Math Review for Exam Compute the second degree Taylor polynomials about (0, 0) of the following functions: (a) f(x, y) = e 2x 3y.

Similar documents
Page Problem Score Max Score a 8 12b a b 10 14c 6 6

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.

No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers.

1. For each function, find all of its critical points and then classify each point as a local extremum or saddle point.

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

Without fully opening the exam, check that you have pages 1 through 12.

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3

McGill University April Calculus 3. Tuesday April 29, 2014 Solutions

MTH 234 Solutions to Exam 2 April 13, Multiple Choice. Circle the best answer. No work needed. No partial credit available.

1. Find and classify the extrema of h(x, y) = sin(x) sin(y) sin(x + y) on the square[0, π] [0, π]. (Keep in mind there is a boundary to check out).

Dimensions = xyz dv. xyz dv as an iterated integral in rectangular coordinates.

Geometry and Motion Selected answers to Sections A and C Dwight Barkley 2016

e x3 dx dy. 0 y x 2, 0 x 1.

McGill University December Intermediate Calculus. Tuesday December 17, 2014 Time: 14:00-17:00

Answer sheet: Final exam for Math 2339, Dec 10, 2010

Review for the First Midterm Exam

MLC Practice Final Exam

Math 23b Practice Final Summer 2011

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

Math 10C - Fall Final Exam

Solutions to Sample Questions for Final Exam

Math 222 Spring 2013 Exam 3 Review Problem Answers

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane.

Math 234 Final Exam (with answers) Spring 2017

Page Points Score Total: 210. No more than 200 points may be earned on the exam.

Practice Final Solutions

Final Review Worksheet

MATHS 267 Answers to Stokes Practice Dr. Jones

MTH 234 Exam 2 November 21st, Without fully opening the exam, check that you have pages 1 through 12.

234 Review Sheet 2 Solutions

Solution. This is a routine application of the chain rule.

Solutions to the Calculus and Linear Algebra problems on the Comprehensive Examination of January 28, 2011

MATH 52 FINAL EXAM SOLUTIONS

One side of each sheet is blank and may be used as scratch paper.

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Review problems for the final exam Calculus III Fall 2003

Figure 25:Differentials of surface.

MA 351 Fall 2008 Exam #3 Review Solutions 1. (2) = λ = x 2y OR x = y = 0. = y = x 2y (2x + 2) = 2x2 + 2x 2y = 2y 2 = 2x 2 + 2x = y 2 = x 2 + x

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

Review for the Final Exam

Archive of Calculus IV Questions Noel Brady Department of Mathematics University of Oklahoma

( ) ( ) Math 17 Exam II Solutions

MAT 211 Final Exam. Fall Jennings.

Math 210, Final Exam, Fall 2010 Problem 1 Solution. v cosθ = u. v Since the magnitudes of the vectors are positive, the sign of the dot product will

MATH H53 : Final exam

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14

Figure 21:The polar and Cartesian coordinate systems.

4 Partial Differentiation

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

Mathematics 205 Solutions for HWK 23. e x2 +y 2 dxdy

14.7 Triple Integrals In Cylindrical and Spherical Coordinates Contemporary Calculus TRIPLE INTEGRALS IN CYLINDRICAL AND SPHERICAL COORDINATES

Math Review for Exam 3

Practice Problems for the Final Exam

Math 210, Final Exam, Spring 2012 Problem 1 Solution. (a) Find an equation of the plane passing through the tips of u, v, and w.

MAT 211 Final Exam. Spring Jennings. Show your work!

The University of British Columbia Final Examination - December 17, 2015 Mathematics 200 All Sections

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10

Print Your Name: Your Section:

Math 233. Practice Problems Chapter 15. i j k

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

( ) ( ) ( ) ( ) Calculus III - Problem Drill 24: Stokes and Divergence Theorem

Math Exam IV - Fall 2011

Math 6A Practice Problems II

MULTIVARIABLE INTEGRATION

MATH 10550, EXAM 2 SOLUTIONS. 1. Find an equation for the tangent line to. f(x) = sin x cos x. 2 which is the slope of the tangent line at

Math 114: Make-up Final Exam. Instructions:

SOLUTIONS FOR PRACTICE FINAL EXAM

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

SOLUTIONS TO HOMEWORK ASSIGNMENT #2, Math 253

DO NOT BEGIN THIS TEST UNTIL INSTRUCTED TO START

D = 2(2) 3 2 = 4 9 = 5 < 0

Math 221 Examination 2 Several Variable Calculus

MAY THE FORCE BE WITH YOU, YOUNG JEDIS!!!

MATH2321, Calculus III for Science and Engineering, Fall Name (Printed) Print your name, the date, and then sign the exam on the line

Math 147 Exam II Practice Problems

Solutions to Practice Exam 2

Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C

SOME PROBLEMS YOU SHOULD BE ABLE TO DO

Math 20C Homework 2 Partial Solutions

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x +

MATHEMATICS 200 April 2010 Final Exam Solutions

51. General Surface Integrals

Bi. lkent Calculus II Exams

36. Double Integration over Non-Rectangular Regions of Type II

1. (30 points) In the x-y plane, find and classify all local maxima, local minima, and saddle points of the function. f(x, y) = 3y 2 2y 3 3x 2 + 6xy.

Math 265H: Calculus III Practice Midterm II: Fall 2014

Math 234 Exam 3 Review Sheet

Major Ideas in Calc 3 / Exam Review Topics

Review Sheet for the Final

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

Study Guide/Practice Exam 3

Practice Midterm 2 Math 2153

Page Problem Score Max Score a 8 12b a b 10 14c 6 6

The Divergence Theorem

7/26/2018 SECOND HOURLY Maths 21a, O.Knill, Summer Name:

53. Flux Integrals. Here, R is the region over which the double integral is evaluated.

Transcription:

Math 35 - Review for Exam 1. Compute the second degree Taylor polynomial of f e x+3y about (, ). Solution. A computation shows that f x(, ), f y(, ) 3, f xx(, ) 4, f yy(, ) 9, f xy(, ) 6. The second degree Taylor polynomial is then f(, ) + f x(, )x + f y(, )y + 1 { fxx(, )x + f xy(, )xy + f yy(, )y } 1 + x + 3y + x + 6xy + 9 y.. Compute the second degree Taylor polynomials about (, ) of the following functions: (a) f(x, y) e x 3y. (b) f(x, y) e x y 3. Solution: (a) There are two ways to do this one. One way is to use the definition of Taylor s formula. A computation shows that The second degree Taylor polynomial is f(, ) 1, f x(, ), f y(, ) 3, f xx(, ) 4, f xy(, ) 6, f yy(, ) 9. P (x, y) f(, ) + f x(, )x + f y(, )y + 1 fxx(, )x + f xy(, )xy + 1 fyy(, )y 1 + x 3y + x 6xy + 9 y Another way is to use the fact that e u 1 + u + u /. Now let u x 3y to get e x 3y 1 + (x 3y) + 1 (x 3y) 1 + x 3y + x 6xy + 9 y. (b) Computing the Taylor polynomial using the formula will be a prohibitive computation. Use the trick in part (a). Let u x y 3 and note that e u 1 + u + u / and so e x y 3 1 + (x y 3 ) + 1 (x y 3 ). Eliminate all the terms which are of degree 3 or higher (since we are looking for the second degree Taylor polynomial!) to get 1 + x as the second degree Taylor polynomial. 3. Compute the second degree Taylor polynomial for f(x, y) xsin(y) about (1, π ). Solution: f x sin(y) 1, f y xcos(y), f xx, f yy xsin(y) 1, f xy cos(y) So the Taylor polynomial is: 1 + 1(x 1) 1 (y π ) 4. For each of the functions below, find and identify (as max/max/saddle) all the critical points. (a) f 4xy x 4 y (b) f x 4 y 4. Solution. (a) The critical points lie where the gradient is equal to zero. A computation shows that which generates the following system of equations: f(x, y) (4y 4x 3, 4x 4y) (, ) 4y 4x 3, 4x 4y. Using the second equation, we see that x y. Plugging this into the first equation says x x 3 which occurs when x, 1, 1. This the critical points are (, ), (1, 1), ( 1, 1). The Hessian turns out to be 1x 4 H f (x, y). 4 4 Notice that 4 H f (, ) 4 4 1

which has eigenvalues ( 1 5) 6.4714 and ( 1 + 5).4714, yielding that (, ) is a saddle point. Notice that 1 4 H f (1, 1) 4 4 which has eigenvalues 4( ) 13.6569 and 4( + ).34315, yielding that (1, 1) is a maximum. Finally, notice that H f ( 1, 1) H f (1, 1) and so ( 1, 1) is also a maximum. (b) A computation shows that the only critical point is (, ). Another computation shows that H f (, ) is the zero matrix and so the second derivative test fails. Notice that f(x, ) x 4 which is always increases as you move away from zero in the x-direction while f(, y) y 4 which is always decreasing as you move away from zero in the y-direction. Thus (, ) is a saddle point. 5. Find the critical points of f(x, y) x + 5xy y 3 and classify them as local maximum, local minimum, or saddle points. Solution. The critical points (x, y) of f lie where f(x, y) (, ). Here when (x, y) is a solution of the system f(x, y) (x + 5y, 5x 3y ) (, ) x + 5y 5x 3y. Solving this system (solving for x in the first equation and using that to solve for y in the second equation) gives the two critical points (, ) and (15/1, 5/6). The Hessian of f is equal to fxx f H f (x, y) xy 5. f yx f yy 5 6y Examining the point (, ) we find that H f (, ) 5 5 which has eigenvalues 1 6 and 1 + 6. These eigenvalues are of opposite signs and so (, ) is a saddle point. For the critical point (15/1, 5/6) we get 5 H f (15/1, 5/6) 5 5 which has eigenvalues 1 (3 + 89) 5.896 and 1 (3 89).89618. They are both positive sign and so the critical point (15/1, 5/6) is a minimum. 6. Find the critical points of f(x, y) 8xy.5(x+y) 4 and classify them as local maximum, local minimum, or saddle points. Solution. The critical points (x, y) of f lie where f(x, y) (, ). Here f(x, y) (8y (x + y) 3, 8x (x + y) 3 ) (, ) when (x, y) is a solution of the system 8y (x + y) 3 8x (x + y) 3. Solving both of these equations for the quantity (x + y) 3, and setting them equal, we find that x y. The first equation then becomes 8x (x + x) 3 8x 3, i.e., x x 3 which has solutions x, 1, 1. Thus, the three critical points are (, ), (1, 1), ( 1, 1). The Hessian of f is equal to ( fxx f H f (x, y) xy 3(x + y) 8 3(x + y) ) f yx f yy 8 3(x + y) 3(x + y). For the critical point (, ), H f (, ) 8 8 which has eigenvalues 8 and 8. Since they are of opposite sign, (, ) is a saddle point. For the critical point (1, 1), 1 4 H f (1, 1) 4 1 which has eigenvalues 16 and 8 which are both negative and so (1, 1) is a maximum. For the critical point ( 1, 1), 1 4 H f ( 1, 1) 4 1 which has eigenvalues 16 and 8, making the critical point ( 1, 1) a maximum. 7. Find and classify the critical points of the function f(x, y) x + 3y3 + 9y 3xy + 9y 9x.

3 Solution. To find the critical points we set the gradient equal to zero and solve for (x, y). In this case, f x 9 + x 3y f y 9 3x + 18y + 9y. Solving for x in the first equation and inserting it into the second yields the quadratic equation 9y + 9y 18 which has the solutions y and y 1. This gives us the two critical points The Hessian (at a general point (x, y) is equal to (3, ) and (1, 1). fxx f H f xy 1 3. f yx f yy 3 18y + 18 1 3 H f (3, ) 3 18 Which has eigenvalues λ 1 ( 17 397) 18.464 and λ 1 ( 17 + 397) 1.4643. Thus (3, ) is a saddle point. 1 3 H f (1, 1) 3 36 which has eigenvalues λ 1 (37 161).744719 and λ 1 (37 + 161) 36.553. Thus (1, 1) is a minimum. 8. Find and classify the critical points of the function f(x, y) x 4 + y 4. Solution. Just as in the previous problem, the critical points are where the gradient is equal to zero. So f x 4x 3 f y 4y 3 which holds when x and y. Thus (, ) is the only critical point. The Hessian at a general point (x, y) is equal to ( fxx f H f xy 1x ) f yx f yy 1y which, unfortunately, is the zero matrix at the critical point (, ) and so has both eigenvalues equal to zero. Thus the second derivative test is of no use. However, notice that f(x, y) x 4 + y 4 is either equal to zero, at the critical point (, ), or it is positive. Hence (, ) is a local minimum. 9. Find and classify the critical points of the function f(x, y) xy + 1 x + 1 y. Solution: The critical points are located at where f (, ). A computation shows that f (y 1/x, x 1/y ) (, ) 1 when (x, y) (1, 1). The Hessian at (1, 1) is equal to which has eigenvalues λ 1 and λ 3, making the critical point (1, 1) a local 1 minimum. 1. For the function f(x, y) x 3 + x y 3 + y find all of the critical points and identify as local max., local min., or saddle point. Solution: f x 3x + x x(3x + ) so f x implies x or x 3. f y 3y + y y( 3y + ) so f y implies y or y 3. f xx 6x +, f yy 6y +, and f xy, so D (6x + )( 6y + ) D(, ) 4 and f xx(, ). So there is a local min at (, ). D(, 3 ) 4. So there is a saddle at (, 3 ). D( 3, ) 4. So there is a saddle at ( 3, ). D( 3, 3 ) 4, and fxx( 3, 3 ). So there is a local max at ( 3, 3 ). 11. Compute the following integral: y + x3 dx dy

4 Solution. Reverse the order of integration to get the above integral equal to x + x 3 dy dx which can be computed as x + x 3 dy dx x + x 3 dx 9 (33/ 3/ ).56161 1. Evaluate the following integral y x3 + 1 dx dy. Solution. The region of integration is Reversing the order of integration from dx dy to dy dx converts the above integral to x x 3 + 1 dy dx 9 + 4 9. 13. Evaluate the integral e /y 1 1/e cos(x log x)dx dy Solution. Reverse the order of integration

5 to transform the integral to e /y cos(x log x)dx dy 1 1/e /x cos(x log x)dy dx 1/e 1 cos(x log x)( 1 1/e x 1)dx sin(x log x) x1 x1/e sin(1) + sin(1/e + 1) 14. Evaluate the integral e e y x dx dy. log x Solution. Reverse the order of integration to transform the integral to e x dx dy e y log x e log x x dy dx 1 log x e x 1 log x y ylog x y dx e xdx 1 1 (e 1) 15. Evaluate the following integral y/ e x dx dy. Solution. This integral cannot be done as is since the x integral is impossible. So, reverse the order of integration to transform the integral to x x e x dx dy e x dy dx ye x yx y dx e 1

6 16. Evaluate the integral 8 x 1/3 1 y 4 + 1 dy dx. Solution. Reverse the order of integration to transform the integral to which can now be evaluated easily to log(17)/4. y 3 1 y 4 dx dy + 1 17. Compute 4 y sin x x dx dy Solution: Reverse the order of integration to get 4 sin x 4 x sin x y dx dy dy dx x x 4 y sin x y x dx x y 4 sin xdx 1 cos 4 18. Evaluate the following integral y 4 y e x +y dx dy. Solution. For this integral we draw the region of integration and switch to polar coordinates to transform the integral to /4 re r dr dθ

7 which can easily be evaluated to π(e 4 1)/8. 19. Evaluate / y 1 y sin(x + y ) dx dy Solution. Draw the region of integration and switch to polar coordinates to get the above integral is equal to /4 sin(r π 1 )r dr dθ r sin r dr 4 π ( 1 4 cos(r ) r1 ) r π ( 1 4 1 cos(1) ).1853. Evaluate 7/ 9 x x/ 3 1 dy dx. x + y Solution. Draw the region of integration and switch to polar coordinates (note that y x/ 3 9 x x 7/3 and that y x/ 3 r sin θ r cos θ 1 tan θ 1 θ π/6) 3 3 to transform the integral to / 3 dr dθ π. π/6 1. Find the area between the two curves x + y y and x + y x. Solution. By completing the square, the above two curves are x + y y x + (y 1/) 1/4 circle: center (, 1/), radius 1/ Draw the region of integration x + y x (x 1/) + y 1/4 circle: center (1/, ), radius 1/

8 Now integrate in polar coordinates. First convert the two circles to polar coordinates x + y x r cos θ x + y y r sin θ. Now use the fact that the region is symmetric about the line y x so find the total area by taking twice the area of the bottom part of the region. This area is /4 sin θ rdr dθ which evaluates to π/8 1/4.. Set up fda R as an integral, over the following region, in polar coordinates Soln: This circle is x + (y ) 4 which, making the substitutions x r cos θ, y r sin θ, becomes the circle r 4 sin θ, θ π. Thus 4 sin θ fda f r dr dθ. R 3. Set up fda R as an integral, over the following region, in polar coordinates Soln: This circle is (x + ) + y 4 which, making the substitutions x r cos θ, y r sin θ, becomes the circle r 4 cos θ, π/ θ 3π/. Thus 3π/ 4 cos θ fda f r dr dθ. R π/

9 4. Set up R fda as an integral, over the following region, in polar coordinates Soln: The inner circle is r cos θ and the outer circle is r 4 cos θ, π/ θ π/. Thus / 4 cos θ fda f r dr dθ. R π/ cos θ 5. Set up but do not evaluate a triple integral which represents the volume of the solid which lies: under z x + y, above the xy plane, inside x + y y. Solution. The region of integration is and so the volume (in cylindrical coordinates) is sin θ r r dz dr dθ. 6. For each integral draw the region of integration: (a) (b) z y+z π 4 1 f(x, y, z) dx dy dz ρ sin φ dρ dφ dθ

1 Solution: 7. Set up each of the following integrals in any coordinate system you choose. Do not compute the integrals. (a) The integral of f(x, y, z) x over the region bounded by the plane x+4y +z 6 and the coordinate planes. (b) The integral f(x, y, z) x + y + z over the region bounded by the cylinder x + z, the plane y x and the plane y 5. (c) The integral of f(x, y, z) 1 over the region bounded by the cylinders x + y 1 and x + y and the surfaces z x + y 3 and z 3 x y. 3 3 x 6 x 4y Solution: (a) x dz dy dx 5 x (b) x x x + y + z dz dy dx 3 r (c) r dz dr dθ 1 r 3 8. Let ρ(x, y, z) x + y + z be a density function for the solid bounded by the surfaces z x + y and z. Find the mass of the solid. Solution. The solid is drawn as follows: The mass is the integral over the solid of the density function. Writing the integral in cylindrical coordinates gives us the mass is equal to (r + z )rdzdrdθ 48π r 5

11 9. Set up the volume integral of the function f(x, y) x + y over the solid bounded by the surfaces z x + y and z 1 in three ways: rectangular coordinates, cylindrical coordinates, and spherical coordinates. Then choose one of these three methods and compute the integral. Solution. The region looks like a. Rectangular: 1 x x + y dz dy dz 1 1 x x +y b. Cylindrical: r dz dr dθ π/6 r c. Spherical: /4 sec φ ρ 3 sin φ dρ dφ dθ 3. Compute the volume enclosed by the surfaces z x + y and x + y x. Solution. The first surface is a cone and the second surface (after completing the square is (x 1) + y 1 which is a cylinder centered at (1,, ) and parallel to the z-axis. The shadow region in the xy plane is the circle x +y x which in polar coordinates is r cos θ. The volume is (in cylindrical coordinates) / cos θ r dv r dz dr dθ π/ 8 / cos 3 θ dθ 3 π/ 3 9

1 31. Write down the integral which represents the volume of the region bounded by the surfaces x y + z 1, 1 x 1 y + z 1, y x 1, y, x. Solution. The region of integration is The shadow region is the region in the xy plane bounded by the x and y axis and the line y x 1. The volume is then 1 x+ 1 y dz dy dx. x 1 1 x+y 3. Evaluate the following integral 1 dz dy dx x + y over the region bounded by the surfaces x + y y, z, z y. Solution. The region looks like To write this integral in cylindrical coordinates, we first write all the bounding surfaces in cylindrical coordinates x + y y r sin θ z z z y z r sin θ. We now write the integral as sin θ r sin θ 1 r dz dr dθ r which, after a computation, can be evaluated to /3. 33. Evaluate the following integral (x + y + z ) dx dy dz over the region bounded by the surfaces x + y + z z and x + y + z z. Solution. The region of integration is the region contained between two spheres

13 Note that some completing the square is needed here to determine the center and radius of each sphere. Since we plan to integrate in spherical coordinates, we write each sphere in spherical coordinates x + y + z z ρ cos φ The integral (in spherical coordinates becomes) x + y + z z ρ cos φ / cos φ ρ ρ sin φ dρ dφ dθ 31π cos φ 15. 34. Sketch the region of integration for the following triple integral 6 3 1 x 6 x y f(x, y, z) dz dy dx Solution. 35. Sketch the region of integration for the following triple integral 1 x x y f(x, y, z) dz dy dx 1 Solution. 36. Evaluate the integral (x + y ) dz dy dx, W where W is the solid bounded by z, z 4, y x, y x, y, x + y.

14 Solution. The region looks like In cylindrical coordinates, the integral becomes 3π/4 4 r r dz dr dθ π π/4 37. Draw, in detail and identify all surfaces involved, the solid whose volume is represented by the following integrals: (a) (b) /6 sec φ / 4 cos φ cos φ ρ sin φ dρ dθ dφ ρ sin φ dρ dφ dθ Solution. (a) (b) 38. Convert each integral below into an integral in rectangular coordinates. Do not actually compute the integrals. (a) / / 5 ρ 3 cos φ sin φ dρ dφ dθ

15 (b) 3 3 r r dz dr dθ Solution: (a) The region of integration is the portion of the sphere x + y + z 5 with x, y, z. Also note that Finally, ρ 3 cos φ sin φdρdφdθ ρ cos φ(ρ sin φ)dρdφdθ zdxdydz. / / 5 5 ρ 3 5 x 5 x y cos φ sin φ dρ dφ dθ zdzdydx. (b) The region of integration is the solid bounded by the paraboloid z 3 x y and the plane z and with y. Also notice that r dzdrdθ r rdzdrdθ x + y dzdxdy. Finally, 3 3 r r 3 dz dr dθ 3 3 x 3 x y x + y dzdydx. 39. The volume enclosed by z 1 x y and z 1 y can be written as an integral of the form c sin d θ dθ. Find the constants c and d. Solution: The region of integration is bounded below by the plane z 1 y and above by the paraboloid z 1 x y. The shadow region is formed when 1 x y 1 y, equivalently when x + y y which is the circle with radius 1/ and center (, 1/). In polar coordinates this circle is r sin θ (use x + y y with x r cos θ and y r sin θ). The volume is then So c 1/1 and d 4. V sin θ r r dzdrdθ 1 r sin θ sin θ rz z1 r dr dθ z1 r sin θ sin θ ( r 3 + r sin θ) dr dθ r 4 + r3 4 3 sin θ rsin θ dθ r 1 1 sin4 θ dθ 4. Give three integrals for the volume inside the cone x + y z 1, one in rectangular coordinates, one in cylindrical coordinates, and the third in spherical coordinates. Do not evaluate any of the integrals. Solution: 1 x 1 1 x x +y 1 dz dy dx r r dz dr dθ sec(φ) 4 ρ sin(φ) dρ dφ dθ 41. Compute the value of the integral of 1/ x + y + z over the region between the spheres of radius 1 and centered at the origin. 1 Solution: 1 ρ ρ sin(φ) dρ dφ dθ 6π