Mock Modular Forms and Class Number Relations

Similar documents
Class Number Type Relations for Fourier Coefficients of Mock Modular Forms

Arithmetic properties of harmonic weak Maass forms for some small half integral weights

SPECIAL VALUES OF SHIFTED CONVOLUTION DIRICHLET SERIES

Mock modular forms and their shadows

Mock Modular Forms and Class Numbers of Quadratic Forms

Moonshine: Lecture 3. Moonshine: Lecture 3. Ken Ono (Emory University)

Basic Background on Mock Modular Forms and Weak Harmonic Maass Forms

4 LECTURES ON JACOBI FORMS. 1. Plan

Differential operators on Jacobi forms and special values of certain Dirichlet series

MOCK THETA FUNCTIONS OF ORDER 2 AND THEIR SHADOW COMPUTATIONS

ON A MODULARITY CONJECTURE OF ANDREWS, DIXIT, SCHULTZ, AND YEE FOR A VARIATION OF RAMANUJAN S ω(q)

INDEFINITE THETA FUNCTIONS OF TYPE (n, 1) I: DEFINITIONS AND EXAMPLES

Quantum Mock Modular Forms Arising From eta-theta Functions

SOME CONGRUENCES FOR PARTITIONS THAT ARE p-cores. Frank G. Garvan

A Motivated Introduction to Modular Forms

Multiple Eisenstein series

OVERPARTITION M 2-RANK DIFFERENCES, CLASS NUMBER RELATIONS, AND VECTOR-VALUED MOCK EISENSTEIN SERIES

On a secant Dirichlet series and Eichler integrals of Eisenstein series

Theta Operators on Hecke Eigenvalues

Before we prove this result, we first recall the construction ( of) Suppose that λ is an integer, and that k := λ+ 1 αβ

ON THE MODULARITY OF CERTAIN FUNCTIONS FROM THE GROMOV-WITTEN THEORY OF ELLIPTIC ORBIFOLDS

EXACT FORMULAS FOR COEFFICIENTS OF JACOBI FORMS

Introduction to Borcherds Forms

Shifted Convolution L-Series Values of Elliptic Curves

REGULARIZED INNER PRODUCTS AND WEAKLY HOLOMORPHIC HECKE EIGENFORMS

Mock and quantum modular forms

An Analogy of Bol s Result on Jacobi Forms and Siegel Modular Forms 1

Congruence Subgroups

RANKIN-COHEN BRACKETS AND SERRE DERIVATIVES AS POINCARÉ SERIES. φ k M = 1 2

On Rankin-Cohen Brackets of Eigenforms

A NOTE ON THE SHIMURA CORRESPONDENCE AND THE RAMANUJAN τ(n) FUNCTION

A MIXED MOCK MODULAR SOLUTION OF KANEKO ZAGIER EQUATION. k(k + 1) E 12

PARITY OF THE COEFFICIENTS OF KLEIN S j-function

ON THE POSITIVITY OF THE NUMBER OF t CORE PARTITIONS. Ken Ono. 1. Introduction

This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License.

The Arithmetic of Elliptic Curves

Introduction to modular forms Perspectives in Mathematical Science IV (Part II) Nagoya University (Fall 2018)

Don Zagier s work on singular moduli

CYCLE INTEGRALS OF THE J-FUNCTION AND MOCK MODULAR FORMS

Three-dimensional imprimitive representations of PSL 2 (Z) and their associated vector-valued modular forms

Hecke-Operators. Alex Maier. 20th January 2007

FERMAT S WORLD A TOUR OF. Outline. Ching-Li Chai. Philadelphia, March, Samples of numbers. 2 More samples in arithemetic. 3 Congruent numbers

MOCK MODULAR FORMS AS p-adic MODULAR FORMS

QUANTUM MODULARITY OF MOCK THETA FUNCTIONS OF ORDER 2. Soon-Yi Kang

Representations of integers as sums of an even number of squares. Özlem Imamoḡlu and Winfried Kohnen

Ramanujan s last prophecy: quantum modular forms

arxiv: v1 [math.nt] 28 Jan 2010

Ramanujan s Deathbed Letter. Larry Rolen. Emory University

(τ) = q (1 q n ) 24. E 4 (τ) = q q q 3 + = (1 q) 240 (1 q 2 ) (1 q 3 ) (1.1)

MULTILINEAR OPERATORS ON SIEGEL MODULAR FORMS OF GENUS 1 AND 2

RANKIN-COHEN BRACKETS AND VAN DER POL-TYPE IDENTITIES FOR THE RAMANUJAN S TAU FUNCTION

Klingen type Eisenstein series of skew holomorphic Jacobi forms

A PROOF OF THE THOMPSON MOONSHINE CONJECTURE

TALKS FOR THE SCHOOL ON MOCK MODULAR FORMS AND RELATED TOPICS IN FUKUOKA, JAPAN

Theta and L-function splittings

Modular forms, combinatorially and otherwise

A SHORT INTRODUCTION TO HILBERT MODULAR SURFACES AND HIRZEBRUCH-ZAGIER DIVISORS

Projects on elliptic curves and modular forms

LIFTS TO SIEGEL MODULAR FORMS OF HALF-INTEGRAL WEIGHT AND THE GENERALIZED MAASS RELATIONS (RESUME). S +(2n 2) 0. Notation

arxiv: v3 [math.nt] 28 Jul 2012

Distribution of Fourier coefficients of primitive forms

GROSS-ZAGIER ON SINGULAR MODULI: THE ANALYTIC PROOF

Spaces of Weakly Holomorphic Modular Forms in Level 52. Daniel Meade Adams

VECTOR-VALUED HIRZEBRUCH-ZAGIER SERIES AND CLASS NUMBER SUMS

An application of the projections of C automorphic forms

1. Introduction and statement of results This paper concerns the deep properties of the modular forms and mock modular forms.

GUO-NIU HAN AND KEN ONO

On Kaneko Congruences

A class of non-holomorphic modular forms

MATH 797MF PROBLEM LIST

INFINITE PRODUCTS IN NUMBER THEORY AND GEOMETRY

On the zeros of certain modular forms

Quaternions and Arithmetic. Colloquium, UCSD, October 27, 2005

Introduction to Modular Forms

p-adic families of modular forms

DETERMINATION OF GL(3) CUSP FORMS BY CENTRAL VALUES OF GL(3) GL(2) L-FUNCTIONS, LEVEL ASPECT

DIVISIBILITY AND DISTRIBUTION OF PARTITIONS INTO DISTINCT PARTS

Zeros and Nodal Lines of Modular Forms

DEDEKIND S ETA-FUNCTION AND ITS TRUNCATED PRODUCTS. George E. Andrews and Ken Ono. February 17, Introduction and Statement of Results

20 The modular equation

SHIMURA LIFTS OF HALF-INTEGRAL WEIGHT MODULAR FORMS ARISING FROM THETA FUNCTIONS

FOURIER COEFFICIENTS OF VECTOR-VALUED MODULAR FORMS OF DIMENSION 2

EXERCISES IN MODULAR FORMS I (MATH 726) (2) Prove that a lattice L is integral if and only if its Gram matrix has integer coefficients.

REGULARIZED INNER PRODUCTS AND WEAKLY HOLOMORPHIC HECKE EIGENFORMS

On the arithmetic of modular forms

INTEGRAL TRACES OF SINGULAR VALUES OF WEAK MAASS FORMS

A Note on the Transcendence of Zeros of a Certain Family of Weakly Holomorphic Forms

Eric Hofmann. AKLS Seminar Aachen, March 3, TU Darmstadt. Borcherds Products on Unitary Groups. Eric Hofmann. Setup.

Using approximate functional equations to build L functions

Abstract. Gauss s hypergeometric function gives a modular parameterization of period integrals of elliptic curves in Legendre normal form

H Harmonic Maaß Jacobi forms of degree 1

ALGEBRAIC FORMULAS FOR THE COEFFICIENTS OF MOCK THETA FUNCTIONS AND WEYL VECTORS OF BORCHERDS PRODUCTS

Question 1: Are there any non-anomalous eigenforms φ of weight different from 2 such that L χ (φ) = 0?

INDEFINITE THETA FUNCTIONS OF MORE GENERAL TYPE: NEW RESULTS AND APPLICATIONS

Computing coefficients of modular forms

25 Modular forms and L-functions

On congruences for the coefficients of modular forms and some applications. Kevin Lee James. B.S. The University of Georgia, 1991

On Modular Forms for the Paramodular Group

EICHLER-SHIMURA THEORY FOR MOCK MODULAR FORMS KATHRIN BRINGMANN, PAVEL GUERZHOY, ZACHARY KENT, AND KEN ONO

SHIMURA LIFTS OF HALF-INTEGRAL WEIGHT MODULAR FORMS ARISING FROM THETA FUNCTIONS

Transcription:

Mock Modular Forms and Class Number Relations Michael H. Mertens University of Cologne 28th Automorphic Forms Workshop, Moab, May 13th, 2014 M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 1 / 30

Notation H(n) := Hurwitz class number of n, M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 2 / 30

Notation H(n) := Hurwitz class number of n, λ k (n) := 1 2 d n ( min d, n ) k, d M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 2 / 30

Notation H(n) := Hurwitz class number of n, λ k (n) := 1 2 d n ( min d, n ) k, d σ k (n) := d n d k. M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 2 / 30

Class number relations L. Kronecker (1860), A. Hurwitz (1884): H(4n s 2 ) + 2λ 1 (n) = 2σ 1 (n) s Z M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 3 / 30

Class number relations L. Kronecker (1860), A. Hurwitz (1884): H(4n s 2 ) + 2λ 1 (n) = 2σ 1 (n) s Z M. Eichler (1955): H(n s 2 ) + λ 1 (n) = 1 3 σ 1(n) s Z M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 3 / 30

Class number relations L. Kronecker (1860), A. Hurwitz (1884): H(4n s 2 ) + 2λ 1 (n) = 2σ 1 (n) s Z M. Eichler (1955): H(n s 2 ) + λ 1 (n) = 1 3 σ 1(n) s Z M. Eichler, A. Selberg (1955/56): (s 2 n)h(4n s 2 ) + 2λ 3 (n) = 0 s Z (s 4 3ns 2 + n 2 )H(4n s 2 ) + 2λ 5 (n) = 0 s Z... M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 3 / 30

1 Mock Modular Forms 2 Cohen s conjecture 3 Holomorphic Projection 4 Fourier Coefficients of Mock Modular Forms M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 4 / 30

Table of Contents 1 Mock Modular Forms 2 Cohen s conjecture 3 Holomorphic Projection 4 Fourier Coefficients of Mock Modular Forms M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 4 / 30

Harmonic Maaß forms Definition A smooth function f : H C is called a harmonic weak Maaß form of weight k 1 2Z, level N N, and character χ modulo N (with 4 N if k / Z) if it fulfills the following properties: 1 (f k γ)(τ) = χ(d)f(τ) for all γ = ( a b c d ) Γ0 (N), M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 5 / 30

Harmonic Maaß forms Definition A smooth function f : H C is called a harmonic weak Maaß form of weight k 1 2Z, level N N, and character χ modulo N (with 4 N if k / Z) if it fulfills the following properties: 1 (f k γ)(τ) = χ(d)f(τ) for all γ = ( ) a b c d Γ0 (N), [ ( ) ( )] 2 k f = y 2 2 + 2 + iky x 2 y 2 x + i y f 0, M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 5 / 30

Harmonic Maaß forms Definition A smooth function f : H C is called a harmonic weak Maaß form of weight k 1 2Z, level N N, and character χ modulo N (with 4 N if k / Z) if it fulfills the following properties: 1 (f k γ)(τ) = χ(d)f(τ) for all γ = ( ) a b c d Γ0 (N), [ ( ) ( )] 2 k f = y 2 2 + 2 + iky x 2 y 2 x + i y f 0, 3 f grows at most linearly exponentially approaching the cusps of Γ 0 (N). M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 5 / 30

Harmonic Maaß forms Definition A smooth function f : H C is called a harmonic weak Maaß form of weight k 1 2Z, level N N, and character χ modulo N (with 4 N if k / Z) if it fulfills the following properties: 1 (f k γ)(τ) = χ(d)f(τ) for all γ = ( ) a b c d Γ0 (N), [ ( ) ( )] 2 k f = y 2 2 + 2 + iky x 2 y 2 x + i y f 0, 3 f grows at most linearly exponentially approaching the cusps of Γ 0 (N). The vector space of harmonic weak Maaß forms of weight k, level N, and character χ is denoted by H k (N, χ). M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 5 / 30

Splitting Lemma Let f be a harmonic weak Maaß form of weight k 1. Then f has a canonical splitting into f(τ) = f + (τ) + (4πy)1 k k 1 c f (0) + f (τ), where for some m 0, n 0 Z we have the Fourier expansions f + (τ) = m=m 0 c + f (m)qm and f (τ) = c f (n)nk 1 Γ(1 k; 4πny)q n. n=n 0 n 0 M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 6 / 30

The shadow Proposition For k 1, the mapping ξ k : H k (N, χ) M 2 k! (N, χ), f 2iyk τ f is well-defined and surjective with kernel M k! (N, χ). Moreover, for f H k (N, χ), we have that the shadow of f is given by (ξ k f)(τ) = (4π) 1 k n=n 0 c f (n)qn. M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 7 / 30

The shadow Proposition For k 1, the mapping ξ k : H k (N, χ) M 2 k! (N, χ), f 2iyk τ f is well-defined and surjective with kernel M k! (N, χ). Moreover, for f H k (N, χ), we have that the shadow of f is given by (ξ k f)(τ) = (4π) 1 k n=n 0 c f (n)qn. M k (Γ, χ) = ξ 1 k (M 2 k(γ, χ)) S k (Γ, χ) = ξ 1 k (S 2 k(γ, χ)). M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 7 / 30

An example Theorem (D. Zagier, 1976) Let H (τ) = n=0 H(n)q n, ϑ(τ) := n Z q n2 and R(τ) := 1 + i 16π i τ ϑ(z) (z + τ) 3 2 dz = 1 8π y + 1 4 π n=1 ( nγ 1 ) 2 ; 4πn2 y q n2. M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 8 / 30

An example Theorem (D. Zagier, 1976) Let H (τ) = n=0 H(n)q n, ϑ(τ) := n Z q n2 and R(τ) := 1 + i 16π i τ ϑ(z) (z + τ) 3 2 dz = 1 8π y + 1 4 π n=1 ( nγ 1 ) 2 ; 4πn2 y q n2. Ĥ = H + R H 3 (4) 2 M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 8 / 30

An example Theorem (D. Zagier, 1976) Let H (τ) = n=0 H(n)q n, ϑ(τ) := n Z q n2 and R(τ) := 1 + i 16π i τ ϑ(z) (z + τ) 3 2 dz = 1 8π y + 1 4 π n=1 ( nγ 1 ) 2 ; 4πn2 y q n2. Ĥ = H + R H 3 (4) 2 ξ 3 Ĥ = 1 2 8 π ϑ M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 8 / 30

Appell-Lerch sums Definition Let τ H, u, v C \ (Z Zτ). The Appell-Lerch sum of level 1 is then the expression A 1 (u, v; τ) = e πiu n Z q n(n+1) 2 e 2πinv 1 e 2πiu q n. M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 9 / 30

Appell-Lerch sums Definition Let τ H, u, v C \ (Z Zτ). The Appell-Lerch sum of level 1 is then the expression A 1 (u, v; τ) = e πiu n Z q n(n+1) 2 e 2πinv 1 e 2πiu q n. Zweger s thesis: Appell-Lerch sums are one of three ways to realize Ramanujan s mock theta functions M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 9 / 30

Appell-Lerch sums Definition Let τ H, u, v C \ (Z Zτ). The Appell-Lerch sum of level 1 is then the expression A 1 (u, v; τ) = e πiu n Z q n(n+1) 2 e 2πinv 1 e 2πiu q n. Zweger s thesis: Appell-Lerch sums are one of three ways to realize Ramanujan s mock theta functions the others: indefinite theta functions and Fourier coefficients of meromorphic Jacobi forms M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 9 / 30

Appell-Lerch sums Definition The completion of the Appell-Lerch sum A 1 (u, v; τ) is given by with R(u; τ) := Â 1 (u, v; τ) = A 1 (u, v; τ) + i Θ(v; τ)r(u v; τ), 2 ν 1 2 +Z t E(t) := 2 0 { (( sgn(ν) E ν + Im u ) )} 2y y ( 1) ν 1 2 q ν2 2 e 2πiνu e πu2 du, Θ(v; τ) := ν q 2 2 e 2πiν(v+ 1 2 ) ν 1 2 +Z M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 10 / 30

A real-analytic Jacobi form Theorem (S. Zwegers, 2002) ( ) 1 1  1 transforms like a Jacobi form of weight 1 and index. In 1 0 particular we have for γ = ( ) a b c d SL2 (Z) that ( u  1 cτ + d, v cτ + d ; aτ + b ) = (cτ + d)e πic u2 +2uv cτ+d  1 (u, v; τ). cτ + d M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 11 / 30

Table of Contents 1 Mock Modular Forms 2 Cohen s conjecture 3 Holomorphic Projection 4 Fourier Coefficients of Mock Modular Forms M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 12 / 30

Conjecture Conjecture (H. Cohen, 1975) The coefficient of X ν in [ S4(τ, 1 H(n s 2 ) ] X) := 1 2sX + nx 2 + λ 2k+1 (n)x 2k n=0 n odd s Z k=0 is a (holomorphic) modular form of weight 2ν + 2 on Γ 0 (4). q n M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 13 / 30

Conjecture Conjecture (H. Cohen, 1975) The coefficient of X ν in [ S4(τ, 1 H(n s 2 ) ] X) := 1 2sX + nx 2 + λ 2k+1 (n)x 2k n=0 n odd s Z k=0 is a (holomorphic) modular form of weight 2ν + 2 on Γ 0 (4). Remarks For odd ν, coeff X ν (S4 1 (τ; X)) = 0. q n M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 13 / 30

Conjecture Conjecture (H. Cohen, 1975) The coefficient of X ν in [ S4(τ, 1 H(n s 2 ) ] X) := 1 2sX + nx 2 + λ 2k+1 (n)x 2k n=0 n odd s Z k=0 is a (holomorphic) modular form of weight 2ν + 2 on Γ 0 (4). Remarks For odd ν, coeff X ν (S4 1 (τ; X)) = 0. ν = 0 yields Eichler s class number relation. q n M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 13 / 30

New class number relations Corollary ( 4s 2 n ) H ( n s 2) + λ 3 (n) = 0, s Z M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 14 / 30

New class number relations Corollary ( 4s 2 n ) H ( n s 2) + λ 3 (n) = 0, s Z ( 16s 4 12ns 2 + n 2) H ( n s 2) + λ 5 (n) s Z = 1 12 n=x 2 +y 2 +z 2 +t 2 ( x 4 6x 2 y 2 + y 4) M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 14 / 30

New class number relations Corollary ( 4s 2 n ) H ( n s 2) + λ 3 (n) = 0, s Z ( 16s 4 12ns 2 + n 2) H ( n s 2) + λ 5 (n) s Z = 1 ( x 4 6x 2 y 2 + y 4) 12 n=x 2 +y 2 +z 2 +t 2 ( 64s 6 80s 4 n + 24s 2 n 2 n 3) H ( n s 2) + λ 7 (n) s Z = 1 3 n=x 2 +y 2 +z 2 +t 2 ( x 6 5x 4 y 2 10x 4 z 2 + 30x 2 y 2 z 2 + 5x 2 z 4 5y 2 z 4) M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 14 / 30

New class number relations Corollary ( 4s 2 n ) H ( n s 2) + λ 3 (n) = 0, s Z ( 16s 4 12ns 2 + n 2) H ( n s 2) + λ 5 (n) s Z = 1 ( x 4 6x 2 y 2 + y 4) 12 n=x 2 +y 2 +z 2 +t 2 ( 64s 6 80s 4 n + 24s 2 n 2 n 3) H ( n s 2) + λ 7 (n) s Z = 1 3... n=x 2 +y 2 +z 2 +t 2 ( x 6 5x 4 y 2 10x 4 z 2 + 30x 2 y 2 z 2 + 5x 2 z 4 5y 2 z 4) M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 14 / 30

Solution Theorem 1 (M., 2013) Cohen s conjecture is true. Moreover, coeff X 2ν (S4 1 (τ; X)) is a cusp form for ν > 0. M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 15 / 30

Solution Theorem 1 (M., 2013) Cohen s conjecture is true. Moreover, coeff X 2ν (S4 1 (τ; X)) is a cusp form for ν > 0. Remark coeff X 2ν (S4(τ; 1 X)) = c ν ( ( [H, ϑ]ν (τ) [H, ϑ] ν τ + 1 2 2)) + Λ2ν+1,odd (τ), π c ν = ν! Γ(ν + 1 2 ), Λ 2ν+1 (τ) := λ k (n)q n n=1 M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 15 / 30

Solution Theorem 1 (M., 2013) Cohen s conjecture is true. Moreover, coeff X 2ν (S4 1 (τ; X)) is a cusp form for ν > 0. Remark coeff X 2ν (S4(τ; 1 X)) = c ν ( ( [H, ϑ]ν (τ) [H, ϑ] ν τ + 1 2 2)) + Λ2ν+1,odd (τ), π c ν = ν! Γ(ν + 1 2 ), Λ 2ν+1 (τ) := λ k (n)q n = 1 2 (D2ν+1 v A 1 ) (0, τ + 12 ) ; 2τ n=1 M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 15 / 30

Outline of the proof Complete [H, ϑ] ν and Λ 2ν+1,odd to transform like modular forms M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 16 / 30

Outline of the proof Complete [H, ϑ] ν and Λ 2ν+1,odd to transform like modular forms prove that non-holomorphic terms cancel M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 16 / 30

Outline of the proof Complete [H, ϑ] ν and Λ 2ν+1,odd to transform like modular forms prove that non-holomorphic terms cancel induction on ν: M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 16 / 30

Outline of the proof Complete [H, ϑ] ν and Λ 2ν+1,odd to transform like modular forms prove that non-holomorphic terms cancel induction on ν: ν = 0: rather direct calculation M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 16 / 30

Outline of the proof Complete [H, ϑ] ν and Λ 2ν+1,odd to transform like modular forms prove that non-holomorphic terms cancel induction on ν: ν = 0: rather direct calculation ν ν + 1: Use heat kernel property of R (D 2 ur = 2D τ R) M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 16 / 30

Table of Contents 1 Mock Modular Forms 2 Cohen s conjecture 3 Holomorphic Projection 4 Fourier Coefficients of Mock Modular Forms M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 17 / 30

Definition Definition f : H C a continuous function with Fourier expansion f(τ) = n Z a f (n, y)q n, which behaves nicely at and the rationals and whose Fourier-coefficients don t grow too fast. M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 18 / 30

Definition Definition f : H C a continuous function with Fourier expansion f(τ) = n Z a f (n, y)q n, which behaves nicely at and the rationals and whose Fourier-coefficients don t grow too fast. Then we define the holomorphic projection of f by with (π hol f)(τ) := (πhol k f)(τ) := c(n)q n, c(n) = (4πn)k 1 (k 2)! 0 n=0 a f (n, y)e 4πny y k 2 dy, n > 0. M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 18 / 30

Properties Proposition If f is holomorphic, then π hol f = f. M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 19 / 30

Properties Proposition If f is holomorphic, then π hol f = f. If f transforms like a modular form of weight k 1 2Z, k > 2, on some group Γ SL 2 (Z), then π hol f M k (Γ). M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 19 / 30

Properties Proposition If f is holomorphic, then π hol f = f. If f transforms like a modular form of weight k 1 2Z, k > 2, on some group Γ SL 2 (Z), then π hol f M k (Γ). The operator π hol commutes with all the operators U(N), V (N), and S N,r (sieving operator). M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 19 / 30

Properties Proposition If f is holomorphic, then π hol f = f. If f transforms like a modular form of weight k 1 2Z, k > 2, on some group Γ SL 2 (Z), then π hol f M k (Γ). The operator π hol commutes with all the operators U(N), V (N), and S N,r (sieving operator). If f is modular of weight k > 2 on Γ SL 2 (Z) then we have f, g = π hol (f), g, where, denotes the Petersson scalar product, for every cusp form g S k (Γ). M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 19 / 30

Rankin-Cohen brackets From now on: f + (τ) + (4πy)1 k k 1 c f (0) + f (τ) M k (Γ), g M l (Γ), ν > 0 s.t. [f, g] ν satisfies conditions in definition. M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 20 / 30

Rankin-Cohen brackets From now on: f + (τ) + (4πy)1 k k 1 c f (0) + f (τ) M k (Γ), g M l (Γ), ν > 0 s.t. [f, g] ν satisfies conditions in definition. Lemma (4π) 1 k k 1 π hol([y 1 k, g] ν ) = κ n k+ν 1 a g (n)q n, with 1 ν [ Γ(2 k)γ(l + 2ν µ) κ = κ(k, l, ν) = (k + l + 2ν 2)!(k 1) Γ(2 k µ) µ=0 ( )( )] k + ν 1 l + ν 1. ν µ µ n=0 M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 20 / 30

Rankin-Cohen brackets Let a 2 ( ) j + b 2 P a,b (X, Y ) := X j (X + Y ) a j 2. j j=0 M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 21 / 30

Rankin-Cohen brackets Let a 2 ( ) j + b 2 P a,b (X, Y ) := X j (X + Y ) a j 2. j j=0 Theorem π hol ([f, g] ν ) = b(r)q r, where ν ( )( ) k + ν 1 l + ν 1 b(r) = Γ(1 k) m ν µ a g (m)c ν µ µ f (n) m n=r µ=0 (m µ 2ν l+1 P k+l+2ν,2 k µ (r, n) n k+µ 1) r=1 M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 21 / 30

Table of Contents 1 Mock Modular Forms 2 Cohen s conjecture 3 Holomorphic Projection 4 Fourier Coefficients of Mock Modular Forms M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 22 / 30

The Theorem of Serre-Stark Theorem (J.-P. Serre, H. Stark, 1977) Let ϕ be a modular form of weight 1 2 on Γ 1(N). Then ϕ is a unique linear combination of the theta series ϑ χ,t (τ) = n Z χ(n)q tn2 with χ a primitive even character with conductor F (χ) and t N such that 4F (χ) 2 t N. M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 23 / 30

Proposition Let r = m n. Then it holds that ν µ=0 ( ν + 1 2 ν µ )( ν 1 2 µ ) ( m 1 2 ν P 2ν+2, 1 2 µ(r, n) n 1 2 +µ m ν µ) M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 24 / 30

Proposition Let r = m n. Then it holds that ν µ=0 ( ν + 1 2 ν µ =2 2ν ( 2ν ν )( ν 1 2 µ ) (m 1 2 n 1 2 ) 2ν+1. ) ( m 1 2 ν P 2ν+2, 1 2 µ(r, n) n 1 2 +µ m ν µ) M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 24 / 30

Proposition Let r = m n. Then it holds that ν µ=0 ( ν + 1 2 ν µ =2 2ν ( 2ν ν Proposition )( ν 1 2 µ ) (m 1 2 n 1 2 ) 2ν+1. Let r = m n. Then it holds that ν µ=0 ( ν 1 2 ν µ )( ν + 1 2 µ ) ( m 1 2 ν P 2ν+2, 1 2 µ(r, n) n 1 2 +µ m ν µ) ) ( m ν 1 2 P2ν+2, 3 2 µ(r, n) nµ 1 2 m ν µ ) M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 24 / 30

Proposition Let r = m n. Then it holds that ν µ=0 ( ν + 1 2 ν µ =2 2ν ( 2ν ν Proposition )( ν 1 2 µ ) (m 1 2 n 1 2 ) 2ν+1. Let r = m n. Then it holds that ν µ=0 ( ν 1 2 ν µ = 2 2ν ( 2ν ν )( ν + 1 2 µ ) ( m 1 2 ν P 2ν+2, 1 2 µ(r, n) n 1 2 +µ m ν µ) ) ( m ν 1 2 P2ν+2, 3 2 µ(r, n) nµ 1 2 m ν µ ) ) ) (mn) 1 2 (m 1 1 2ν+1 2 n 2. M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 24 / 30

Result in weight ( 3 2, 1 2 ) Theorem 2 (M., 2013) Let f M 3 (Γ) and g M 1 (Γ) with Γ = Γ 1 (4N) for some N N and 2 2 fix ν N. Then there is a finite linear combination L f,g ν of functions of the form s,t (τ; ν) = 2 Λ χ,ψ r=1 sm 2 tn 2 =r m,n 1 +ψ(0) χ(m)ψ(n)( sm tn) 2ν+1 χ(r)( sr) 2ν+1 q sr2 r=1 qr with s, t N and χ, ψ are even characters of conductors F (χ) and F (ψ) respectively with sf (χ) 2, tf (ψ) 2 N, such that [f, g] ν + L f,g ν is a holomorphic modular form of weight 2ν + 2. M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 25 / 30

Result for mock theta functions Theorem 3 (M., 2013) Let f S 1 (Γ) be a completed mock theta function and g S θ 3 (Γ), where 2 2 Γ = Γ 1 (4N) for some N N and let ν be a fixed non-negative integer. Then there is a finite linear combination Dν f,g of functions of the form s,t (τ; ν) =2 χ,ψ r=1 sm 2 tn 2 =r m,n 1 χ(m)ψ(n)( sm tn) 2ν+1 qr, where s, t N and χ, ψ are odd characters of conductors F (χ) and F (ψ) respectively with sf (χ) 2, tf (ψ) 2 N, such that [f, g] ν + Dν f,g is a holomorphic modular form of weight 2ν + 2. M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 26 / 30

Remarks Λ χ,ψ s,t functions and χ,ψ s,t are (up to a polynomial factor) indefinite theta M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 27 / 30

Remarks Λ χ,ψ s,t functions and χ,ψ s,t are (up to a polynomial factor) indefinite theta if s, t =, the coefficients of Λ s, t and s,t are essentially minimal divisor power sums ( derivatives of Appell-Lerch sums) M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 27 / 30

Remarks Λ χ,ψ s,t functions and χ,ψ s,t are (up to a polynomial factor) indefinite theta if s, t =, the coefficients of Λ s, t and s,t are essentially minimal divisor power sums ( derivatives of Appell-Lerch sums) in general, minimal divisor power sums in a real-(bi)quadratic number field M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 27 / 30

Remarks Λ χ,ψ s,t functions and χ,ψ s,t are (up to a polynomial factor) indefinite theta if s, t =, the coefficients of Λ s, t and s,t are essentially minimal divisor power sums ( derivatives of Appell-Lerch sums) in general, minimal divisor power sums in a real-(bi)quadratic number field ( generalized Appell-Lerch sums?) M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 27 / 30

Example: Eichler-Selberg and Cohen s conjecture Recall: H (τ) = n=0 H(n)qn M mock 3 (Γ 0 (4)) with shadow 1 8 π ϑ. 2 M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 28 / 30

Example: Eichler-Selberg and Cohen s conjecture Recall: H (τ) = n=0 H(n)qn M mock 3 (Γ 0 (4)) with shadow 1 8 π ϑ. From Theorem 2: For ν > 0, π hol ([Ĥ, ϑ] ν)(τ) = [H, ϑ] ν (τ) + 2 2ν 1 ( 2ν ν where Λ = Λ 1,1 1,1. 2 ) Λ (τ) S 2ν+2 (Γ 0 (4)), M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 28 / 30

Example: Eichler-Selberg and Cohen s conjecture Recall: H (τ) = n=0 H(n)qn M mock 3 (Γ 0 (4)) with shadow 1 8 π ϑ. From Theorem 2: For ν > 0, π hol ([Ĥ, ϑ] ν)(τ) = [H, ϑ] ν (τ) + 2 2ν 1 ( 2ν ν where Λ = Λ 1,1 1,1. easy to see (Λ U(4))(τ; ν) = 2 2ν+1 2λ 2ν+1 (n)q n (Λ S 2,1 )(τ; ν) = 2 2 n odd n=1 λ 2ν+1 (n)q n. ) Λ (τ) S 2ν+2 (Γ 0 (4)), M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 28 / 30

Example: Eichler-Selberg and Cohen s conjecture Rewrite: ( ) g ν (1) (s, n)h(4n s 2 ) q n + 2 λ 2ν+1 (n)q n S 2ν+2 (Γ 0 (1)) n=1 s Z n=0, M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 29 / 30

Example: Eichler-Selberg and Cohen s conjecture Rewrite: ( ) g ν (1) (s, n)h(4n s 2 ) q n + 2 λ 2ν+1 (n)q n S 2ν+2 (Γ 0 (1)) n=1 n odd s Z ( s Z g (4) ν (s, n)h(n s 2 ) ) n=0 q n + n odd λ 2ν+1 (n)q n S 2ν+2 (Γ 0 (4)), M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 29 / 30

Example: Eichler-Selberg and Cohen s conjecture Rewrite: ( ) g ν (1) (s, n)h(4n s 2 ) q n + 2 λ 2ν+1 (n)q n S 2ν+2 (Γ 0 (1)) n=1 n odd s Z ( s Z g (4) ν (s, n)h(n s 2 ) ) n=0 q n + n odd g (1) ν (s, n) = coeff X 2ν ((1 sx + nx 2 ) 1 ), g (4) ν (s, n) = coeff X 2ν ((1 2sX + nx 2 ) 1 ) λ 2ν+1 (n)q n S 2ν+2 (Γ 0 (4)), M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 29 / 30

Example: Eichler-Selberg and Cohen s conjecture Rewrite: ( ) g ν (1) (s, n)h(4n s 2 ) q n + 2 λ 2ν+1 (n)q n S 2ν+2 (Γ 0 (1)) n=1 n odd s Z ( s Z g (4) ν (s, n)h(n s 2 ) ) n=0 q n + n odd λ 2ν+1 (n)q n S 2ν+2 (Γ 0 (4)), g (1) ν (s, n) = coeff X 2ν ((1 sx + nx 2 ) 1 ), g (4) ν (s, n) = coeff X 2ν ((1 2sX + nx 2 ) 1 ) Rankin-Selberg unfolding trick (f normalized Hecke eigenform): [Ĥ, ϑ] ν, f = π hol ([Ĥ, ϑ] ν), f. = f, f trace formulae for SL 2 (Z) and Γ 0 (4). M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 29 / 30

Thank you for your attention. M.H. Mertens (University of Cologne) Class Number Relations 05.13.2014 30 / 30