 (excluded) Light esterile (singlet) neutrinos are allowed Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 15/22

Sterile ν s, NSI and magnetic moments Sterile neutrinos LSND and MiniBoone see evidence of transitions ν µ ν e with mlsnd 2 > m2 ATM (Also hints from reactor, Gallium anomalies and from cosmology (N s = 1,2)) Experimental situation not completely clear Difficult to adjust everything Necessary, at least, a fourth neutrino (sterile given Γ Z ) Non-standar interactions (NSI) L NSI = ε fc αβ 2 2G F 2 ( ν α γ µ P L ν β )( f γ µ P L,R f ), affect ν cross sections and oscillations. Not very strong limits, typically ε αβ < 0.01 10 depending on the flavours. Neutrino magnetic moments Change νe νe cross section (µ ν 10 10 µ B ) and contribute to the energy loss of stars because plasmon decay γ P νν. From red giant stars µ ν < 3 10 12 µ B 2m ν < ω P 10KeV Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 16/22

Supernova neutrinos Energy released in a SN explosion 3 10 53 erg mainly neutrinos (99%) E ν few MeV. t 10s. The 3 types of neutrinos are emitted. SN1987A observed: 24 ν in a 13s interval. Limit on the masses: m ν < 16 ev Restrictions on the neutrino velocities Restrictions on non-standard cooling mechanisms Oscillation to steriles sin 2 2θ s 10 8 Magnetic moments of neutrinos Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 17/22

BAU from leptogenesis We exist!: η B (n baryons n antibaryons )/n γ 6 10 10. Sakharov: a) B 0, b) out of equilibrium c) C 0 & (CP) 0 Possible in the SM but not enough. In seesaw L B ε 1 = Γ(N 1 Φl) Γ(N 1 Φ l) Γ(N 1 Φl) + Γ(N 1 Φ l) N 1 Φ l ε 1 = 3 16π i + N 1 Φ l N Φ + l Im{( λ ν λ ν ) 2 i1 } M 1 ( λ λ) 11 M i 8 16π N 1 Φ l N M 1 v 2 m2 atm 1/2 Sphalerons conserve B L but violate B with L = B η B = 10 2 ε 1 κ M 1 10 9 GeV Φ l Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 18/22

1 Neutrino oscillations phenomenology 2 Absolute Mass Scale 3 Other neutrino properties 4 Summary of neutrino properties 5 Conclusions

Summary of parameters m 2 31 ±2.4 10 3 ev 2 θ 23 45 Atmos,K2K,MINOS m 2 21 7.6 10 5 ev 2 θ 12 35 Solar, KamLAND θ 13 9 T2K,MINOS,Double Chooz Daya Bay,RENO N ν (active and light) 3 LEP m ββ = i V 2 ei m ν i 0.2eV KamLAND-Zen,EXO,HM,IGEX,... m νe = i V ei 2 m 2 ν i < 2.2eV Mainz and Troitsk i m νi 1eV Cosmology sign( m 2 31 )? Noνa,NF,BB,SB,... CP, δ 3π/2? Noνa,NF,BB,SB,... Dirac or Majorana? (α,β)? HM?,0νβ β N s (light sterile) 1,2? LSND,MiniBooNE,Cosmology µ ν /µ B < 10 10,10 12 σ ν, red giants NSI ε 0.01 10 Sun,Atm,LSND,NF,... LFV (µ eγ, ) < 5.7 10 13 MEG,COMET/Mu2e,... Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 19/22

Unknowns m lightest not known (it could be zero) Mass ordering ( sign( m31 2 ) ) now known Is there CP violation (δ)? Is LN conserved in 2β decays? Is it due to Majorana ν masses? Is there LFV in the charged sector (µ eγ,τ µγ, µ-e conversion, ) Are there sterile ν s, NSI or magnetic moments? Why ν masses are so small? Why the structure of masses and mixings is so different from the quark sector? Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 20/22

1 Neutrino oscillations phenomenology 2 Absolute Mass Scale 3 Other neutrino properties 4 Summary of neutrino properties 5 Conclusions

Conclusions We have learned a lot on the neutrino properties in the last years but there is still a lot to be learned Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 21/22

Conclusions We have learned a lot on the neutrino properties in the last years but there is still a lot to be learned We do not have a Standard Model of neutrino masses but have many interesting ideas Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 21/22

Conclusions We have learned a lot on the neutrino properties in the last years but there is still a lot to be learned We do not have a Standard Model of neutrino masses but have many interesting ideas Fortunatelly, we have many proposed experiments which can refine our knowledge on the neutrino properties and guide us in our way to a Standard Model of Neutrino Masses Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 21/22

Thank you Thanks for your attention It has been a pleasure! Arcadi Santamaria Neutrino Physics II TAE 2014, Benasque, September 19, 2014 22/22