TYPE EMC. Thermostatic Expansion Valve

Similar documents
Thermostatic expansion valves TUA/TUAE

Solenoid valve Types EVR 2 - EVR 40

MAKING MODERN LIVING POSSIBLE. Thermostatic expansion valve Type TUB/TUBE and TUC/TUCE REFRIGERATION AND AIR CONDITIONING.

PAYING THE PIPER REFRIGERATION PART II BY DAVE DEMMA

Thermostatic expansion valves TUB/TUBE and TUC/TUCE

Solenoid valves Type EVR 2 g 40 NC/ NO New EVR 6 with Steel cover design

Thermostatic Expansion Valves

Solenoid valve Types CSV 2 - CSV 22 (NC) and solenoid coil

THE ENERGY 68,SAVING TDVI. exible Combine Modular 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 HP 60, 62, 64, 66 HP

Solenoid valves Type EVUL

Singer. Incremental Comfort Systems. K, EK Vintage F. Last Manufactured: Replacement Parts List No Revision C 04/2012

ENH4X. Product Specifications HORIZONTAL EVAPORATOR COILS ALL CASED N COIL MODELS WARRANTY*

Product Data. CNPVP, CNRVP, CNPVT, CNRVT, CNPVU, CNRVU Evaporator Coil N Coil Cased and Uncased Upflow, Downflow

R- 410A R-22 Size (tons) Shipping Weight (lbs) WLAU184AA 1-1/ WLAU182AA 1-1/ WLAU244AA. Model /2

END4X, ENW4X, ENA4X. Product Specifications VERTICAL EVAPORATOR COILS ALL N COIL MODELS CASED N COILS UNCASED N COILS ENA4X WARRANTY*

4 Way Reversing Valve

THERMODYNAMICS CONCEPTUAL PROBLEMS

TOLERANCES AND UNCERTAINTIES IN PERFORMANCE DATA OF REFRIGERANT COMPRESSORS JANUARY 2017

AIR CONDITIONING COMMERCIAL REFRIGERATION HEAT PUMP STANDARD PRODUCT CATALOGUE

Case 5 Manual Selection of Water Cooled Condenser and Water Cooler

Eliminator Liquid line filter driers, Type DCL and DML

Product Data. CAPVU Evaporator Coil A Coil --- Uncased Upflow, Downflow CAPVU

MAE 11. Homework 8: Solutions 11/30/2018

Product Data. CNPHP, CNRHP Evaporator Coil N Coil --- Cased Horizontal CNPHP / CNRHP

McQuay Climate Control Singer

nufacturing Company, L.P San Felipe, Suite

Cylinder head distortion Limit mm (in) 0.05 (0.002) Cam height STD mm (in) IN

Lecture 44: Review Thermodynamics I

ANSI/AHRI Standard 1250 (I-P) 2014 Standard for Performance Rating of Walk-in Coolers and Freezers

ASPT Series. Multi-Position, Internal TXV. Air Handler 1½ to 5 Tons

98 Series Backpressure Regulators and Relief Valves

Sight Glass and Moisture Indicator Virginia KMP Series LDE

Lecture 38: Vapor-compression refrigeration systems

Glide Effect on Performance

Purpose of Today s Presentation

Chapter: Heat and States

REPAIR PARTS. CPLT 13 SEER Series Condensing Units CPLT24-1 CPLT24-1A CPLT30-1 CPLT30-1A CPLT36-1 CPLT42-1 CPLT48-1 CPLT60-1

PARTS LIST WATER SOURCE HEAT PUMPS HLH/HLV

AIR CONDITIONING STANDARD COMMERCIAL REFRIGERATION HEAT PUMP PRODUCT CATALOGUE

Product Data CNPVP, CNPVT, CNPVU, CNRVU EVAPORATOR COIL N COIL - CASED AND UNCASED UPFLOW, DOWNFLOW

Mathematical Modelling for Refrigerant Flow in Diabatic Capillary Tube

Refrigeration. 05/04/2011 T.Al-Shemmeri 1

The Ultimate Innovators

EPIV electronic pressure-independent characterised control valve EPIV

PARTS CATALOG MUZ-LN25VGHZ MUZ-LN35VGHZ MUZ-LN50VGHZ OUTDOOR UNIT. No. OBB768. Models CONTENTS SERVICE MANUAL (OBH768) MUZ-LN25VGHZ MUZ-LN35VGHZ

Temperature distribution and heat flow across the combustion chamber wall.

ph Measurement and its Applications

Accumulators Virginia KMP Suction Line Accumulators

AIR COOLED CONDENSING UNIT

P303 Pressure Regulator

ANSI/AHRI Standard (Formerly ARI Standard ) 2006 Standard for Performance Rating of Desuperheater/Water Heaters

Engineering Thermodynamics. Chapter 5. The Second Law of Thermodynamics

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

nufacturing Company, L.P San Felipe, Suite

Compression Losses In Cryocoolers

Heat Transfer From the Evaporator Outlet to the Charge of Thermostatic Expansion Valves

ENVIRONMENTALLY SOUND R 410A REFRIGERANT

On-Line Models for Use in Automated Fault Detection and Diagnosis for HVAC&R Equipment

Chapter 6. Hydraulic cylinders/rams (linear motors), and Lines/fittings. - Transforms the flow of a pressurized fluid into a push or pull of a rod.

HEAT CONTENT DECREASES U D R HEAT CONTENT INCREASESO. Btu/lb

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer

DUAL ZONE DUAL ZONE. SPLIT TYPE WALL MOUNTED type MULTI SPLIT TYPE AIR CONDITIONER AIR CONDITIONER

SECURE LIQUID NITROGEN BACKUP FOR REFRIGERATED BIOSTORAGE. Michael Kenworthy Balck A THESIS

REPAIR PARTS. GPH14 H-SERIES R-410A Package Heat Pumps GPH1424H41AA GPH1430H41AA GPH1436H41AA GPH1442H41AA GPH1448H41AA GPH1460H41AA

EFFICIENT 13 SEER HEAT PUMP ENVIRONMENTALLY SOUND R 410A REFRIGERANT 1½ THRU 5 TONS SPLIT SYSTEM 208 / 230 Volt, 1 phase, 60 Hz

9. Pumps (compressors & turbines) Partly based on Chapter 10 of the De Nevers textbook.

Decoupled Feedforward Control for an Air-Conditioning and Refrigeration System

Feedback Structures for Vapor Compression Cycle Systems

Lecture 5. Labs this week:

Topic 19b. Thermal Properties of Matter

Chemical Engineering Thermodynamics Spring 2002

McQuay Climate Control. Water Source Heat Pump Horizontal. CC, CG, CW Vintage C, D. Last Manufactured: 1984

A Numerical Study on Static and Dynamic Characteristics of Electromagnetic Air Compressor used in Household Refrigerators

Method for Nitrite determination on Low-Range Samples

CV3000 Series. Characterized Insert Control Valves

Harahan Equipment 5128 Storey St, Harahan, LA 70123

Non-Dimensional Parameter Development For Transcritical Cycles

INTERNATIONAL STANDARD

4HP13 PRODUCT SPECIFICATIONS 13 SEER SPLIT SYSTEM HEAT PUMP WARRANTY

CHAPTER 4 MATHEMATICAL MODELING AND SIMULATION

ASPT Series. Multi-Position, Internal TXV. Air Handler 1½ to 5 Tons

In the Psy. Ch., plot point o, r, h r = 51.0 kj/kg, h o = 85 kj/kg

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated.

Product family data sheet

BIOO FOOD AND FEED SAFETY. Histamine Enzymatic Assay Kit Manual. Catalog #: Reference #:

PARTS CATALOG MUZ-FH25VE MUZ-FH35VE MUZ-FH50VE OUTDOOR UNIT. No. OBB624 REVISED EDITION-F. Models

Inverter Multi-Split System

Uni-Flow Filter Drier

ME 200 Final Exam December 12, :00 a.m. to 10:00 a.m.

Cree XLamp MP-L EasyWhite LEDs Data Sheet / Binning & Labeling Document

N. L. P. Formulation examples & techniques

SECOND ENGINEER REG. III/2 APPLIED HEAT

A L A BA M A L A W R E V IE W

6.0 EC-SERIES CUBERS EC200-EC300-EC400-EC500-EC606 AIR, WATER AND REMOTE

ERSATZTEILE RAS-14-18FSXN

Parameter Estimation for Dynamic HVAC Models with Limited Sensor Information Natarajkumar Hariharan 1 and Bryan P. Rasmussen 2

Properties of Vapors

Cree XLamp XR-C LEDs. CLD-DS10 Rev 12H. Product family data sheet

TS TT TU TV THE MOST ADVANCED COMPRESSOR TECHNOLOGY AVAILABLE PARAGON TWIN SCREW COMPRESSORS

Boiling Point at One Atmosphere F Critical Temperature F

Transcription:

TYPE EMC Thermostatic Expansion Valve with ODF Solder or SAE Flare Connections for Refrigerants,, 4a, 404A, 502 & 507 BULLETIN --4 June 1995 The Sporlan Type EMC thermostatic expansion valve (TEV) is a patented two port valve designed to perform effectively over the range of load conditions inherent with most refrigeration systems. moves far enough in the opening direction to contact the top of the sliding piston, opening the large capacity port. With the large capacity port opened, valve capacity is effectively doubled. This design allows the Type EMC valve to be sized based on the holding load without concern for the pulldown load. U.S. Patent Numbers 5,277,364 and 5,2,015 On any refrigerated fixture, e.g., display case, freezer, walk-in cooler, the load on the evaporator will be greatest during a startup, following a defrost, or when warm product is being added to the fixture. The refrigeration system must then operate in a pulldown mode until the fixture reaches its design temperature. Once design temperature has been reached, the evaporator will be at its minimum load condition, i.e., its holding load. A typical load profile for a refrigerated fixture is shown in Figure 1 below. Figure 2 Pushrod 2 Places Spring Sliding Piston LOAD PROFILE Figure 1 LOAD Maximum Load Holding Load Pulldown Load Flow Path Closed Open Holding Load Flow Path Open TIME Maximum pulldown load can be as high as 2 to 3 times greater than the holding load. As a result, consideration must be given to the pulldown load when sizing a TEV. For many refrigerated fixtures, the desired pulldown time is typically less than one hour. To minimize this time, the TEV must be oversized somewhat with respect to the holding load, or the valve will starve the coil during pulldown. But the more oversized the valve, the less capable the valve becomes operating at the low load conditions, particularly when variations in condensing pressure from summertime to wintertime operation are considered. The Type EMC valve solves this problem by providing two independent capacities: a large port for pulldown loads and a smaller port to control holding loads. See Figure 2. During holding load operation, the large capacity port remains closed and the valve regulates with the small capacity port in the same manner as a conventional TEV. During pulldown, the valve diaphragm The Type EMC valve is available with a resealable bleed feature. The purpose of this bleed is to allow the valve to operate with a flatter flow rate versus superheat curve. See Figure 3. The flatter flow rate curve allows the valve to respond to changes in superheat in a more stable manner. FLOW RATE TEV FLOW CURVES Without Bleed With Bleed Figure 3 SUPERHEAT

Page 2 / Bulletin --4 Figure 4 BLEED FLOW ONLY Spring Pulldown Load Flow Path Closed Bleed Flow Path Open Holding Load Flow Path Closed Pushrod 2 Places Sliding Piston NORMAL OPERATION Pulldown Load Flow Path Closed Bleed Flow Path Open Holding Load Flow Path Open PULLDOWN MODE Pulldown Load Flow Path Open Bleed Flow Path Open Holding Load Flow Path Open Figure 4 shows the bleed port which opens as the valve begins to operate. As the stroke of the bleed port is reached, the small capacity port begins to open. At this point, the valve regulates in the same manner as a conventional TEV. During pulldown, all three ports will be open. The resealable bleed is suggested for all medium temperature (above 0 F evaporator) applications, provided the flow through the bleed does not represent more than approximately 70 percent of the holding load requirements. See valve selection examples. On low temperature (below 0 F evaporator) applications, the resealable bleed does not have as significant an influence on valve performance. As a result, the non-bleed style valve is recommended. Selection examples: R- Evaporator temperature... F Condenser temperature (maximum)...1 F (minimum)...70 F Liquid temperature (entering TEV)... 60 F Evap coil rating or holding load...3000 Btu/hr (0.25 ton) Available pressure drop across TEV: max min Condensing pressure (psig) 6 2 Evaporator pressure (psig) 6 1 High side pressure loss 7 7 Distributor and tubes loss 35 35 174 70 Refrigerant liquid correction factor: 1. The EMCE--VZ valve has the following ratings and percentage loadings at minimum and maximum condensing pressures: RATING 70 * 0.25 x 1. = 0.31 174 0.39 x 1. = 0.48 PERCENTAGE LOADING 0.25 / 0.31 = 0.81 or 81% 0.25 / 0.48 = 0.52

R-404A Evaporator temperature... F Condenser temperature (maximum)... 1 F (minimum)...70 F Liquid temperature (entering TEV)... 60 F Evap coil rating or holding load..,000 Btu/hr (1.00 ton) Available pressure drop across TEV: max min Condensing pressure (psig) 273 150 Evaporator pressure (psig) 56 56 7 94 High side pressure loss 7 7 Distributor and tubes loss 35 35 175 52 Refrigerant liquid correction factor: 1.40 The EMCE--SC valve has the following ratings and percentage loadings at minimum and maximum condensing pressures: RATING PERCENTAGE LOADING Bulletin --4 / Page 3 The EMC--JC valve has the following ratings and percentage loadings at minimum and maximum condensing pressures: 46* 1 46* 1 (0.39 (0.63 (0.39 (0.63 BLEED 0.) x 1.29 = 0.26 0.31) x 1.29 = 0.41 BLEED 0.) x 1.29 = 0.26 0.31) x 1.29 = 0.41 % LOAD HANDLED BY BLEED 0.26 / 0.50 = 0.52 0.41 / 0.50 = 0.82 or 82% % LOAD HANDLED BY BLEED 0.26 / 0.50 = 0.52 0.41 / 0.50 = 0.82 or 82% Since 82% of the load will be handled by the resealable bleed at the maximum condenser temperature condition, it would be safer to choose a valve without the resealable bleed. The EMC--JC has the following ratings: 52* 0.75 x 1.40 = 1.05 175 1.38 x 1.40 = 1.93 52* 175 BLEED (0.75 0.55) x 1.40 = 0.28 (1.38 1.02) x 1.40 = 0.50 1.00 / 1.05 = 0.95 or 95% 1.00 / 1.93 = 0.52 % LOAD HANDLED BY BLEED 0.28 / 1.00 = 0.28 or 28% 0.50 / 1.00 = 0.50 or 50% RATING 46* 0.47 x 1.29 = 0.61 1 0.77 x 1.29 = 0.99 VALVE NOMENCLATURE: E MC E - 1 0 - S C PERCENTAGE LOADING 0.50 / 0.61 = 0.82 or 82% 0.50 / 0.99 = 0.51 or 51% * Ratings at these pressure drops can be determined by extrapolating ratings published in the rating tables or by using the Sporlan Selection program. Bleed capacity can be calculated by subtracting the valve s rating without the bleed from its rating with the bleed. In the above case, the EMCE--SC rating was subtracted from the EMCE--SC rating. R-4a Evaporator temperature... F Condenser temperature (maximum)... 1 F (minimum)...70 F Liquid temperature (entering TEV)... 60 F Evap coil rating or holding load... 6,000 Btu/hr (0.50 ton) Available pressure drop across TEV: max min Condensing pressure (psig) 146 71 Evaporator pressure (psig) 18 18 8 53 High side pressure loss 7 7 Distributor and tubes loss 0 0 1 46 Refrigerant liquid correction factor: 1.29 Thermostatic Charge Refrigerant Code Port Code (0, 1, 2 or 3) 1= No Bleed, 2= Resealable Bleed External Equalizer Omit if Internally Equalized Valve Type Extended ODF Connections Omit for SAE Flare Connections REFRIGERANT LETTER & COLOR S REFRIGERANT SVC LETTER SVC COLOR F Yello w V Green 4a J Sky Blue 401A (MP39) X Coral (Pink) 402A (HP80) L Light Brown 404A (HP62) S Orange 502 R Violet 507 (AZ-50) P Teal (Green-Blue )

Page 4 / Bulletin --4 4 a 40 4 A 50 2 50 7 In t e r n a l EM C - 1 0 - F EM C - 1 1 - F EM C - 1 2 - F EM C - 1 3 - F EM C - 1 0 - V EM C - 1 1 - V EM C - 1 2 - V EM C - 1 3 - V EM C - 1 0 - J EM C - 1 1 - J EM C - 1 2 - J EM C - 1 3 - J EM C - 1 0 - S EM C - 1 1 - S EM C - 1 2 - S EM C - 1 3 - S EM C - 1 0 - R EM C - 1 1 - R EM C - 1 2 - R EM C - 1 3 - R EM C - 1 0 - P EM C - 1 1 - P EM C - 1 2 - P EM C - 1 3 - P No B l e e d Ex t e r n a l SPECIFICATIONS Element Size No. 53, Knife Edge Joint No m i n a l Co n n e c t i o n s Ty p e Ca p a c i t y St a n d a r d (i n c h e s ) Po r t (tons of Th e r m o s t a t i c 2 Tu b i n g ODF Solder With Blee d Co d e re f r i g e r a t i o n ) Ch a r g e s Le n g t h or SAE Flare Av a i l a b l e (f e e t ) In t e r n a l Ex t e r n a l No Bl e e d Wi t h Bl e e d EM C E - 1 0 - F EM C - 2 0 - F EM C E - 2 0 - F 0 0. 1 9 0. 3 9 EM C E - 1 1 - F EM C - 2 1 - F EM C E - 2 1 - F 1 0. 4 7 0. 6 7 EM C E - 1 2 - F EM C - 2 2 - F EM C E - 2 2 - F 2 0. 7 4 1. 0 0 EM C E - 1 3 - F EM C - 2 3 - F EM C E - 2 3 - F 3 1. 0 2 1. 4 1 EM C E - 1 0 - V EM C - 2 0 - V EM C E - 2 0 - V 0 0. 3 2 0. 6 4 EM C E - 1 1 - V EM C - 2 1 - V EM C E - 2 1 - V 1 0. 7 9 1. 1 1 EM C E - 1 2 - V EM C - 2 2 - V EM C E - 2 2 - V 2 1. 2 2 1. 6 7 EM C E - 1 3 - V EM C - 2 3 - V EM C E - 2 3 - V 3 1. 6 9 2. 3 4 EM C E - 1 0 - J EM C - 2 0 - J EM C E - 2 0 - J 0 0. 2 3 0. 4 6 EM C E - 1 1 - J EM C - 2 1 - J EM C E - 2 1 - J 1 0. 5 7 0. 8 0 EM C E - 1 2 - J EM C - 2 2 - J EM C E - 2 2 - J 2 0. 8 9 1. 2 0 EM C E - 1 3 - J EM C - 2 3 - J EM C E - 2 3 - J 3 1. 2 2 1. 6 9 EM C E - 1 0 - S EM C - 2 0 - S EM C E - 2 0 - S 0 0. 2 1 0. 4 3 EM C E - 1 1 - S EM C - 2 1 - S EM C E - 2 1 - S 1 0. 5 2 0. 7 3 EM C E - 1 2 - S EM C - 2 2 - S EM C E - 2 2 - S 2 0. 8 1 1. 1 1 EM C E - 1 3 - S EM C - 2 3 - S EM C E - 2 3 - S 3 1. 1 2 1. 5 5 EM C E - 1 0 - R EM C - 2 0 - R EM C E - 2 0 - R 0 0. 2 1 0. 4 2 EM C E - 1 1 - R EM C - 2 1 - R EM C E - 2 1 - R 1 0. 5 1 0. 7 2 EM C E - 1 2 - R EM C - 2 2 - R EM C E - 2 2 - R 2 0. 8 0 1. 0 8 EM C E - 1 3 - R EM C - 2 3 - R EM C E - 2 3 - R 3 1. 1 0 1. 5 1 EM C E - 1 0 - P EM C - 2 0 - P EM C E - 2 0 - P 0 0. 2 1 0. 4 2 EM C E - 1 1 - P EM C - 2 1 - P EM C E - 2 1 - P 1 0. 5 1 0. 7 2 EM C E - 1 2 - P EM C - 2 2 - P EM C E - 2 2 - P 2 0. 7 9 1. 0 8 EM C E - 1 3 - P EM C - 2 3 - P EM C E - 2 3 - P 3 1. 1 0 1. 5 1 Contact Sporlan Valve Company for application information not shown on this specification sheet. 1 The MOP charge is not recommended as it may limit the opening of the pulldown port. 2 To specify SAE flare connection, omit the E prefix from the valve model number, e.g., MCE--SC. 1 C In l e t Ou t l e t Ne t We i g h t (l b s ) Sh i p p i n g We i g h t (l b s ) 5 3/ 8 1/ 2 2 3 SAE FLARE 2.31 ODF SOLDER 2.31 1.68 Replaceable Strainer (0 mesh) P/N 3427-000 1.68 1.44 1.80 3.06 3.06 1.31 1.88 1.31 2.30 STANDARD CHARGES BU L B S I Z E S - I n c h e s RE F R I G E R A N T 404A, 502, 507 4a Top View.25 1/4" ODF External Equalizer Connection 1.33 ODF Solder 1.25 SAE Flare C 0. 5 0 O D x 3. 5 0 Z 0. 3 8 O D x 4. 5 0 0. 5 0 O D x 3. 5 0

Bulletin --4 / Page 5 CAPACITIES FOR TYPE EMC THERMOSTATIC EXPANSION VALVE Refrigerant 40 0 ACROSS VALVE (PSI) 40 60 80 0 140 60 80 0 140 160 60 80 0 140 160 0.16 0.19 0. 0.25 0.27 0.30 0.19 0. 0.24 0.26 0.26 0.30 0.18 0. 0. 0.25 0.27 0.29 0.39 0.47 0.55 0.61 0.67 0.73 0.45 0.53 0.59 0.64 0.64 0.74 0.43 0.50 0.56 0.61 0.66 0.71 0.60 0.74 1.85 0.95 1.04 1. 0.70 0.81 0.91 1.00 1.00 1.15 0.68 0.78 0.88 0.96 1.04 1. 0.83 1.02 1.18 1.32 1.44 1.56 0.97 1. 1.26 1.38 1.38 1.59 0.93 1.08 1. 1.32 1.43 1.53 0.32 0.39 0.45 0.50 0.55 0.59 0.37 0.43 0.48 0.52 0.52 0.61 0.35 0.41 0.46 0.50 0.54 0.58 0.55 0.67 1.78 0.87 0.95 1.03 0.64 0.74 0.83 0.91 0.91 1.05 0.61 0.71 0.79 0.86 0.93 1.00 0.82 1.00 1.16 1.29 1.42 1.53 0.96 1. 1.24 1.36 1.36 1.57 0.92 1.06 1.18 1.29 1.40 1.49 1.15 1.41 1.63 1.82 1.99 2.15 1.35 1.56 1.74 1.91 1.91 2. 1.28 1.48 1.66 1.82 1.96 2. 40 0 ACROSS VALVE (PSI) 75 0 0.28 0.32 0.36 0.39 0.43 0.45 0.27 0.31 0.35 0.38 0.41 0.44 0.26 0.30 0.34 0.37 0.40 0.43 0.68 0.79 0.88 0.97 1.04 1. 0.67 0.77 0.86 0.94 1.02 1.09 0.65 0.75 0.84 0.92 0.99 1.06 1.06 1. 1.37 1.50 1.62 1.73 1.04 1. 1.34 1.47 1.59 1.69 1.01 1.16 1.30 1.43 1.54 1.65 1.46 1.69 1.89 2.07 2.24 2.39 1.43 1.65 1.84 2.02 2.18 2.33 1.39 1.61 1.80 1.97 2. 2.27 Refrigerant 0.56 0.64 0.72 0.79 0.85 0.91 0.54 0.63 0.70 0.77 0.83 0.89 0.53 0.61 0.68 0.75 0.81 0.86 0.96 1. 1.24 1.36 1.47 1.57 0.93 1.08 1. 1.32 1.43 1.53 0.91 1.05 1.18 1.29 1.39 1.49 1.44 1.67 1.86 2.04 2. 2.36 1.41 1.62 1.82 1.99 2.15 2.30 1.37 1.58 1.77 1.94 2.09 2.24 2.02 2.34 2.61 2.86 3.09 3.31 1.97 2.28 2.55 2.79 3.01 3. 1.91 2. 2.47 2.71 2.92 3. - - -40 ACROSS VALVE (PSI) 0 5 0 5 250 5 250 0.30 0.34 0.37 0.40 0.42 0.45 0.33 0.36 0.39 0.42 0.44 0.47 0.32.035 0.38 0.40 0.43 0.45 0.74 0.82 0.90 0.97 1.04 1. 0.81 0.89 0.96 1.02 1.09 1.14 0.78 0.86 0.92 0.99 1.05 1. 1.15 1.28 1.41 1.52 1.62 1.72 1.25 1.37 1.48 1.59 1.68 1.77 1. 1.33 1.44 1.54 1.63 1.72 1.58 1.77 1.94 2.09 2.24 2.37 1.74 1.91 2.06 2. 2.33 2.46 1.68 1.84 1.99 2. 2.26 2.38 0.60 0.67 0.73 0.79 0.85 0.90 0.66 0.72 0.78 0.83 0.88 0.93 0.64 0.70 0.75 0.81 0.85 0.90 1.04 1.16 1.27 1.37 1.47 1.56 1.14 1.25 1.35 1.44 1.53 1.61 1. 1. 1.30 1.39 1.48 1.56 1.56 1.74 1.91 2.06 2. 2.33 1.71 1.87 2.02 2.16 2.30 2.42 1.65 1.81 1.96 2.09 2. 2.34 2.18 2.43 2.67 2.88 3.08 3.26 2.39 2.62 2.83 3.03 3. 3.39 2.32 2.54 2.74 2.93 3. 3.28 Refrigerant 4a 4a 40 0 ACROSS VALVE (PSI) 40 60 80 0 140 60 80 0 140 160 60 80 0 140 160 0.19 0. 0.27 0.30 0.33 0.36 0. 0.26 0.29 0.31 0.34 0.36 0. 0.24 0.27 0.30 0.32 0.34 0.47 0.57 0.66 0.74 0.81 0.87 0.54 0.63 0.70 0.77 0.83 0.89 0.52 0.60 0.67 0.73 0.79 0.85 0.73 0.89 1.03 1.15 1.26 1.36 0.85 0.98 1. 1. 1.30 1.39 0.80 0.93 1.04 1.14 1. 1.31 1.00 1. 1.41 1.58 1.73 1.87 1.17 1.35 1.51 1.66 1.79 1.91 1. 1.28 1.44 1.57 1.70 1.82 0.38 0.46 0.54 0.60 0.66 0.71 0.44 0.51 0.57 0.63 0.68 0.72 0.42 0.49 0.54 0.60 0.64 0.69 0.66 0.80 0.93 1.04 1.14 1. 0.76 0.88 0.99 1.08 1.17 1.25 0.73 0.84 0.94 1.03 1. 1.19 0.98 1. 1.39 1.56 1.70 1.84 1.15 1.33 1.49 1.63 1.76 1.88 1.09 1.26 1.41 1.55 1.67 1.78 1.38 1.69 1.95 2.18 2.38 2.57 1.61 1.86 2.08 2.28 2.46 2.63 1.53 1.77 1.98 2.17 2.34 2.51 Refrigerant REFRIGERANT LIQUID TEMPERATURE CORRECTION FACTORS Refrigerant Liquid Temp F 0 30 40 50 60 70 80 90 0 1 0 0 140 Example 1.60 1.54 1.48 1.42 1.36 1.30 1.24 1.18 1. 1.06 1.00 0.94 0.88 0.82 0.75 Correction 1.56 1.51 1.45 1.40 1.34 1.29 1. 1.17 1. 1.06 1.00 0.94 0.88 0.82 0.76 Factor 4a 1.70 1.63 1.56 1.49 1.42 1.36 1.29 1. 1.14 1.07 1.00 0.93 0.85 0.78 0.71 Actual capacity of an EMCE--J valve at F evaporator, 0 psi pressure drop and 60 F liquid temperature = 0.70 tons x 1.29 = 0.90 tons. These factors include corrections for liquid refrigerant density and net refrigerating effect and are based on an average evaporator temperature of 0 F. However they may be used for any evaporator temperature from 40 F to 40 F since the variation in the actual factors across this range is insignificant.

Page 6 / Bulletin --4 CAPACITIES FOR TYPE EMC THERMOSTATIC EXPANSION VALVE (continued) Refrigerant 404A 404a 40 ACROSS VALVE (PSI) 0 75 0 0. 1 8 0. 2 1 0. 2 4 0. 2 6 0. 2 8 0. 3 0 0. 1 7 0. 2 0 0. 2 3 0. 2 5 0. 2 7 0. 2 8 0. 1 6 0. 1 9 0. 2 1 0. 2 3 0. 2 5 0. 2 7 0. 4 5 0. 5 2 0. 5 8 0. 6 4. 6 9 0. 7 0. 4 3 0. 4 9 0. 5 5 0. 6 1 0. 6 5 0. 7 0 0. 4 0 0. 4 6 0. 5 2 0. 5 7 0. 6 2 0. 6 6 0. 7 0 0. 8 1 0. 9 1 0. 9 9 1. 0 7 1. 1 5 0. 6 7 0. 7 7 0. 8 6 0. 9 4 1. 0 2 1. 0 9 0. 6 3 0. 7 2 0. 8 1 0. 8 9 0. 9 6 1. 0 2 0. 9 7 1. 1 2 1. 2 5 1. 3 7 1. 4 8 1. 5 9 0. 9 2 1. 0 6 1. 1 9 1. 3 0 1. 4 1 1. 5 0 0. 8 7 1. 0 0 1. 1 2 1. 2 3 1. 3 3 1. 4 2 0 4 404A 0. 3 7 0. 4 3 0. 4 8 0. 5 2 0. 5 6 0. 6 0 0. 3 5 0. 4 0 0. 4 5 0. 4 9 0. 5 3 0. 5 7 0. 3 3 0. 3 8 0. 4 2 0. 4 6 0. 5 0 0. 5 4 0. 6 4 0. 7 3 0. 8 2 0. 9 0 0. 9 7 1. 0 4 0. 6 0 0. 7 0 0. 7 8 0. 8 5 0. 9 2 0. 9 8 0. 5 7 0. 6 5 0. 7 3 0. 8 0 0. 8 7 0. 9 3 0. 9 6 1. 1 1 1. 2 4 1. 3 5 1. 4 6 1. 5 6 0. 9 1 1. 0 5 1. 1 7 1. 2 8 1. 3 8 1. 4 8 0. 8 5 0. 9 9 1. 1 0 1. 2 1 1. 3 0 1. 3 9 1. 3 4 1. 5 5 1. 7 3 1. 8 9 2. 0 5 2. 1 9 1. 2 7 1. 4 6 1. 6 3 1. 7 9 1. 9 3 2. 0 7 1. 1 9 1. 3 8 1. 5 4 1. 6 9 1. 8 2 1. 9 5 - - -40 ACROSS VALVE ( PSI ) 0 5 0 5 25 0 5 25 0 0. 1 8 0. 2 1 0. 2 2 0. 2 4 0. 2 6 0. 2 8 0. 2 0 0. 2 2 0. 2 3 0. 2 5 0. 2 7 0. 2 8 0. 1 8 0. 2 0 0. 2 2 0. 2 3 0. 2 5 0. 2 6 0. 4 5 0. 5 0 0. 5 5 0. 6 0 0. 6 4 0. 6 8 0. 4 9 0. 5 3 0. 5 7 0. 6 1 0. 6 5 0. 6 9 0. 4 5 0. 4 9 0. 5 3 0. 5 7 0. 6 0 0. 6 4 0. 7 0 0. 7 8 0. 8 6 0. 9 3 0. 9 9 1. 0 5 0. 7 6 0. 8 3 0. 8 9 0. 9 6 1. 0 1 1. 0 7 0. 7 0 0. 7 7 0. 8 3 0. 8 9 0. 9 4 0. 9 9 0. 9 7 1. 0 8 1. 1 9 1. 2 8 1. 3 7 1. 4 5 1. 0 5 1. 1 5 1. 2 4 1. 3 2 1. 4 0 1. 4 8 0. 9 7 1. 0 6 1. 1 5 1. 2 3 1. 3 0 1. 3 7 0. 3 7 0. 4 1 0. 4 5 0. 4 8 0. 5 2 0. 5 5 0. 4 0 0. 4 3 0. 4 7 0. 5 0 0. 5 3 0. 5 6 0. 3 7 0. 4 0 0. 4 3 0. 4 6 0. 4 9 0. 5 2 0. 6 3 0. 7 1 0. 7 8 0. 8 4 0. 9 0 0. 9 5 0. 6 8 0. 7 5 0. 8 1 0. 8 7 0. 9 2 0. 9 7 0. 6 3 0. 6 9 0. 7 5 0. 8 0 0. 8 5 0. 9 0 0. 9 5 1. 0 6 1. 1 7 1. 2 6 1. 3 5 1. 4 3 1. 0 3 1. 1 2 1. 2 1 1. 3 0 1. 3 8 1. 4 5 0. 9 5 1. 0 4 1. 1 2 1. 2 0 1. 2 8 1. 3 4 1. 3 3 1. 4 9 1. 6 3 1. 7 7 1. 8 9 2. 0 0 1. 4 3 1. 5 7 1. 7 0 1. 8 2 1. 9 3 2. 0 3 1. 3 3 1. 4 6 1. 5 7 1. 6 8 1. 7 9 1. 8 8 Refrigerant 502 40 0 ACROSS VALVE ( PSI ) 75 0 0. 1 8 0. 2 1 0. 2 3 0. 2 6 0. 2 8 0. 2 9 0. 1 7 0. 2 0 0. 2 2 0. 2 4 0. 2 6 0. 2 8 0. 1 6 0. 1 9 0. 2 1 0. 2 3 0. 2 5 0. 2 7 0. 4 4 0. 5 1 0. 5 7 0. 6 3 0. 6 8 0. 7 2 0. 4 2 0. 4 9 0. 5 5 0. 6 0 0. 6 5 0. 6 9 0. 4 0 0. 4 6 0. 5 2 0. 5 7 0. 6 1 0. 6 6 1. 6 9 0. 8 0 0. 8 9 0. 9 8 1. 0 5 1. 1 3 0. 6 6 0. 7 6. 8 5 0. 9 1. 0 1 1. 0 7 0. 6 2 0. 7 2 0. 8 1 0. 8 8 0. 9 5 1. 0 2 0. 9 5 1. 1 0 1. 2 3 1. 3 4 1. 4 5 1. 5 5 0. 9 1 1. 0 5 1. 1 7 1. 2 8 1. 3 8 1. 4 8 0. 8 6 0. 9 9 1. 1 1 1. 2 2 1. 3 2 1. 4 1 0 3 502 0. 3 6 0. 4 2 0. 4 7 0. 5 1 0. 5 5 0. 5 9 0. 3 4 0. 4 0 0. 4 4 0. 4 9 0. 5 3 0. 5 6 0. 3 3 0. 3 8 0. 4 2 0. 4 6 0. 5 0 0. 5 3 0. 6 2 0. 7 2 0. 8 0 0. 8 8 0. 9 5 1. 0 2 0. 6 0 0. 6 9 0. 7 7 0. 8 4 0. 9 1 0. 9 7 0. 5 7 0. 6 5 0. 7 3 0. 8 0 0. 8 6 0. 9 2 0. 9 3 1. 0 8 1. 2 1 1. 3 2 1. 4 3 1. 5 3 0. 8 9 1. 0 3 1. 1 5 1. 2 6 1. 3 6 1. 4 5 0. 8 5 0. 9 8 1. 0 9 1. 2 0 1. 2 9 1. 3 8 1. 3 1 1. 5 1 1. 6 9 1. 8 5 2. 0 0 2. 1 4 1. 2 5 1. 4 5 1. 6 2 1. 7 7 1. 9 1 2. 0 4 1. 1 9 1. 3 8 1. 5 4 1. 6 9 1. 8 2 1. 9 5 - - -40 ACROSS VALVE ( PSI ) 0 5 0 5 25 0 5 25 0 0. 1 8 0. 2 1 0. 2 2 0. 2 4 0. 2 6 0. 2 8 0. 2 0 0. 2 2 0. 2 4 0. 2 5 0. 2 7 0. 2 8 0. 1 9 0. 2 1 0. 2 2 0. 2 4 0. 2 5 0. 2 6 0. 4 5 0. 5 0 0. 5 5 0. 6 0 0. 6 4 0. 6 8 0. 4 9 0. 5 4 0. 5 8 0. 6 2 0. 6 6 0. 6 9 0. 4 6 0. 5 0 0. 5 4 0. 5 8 0. 6 2 0. 6 5 0. 7 0 0. 7 8 0. 8 6 0. 9 3 0. 9 9 1. 0 5 0. 7 6 0. 8 3 0. 9 0 0. 9 6 1. 0 2 1. 0 8 0. 7 1 0. 7 8 0. 8 5 0. 9 0 0. 9 6 1. 0 1 0. 9 7 1. 0 8 1. 1 9 1. 2 8 1. 3 7 1. 4 5 1. 0 5 1. 1 6 1. 2 5 1. 3 3 1. 4 2 1. 4 9 0. 9 9 1. 0 8 1. 1 7 1. 2 5 1. 3 3 1. 4 0 0. 3 7 0. 4 1 0. 4 5 0. 4 9 0. 5 2 0. 5 5 0. 4 0 0. 4 4 0. 4 7 0. 5 0 0. 5 4 0. 5 6 0. 3 7 0. 4 1 0. 4 4 0. 4 7 0. 5 0 0. 5 3 0. 6 3 0. 7 1 0. 7 8 0. 8 4 0. 9 0 0. 9 5 0. 6 9 0. 7 5 0. 8 2 0. 8 7 0. 9 2 0. 9 7 0. 6 5 0. 7 1 0. 7 6 0. 8 2 0. 8 7 0. 9 1 0. 9 5 1. 0 6 1. 1 7 1. 2 6 1. 3 5 1. 4 3 1. 0 4 1. 1 3 1. 2 3 1. 3 1 1. 3 9 1. 4 6 0. 9 7 1. 0 6 1. 1 5 1. 2 3 1. 3 0 1. 3 7 1. 3 3 1. 4 9 1. 6 3 1. 7 7 1. 8 9 2. 0 0 1. 4 5 1. 5 9 1. 7 2 1. 8 4 1. 9 5 2. 0 6 1. 3 6 1. 4 9 1. 6 1 1. 7 2 1. 8 2 1. 9 2 REFRIGERANT LIQUID TEMPERATURE CORRECTION FACTORS Liquid Temp F 0 30 40 50 60 70 80 90 0 0 0 14 0 Ex a m p l e 40 4 A 2. 0 4 1. 9 4 1. 8 4 1. 7 4 1. 6 4 1. 5 4 1. 4 3 1. 3 3 1. 2 2 1. 1 1 1. 0 0 0. 8 9 0. 7 7 0. 6 5 0. 5 3 Co r r e c t i o n Fa c t o r 50 2 1. 8 6 1. 7 8 1. 6 9 1. 6 1 1. 5 2 1. 4 4 1. 3 5 1. 2 6 1. 1 8 1. 0 9 1. 0 0 0. 9 1 0. 8 2 0. 7 3 0. 6 4 Actual capacity of an EMCE--J valve at F evaporator, 0 psi pressure drop and 60 F liquid temperature = 0.70 tons x 1.29 = 0.90 tons. These factors include corrections for liquid refrigerant density and net refrigerating effect and are based on an average evaporator temperature of 0 F. However they may be used for any evaporator temperature from 40 F to 40 F since the variation in the actual factors across this range is insignificant.

Bulletin --4 / Page 7 CAPACITIES FOR TYPE EMC THERMOSTATIC EXPANSION VALVE (continued) Refrigerant 507 507 EVAPORATOR TEMPERATURE (F ) 40 0 ACROSS VALVE ( PSI ) 75 0 0. 1 8 0. 2 1 0. 2 3 0. 2 6 0. 2 8 0. 2 9 0. 1 7 0. 2 0 0. 2 2 0. 2 4 0. 2 6 0. 2 8 0. 1 6 0. 1 9 0. 2 1 0. 2 3 0. 2 5 0. 2 6 0. 4 4 0. 5 1 0. 5 7 0. 6 3 0. 6 8 0. 7 2 0. 4 2 0. 4 8 0. 5 4 0. 5 9 0. 6 4 0. 6 8 0. 3 9 0. 4 6 0. 5 1 0. 5 6 0. 6 0 0. 6 4 0. 6 9 0. 7 9 0. 8 9 0. 9 7 1. 0 5 1. 1 2 0. 6 5 0. 7 5. 8 4 0. 9 1. 0 0 1. 0 7 0. 6 1 0. 7 1 0. 7 9 0. 8 7 0. 9 4 1. 0 0 0. 9 5 1. 1 0 1. 2 3 1. 3 4 1. 4 5 1. 5 5 0. 9 0 1. 0 4 1. 1 6 1. 2 7 1. 3 7 1. 4 7 0. 8 5 0. 9 8 1. 0 9 1. 2 0 1. 2 9 1. 3 8 0 2 507 0. 3 6 0. 4 2 0. 4 7 0. 5 1 0. 5 5 0. 5 9 0. 3 4 0. 3 9 0. 4 4 0. 4 8 0. 5 2 0. 5 6 0. 3 2 0. 3 7 0. 4 2 0. 4 5 0. 4 9 0. 5 3 0. 6 2 0. 7 2 0. 8 0 0. 8 8 0. 9 5 1. 0 2 0. 5 9 0. 6 8 0. 7 6 0. 8 3 0. 9 0 0. 9 6 0. 5 6 0. 6 4 0. 7 2 0. 7 8 0. 8 5 0. 9 1 0. 9 3 1. 0 8 1. 2 1 1. 3 2 1. 4 3 1. 5 3 0. 8 8 1. 0 2 1. 1 4 1. 2 5 1. 3 5 1. 4 4 0. 8 3 0. 9 6 1. 0 7 1. 1 8 1. 2 7 1. 3 6 1. 3 1 1. 5 1 1. 6 9 1. 8 5 2. 0 0 2. 1 4 1. 2 4 1. 4 4 1. 6 1 1. 7 6 1. 9 0 2. 0 3 1. 1 7 1. 3 5 1. 5 1 1. 6 6 1. 7 9 1. 9 1 EVAPORATOR TEMPERATURE (F ) - - -40 ACROSS VALVE ( PSI ) 0 5 0 5 25 0 5 25 0 0. 1 8 0. 2 0 0. 2 2 0. 2 4 0. 2 5 0. 2 7 0. 1 9 0. 2 1 0. 2 3 0. 2 5 0. 2 6 0. 2 7 0. 1 8 0. 2 0 0. 2 1 0. 2 3 0. 2 4 0. 2 6 0. 4 4 0. 4 9 0. 5 4 0. 5 8 0. 6 2 0. 6 6 0. 4 8 0. 5 2 0. 5 6 0. 6 0 0. 6 4 0. 6 7 0. 4 4 0. 4 9 0. 5 2 0. 5 6 0. 5 9 0. 6 3 0. 6 9 0. 7 7 0. 8 4 0. 9 1 0. 9 7 1. 0 3 0. 7 4 0. 8 1 0. 8 8 0. 9 4 0. 9 9 1. 0 5 0. 6 9 0. 7 6 0. 8 2 0. 8 7 0. 9 3 0. 9 8 0. 9 4 1. 0 5 1. 1 6 1. 2 5 1. 3 3 1. 4 2 1. 0 3 1. 1 2 1. 2 1 1. 3 0 1. 3 8 1. 4 5 0. 9 5 1. 0 4 1. 1 2 1. 2 0 1. 2 8 1. 3 4 0. 3 6 0. 4 0 0. 4 4 0. 4 8 0. 5 1 0. 5 4 0. 3 9 0. 4 3 0. 4 6 0. 4 9 0. 5 2 0. 5 5 0. 3 6 0. 4 0 0. 4 3 0. 4 6 0. 4 8 0. 5 1 0. 6 2 0. 6 9 0. 7 6 0. 8 2 0. 8 8 0. 9 3 0. 6 7 0. 7 3 0. 7 9 0. 8 5 0. 9 0 0. 9 5 0. 6 2 0. 6 8 0. 7 4 0. 7 9 0. 8 4 0. 8 8 0. 9 4 1. 0 5 1. 1 5 1. 2 4 1. 3 2 1. 4 0 1. 0 1 1. 1 0 1. 1 9 1. 2 7 1. 3 5 1. 4 2 0. 9 4 1. 0 3 1. 1 1 1. 1 8 1. 2 6 1. 3 2 1. 3 1 1. 4 6 1. 6 0 1. 7 3 1. 8 5 1. 9 6 1. 4 2 1. 5 5 1. 6 8 1. 7 9 1. 9 0 2. 0 0 1. 3 1 1. 4 4 1. 5 5 1. 6 6 1. 7 6 1. 8 5 REFRIGERANT LIQUID TEMPERATURE CORRECTION FACTORS Liquid Temp F 0 30 40 50 60 70 80 90 0 1 0 0 140 Example 50 7 Co r r e c t i o n Fa c t o r 1. 9 9 1. 8 9 1. 7 9 1. 6 9 1. 5 9 1. 5 0 1. 4 0 1. 3 0 1. 2 0 1. 1 0 1. 0 0 0. 8 9 0. 7 8 0. 6 6 0. 5 1 Actual capacity of an EMCE--J valve at F evaporator, 0 psi pressure drop and 60 F liquid temperature = 0.70 tons x 1.29 = 0.90 tons. These factors include corrections for liquid refrigerant density and net refrigerating effect and are based on an average evaporator temperature of 0 F. However they may be used for any evaporator temperature from 40 F to 40 F since the variation in the actual factors across this range is insignificant.