Nonlinear Bending of Strait Beams

Similar documents
The Finite Element Method

NONLINEAR ANALYSIS OF PLATE BENDING

Finite Element Models for Steady Flows of Viscous Incompressible Fluids

AS 5850 Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

OTHER TPOICS OF INTEREST (Convection BC, Axisymmetric problems, 3D FEM)

Finite element discretization of Laplace and Poisson equations

VSMN30 FINITA ELEMENTMETODEN - DUGGA

SME 3033 FINITE ELEMENT METHOD. Bending of Prismatic Beams (Initial notes designed by Dr. Nazri Kamsah)

FEM FOR HEAT TRANSFER PROBLEMS دانشگاه صنعتي اصفهان- دانشكده مكانيك

Non-Linear Analysis of Interlaminar Stresses in Composite Beams with Piezoelectric Layers

Numerical methods for PDEs FEM implementation: element stiffness matrix, isoparametric mapping, assembling global stiffness matrix

MEEN 617 Handout #12 The FEM in Vibrations A brief introduction to the finite element method for modeling of mechanical structures

Dynamic response of a finite length euler-bernoulli beam on linear and nonlinear viscoelastic foundations to a concentrated moving force

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design

Finite Element Analysis

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Analysis of Structural Vibration using the Finite Element Method

16. Electromagnetics and vector elements (draft, under construction)

Chapter 5. Introduction. Introduction. Introduction. Finite Element Modelling. Finite Element Modelling

Introduction to Finite Element Method. Dr. Aamer Haque

An adaptive Strategy for the Multi-scale Analysis of Plate and Shell Structures with Elasto-plastic Material Behaviour

682 CHAPTER 11 Columns. Columns with Other Support Conditions

Response Sensitivity for Nonlinear Beam Column Elements

1 Isoparametric Concept

UNCONVENTIONAL FINITE ELEMENT MODELS FOR NONLINEAR ANALYSIS OF BEAMS AND PLATES

Chapter 5 Structural Elements: The truss & beam elements

ENGN2340 Final Project: Implementation of a Euler-Bernuolli Beam Element Michael Monn

Element connectivity parameterization method for the stress based topology optimization for geometrically nonlinear structure

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

Keywords- Active vibration control, cantilever composite beam, Newmark-β method

FINITE BEAM ELEMENT WITH PIEZOELECTRIC LAYERS AND FUNCTIONALLY GRADED MATERIAL OF CORE

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Development of solid-shell elements for large deformation simulation and springback prediction

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA *

CHAPTER 9. Interpolation functions for 2D elements. Numerical Integration. Modeling Considerations

NONCONFORMING FINITE ELEMENTS FOR REISSNER-MINDLIN PLATES

Free Vibration of Pre-Tensioned Electromagnetic Nanobeams

CHAPTER 2 LAGRANGIAN AND EULERIAN FINITE ELEMENTS IN ONE DIMENSION

2008 AP Calculus BC Multiple Choice Exam

u 3 = u 3 (x 1, x 2, x 3 )

Lecture notes Models of Mechanics

International Journal of Solids and Structures

Lecture 7: The Beam Element Equations.

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Differential Equations: Homework 3

An Investigation on the Effect of the Coupled and Uncoupled Formulation on Transient Seepage by the Finite Element Method

Higher-Order Discrete Calculus Methods

Dynamic analysis of a Timoshenko beam subjected to moving concentrated forces using the finite element method

3 Finite Element Parametric Geometry

INC 693, 481 Dynamics System and Modelling: The Language of Bound Graphs Dr.-Ing. Sudchai Boonto Assistant Professor

Jacob Fish and Kamlun Shek 1 Departments of Civil and Mechanical Engineering Rensselaer Polytechnic Institute Troy, NY Abstract.

Section 11.6: Directional Derivatives and the Gradient Vector

Slender Structures Load carrying principles

Finite Element Analysis of Magneto-Superelastic Behavior of Shape Memory Alloy Composite Actuator

Potential energy of a structure. Vforce. joints j

A class of wavelet-based Rayleigh-Euler beam element for analyzing rotating shafts

CHAPTER 1. Introductory Concepts Elements of Vector Analysis Newton s Laws Units The basis of Newtonian Mechanics D Alembert s Principle

Twist analysis of piezoelectric laminated composite plates

Direct Approach for Discrete Systems One-Dimensional Elements

Convergence Study for FEM- and FIT-Based Eigenvalue Solvers Applied to a TESLA 1.3 GHz Test Structure

Strength of Materials

Chapter 6 2D Elements Plate Elements

One Dimensional State Space Approach to Thermoelastic Interactions with Viscosity

Theories of Straight Beams

MECHANICS OF MATERIALS

BUCKLING OF A COLUMN WITH TEMPERATURE DEPENDENT MATERIAL PROPERTIES

Hydrogen Atom and One Electron Ions

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS

Finite element modelling of structural mechanics problems

Section 6: PRISMATIC BEAMS. Beam Theory

Instantaneous Cutting Force Model in High-Speed Milling Process with Gyroscopic Effect

Free Vibration Analysis of Stiffened Laminated Plates Using a New Stiffened Element

Using a C 1 triangular finite element based on a refined model for analyzing buckling and post-buckling of multilayered plate/shell structures

Lecture 28 Title: Diatomic Molecule : Vibrational and Rotational spectra

That is, we start with a general matrix: And end with a simpler matrix:

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK

ME311 Machine Design

Finite Element Modelling for Static and Free Vibration Response of Functionally Graded Beam

Large Scale Topology Optimization Using Preconditioned Krylov Subspace Recycling and Continuous Approximation of Material Distribution

Pipe flow friction, small vs. big pipes

Rational Approximation for the one-dimensional Bratu Equation

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

FINITE DEFORMATION ANALYSIS OF GEOMATERIALS

Why is a E&M nature of light not sufficient to explain experiments?

Selective Mass Scaling (SMS)

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

The Weak Patch Test for Nonhomogeneous Materials Modeled with Graded Finite Elements

The pn junction: 2 Current vs Voltage (IV) characteristics

Thermal buckling analysis of skew bre-reinforced composite and sandwich plates using shear deformable nite element models

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

ACCURACY OF DIRECT TREFFTZ FE FORMULATIONS

Error estimation Adaptive remeshing Remapping. Lionel Fourment Mines ParisTech CEMEF Sophia Antipolis, France

CIE4145 : STRESS STRAIN RELATION LECTURE TOPICS

3-D SQCE Model and Its Application in Fracture Mechanics *

Liu, X., Zhang, L. "Structural Theory." Bridge Engineering Handbook. Ed. Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 2000

Dynamic behaviour of a rotating cracked beam

MECh300H Introduction to Finite Element Methods. Finite Element Analysis (F.E.A.) of 1-D Problems

Homotopy perturbation technique

Available online at ScienceDirect. IFAC PapersOnLine 51-2 (2018)

Transcription:

Nonlinar Bnding of Strait Bams CONTENTS Th Eulr-Brnoulli bam thory Th Timoshnko bam thory Govrning Equations Wak Forms Finit lmnt modls Computr Implmntation: calculation of lmnt matrics Numrical ampls Bams

Von Kármán NONLINEAR STRAINS Grn-Lagrang Strain Tnsor Componnts E E ij u u i j j i u u m i u u u 3 u Ordr-of-magnitud assumption u E O 3 m 3 ( ), ( ) u u O u j Bams

z, w NONLINEAR ANALYSIS OF EULER-BERNOULLI BEAMS F0 Bam cross sction q() z q() f() M 0 y M M N N L cw f V V Displacmnts and strain-displacmnt rlations u ( uz ) ˆ wˆ, 3 d u( z, ) uz, u 0, u w ( ) 3 d u 3 z u du d w d d d Nonlinar Problms (-D) : 3,

PRINCIPLE OF VIRTUAL DISPLACEMENTS for th Eulr-Brnoulli bams W I V dv du d w d d d d [( ) z( )] b a A b du d w [( ) N M ] d a d d d d 6 b b WE qwd f ud Qi i a a i Equilibrium quations dn f d M d 0, N q0 d d d d dad dn dm dv d f 0, V 0, N q 0 d d d d d Bams 4

NONLINEAR ANALYSIS OF EULER-BERNOULLI BEAMS Equilibrium quations dn f d M d 0, N q0 d d d d Strss rsultants in trms of dflction du d w du N = σ da = E + Ez da EA d d = + d d d A A du M = σ z da = E + Ez z da EI d d = d d A A V dn dm dv d f 0, V 0, N q 0 d d d d d dm d d w = = EI d d d Bams 5

NONLINEAR ANALYSIS OF EULER-BERNOULLI BEAMS Equilibrium quations in trms of displacmnts (u,w) d du EA f 0 d d d d d w d du EI EA q 0 d d d d d d zw, u, F F w( L) u( L) Clarly, transvrs load inducs both aial displacmnt u and transvrs displacmnt w. Bams 6

Wak forms 0 0 EULER-BERNOULLI BEAM THEORY dv N vf d v ( ) ( ) a Q v b Q 4 b a d du N EA d d (continud) b d v d w dv EI N v q d a d d d d dv dv v ( ) Q Q v ( ) Q Q a 3 b 5 6 d d Q V( ) a Q M( ) 3 a a Q V( ) 5 b Q M( ) 6 b Q N ( ) a Q N ( ) 4 b v u, v w b Bams 7

BEAM ELEMENT DEGREES OF FREEDOM Gnralizd displacmnts w ( ) a w ( ) 5 b u ( ) a u ( ) 4 b ( ) 3 a Gnralizd forcs ( ) 6 b Q V( ) a Q V( ) 5 b QN ( ) Q N ( ) a 4 b Q M( ) 3 a Q M( ) 6 b 8

FINITE ELEMENT APPROXIMATION Primary variabls (srv as th nodal variabls that must b continuous across lmnts),, uw θ = d 4 w ( ) ( ), u ( ) u ( ), j j j j j j n Hrmit cubic polynomials µ µ Á a a = 3 + Á = ( a ) µ a 3 µ µ 3 Á a a 3 = 3 " µ # Á a 4 = ( a ) a 9

HERMITE CUBIC INTERPOLATION FUNCTIONS i ( ) ( ) slop = 0 ( ) slop = slop = 0 ( 3 slop = 0 ( 4 slop = slop = 0 0

FINITE ELEMENT MODEL Finit Elmnt Equations 4 u ( ) u ( ), w ( ) ( ) j j j j j j [ K ] [ K ] { u} { F } 3 [ K ] [ K ] { } { F } b d d j b d d i i j K EA d, K, ij ij EA d a d d a d d d b d d i j b K EA d, F f ij d ( ) Q ( ) Q i i i a i b a d d d a b d d j b i d d i j K EI d EA d, ij a d d a d d d 4 d d F q d Q Q Q Q b i i ( ) ( ) i i i a i b 5 3 6 a d d a Q b Q5 Q3 Q 6 Q Q4 5 6 4

MEMBRANE LOCKING Mmbran strain du d d 0 Bam on rollr supports q ( ) du d d 0 du d d Rmdy mak d 0 to bhav lik a constant

SOLUTION OF NONLINEAR EQUATIONS Dirct Itration Non-Linar Finit Elmnt Modl [ K ( )] F assmbld [ KU ( )] U F Dirct Itration Mthod r th r Solution { U} at r itration is known and solv for{ U} r r [ K({ U} )]{ U} { F} F F C K(U 0 ) K(U ) K(U ) K(U)U F(U) U C - Convrgd solution U 0 - Initial guss solution U 0 U U U 3 U C U Nonlinar Problms: (-D) - 3

SOLUTION OF NONLINEAR EQUATIONS (continud) Dirct Itration Mthod Convrgnc Critrion r th r Solution { U} at r itration is known and solv for{ U} r r [ K({ U} )]{ U} { F} Possibl convrgnc NEQ I NEQ I U r I U U r I r I spcifid tolranc 4

SOLUTION OF NONLINEAR EQUATIONS Nwton s Itration Mthod Taylor s sris r r r Rsidual, { R} [ K({ U} )]{ U} { F} r r r r r R r r R { RU ( )} { RU ( )} ( U U ) ( U U ) U! U r r r r R r r { RU ( )} ( U U ) O( U), U U U U r st Rquiring th rsidual { R} to b zro at th r itration, w hav r tan [ K ({ U} )]{ U} { R} { F} [ KU ( )] { U} Th tangnt matri at th lmnt lvl is r r r r r r n tan Ri Kij Kip p F i j j p 5

SOLUTION OF NONLINEAR EQUATIONS Nwton s Itration (continud) n n Ri Kip T K F K T j j p p j r r r r r r r [ T({ } )]{ } { F} [ K( )] { }, { } { } { } ij ip p i ij p ij F F C T( ) 0 T( 0 ) T( ) δ δ K( ) F R( ) C - Convrgd solution 0 - Initial guss solution C = 3 = δ + 0 = δ + 0 Nonlinar Problms: (-D) - 6

Summary of th N-R Mthod R i = T ij = X X = p= Ã! @R i @ j [T (f g (r ) ]f g r = fr(f g (r ) )g f g r = f g (r ) + f± g Computation of tangnt stiffnss matri K ip p F i = = K ij + n X p= nx p= @ @ j K ip u p + 4X P = K ip up + K ip P F i 4X P = @ @ j K ip P T ij = K ij + = K ij + nx p= @K ip @u j u p + nx 0 u p + p= 4X P = @K ip @u j 4X 0 P P = P Bams 7

THE TIMOSHENKO BEAM THEORY q ( ) z, w f( ) Dformd Bams z d, u d Undformd Bam Eulr-Brnoulli Bam Thory (EBT) Straightnss, intnsibility, and normality u φ d Timoshnko Bam Thory (TBT) Straightnss and intnsibility 8

KINEMATICS OF THE TIMOSHENKO BEAM THEORY Displacmnt fild u uz ) ˆ wˆ E u( z, ) u ( ) z( ), ( u 0, u( z, ) w ( ) 3 3 u u 3 du 3 z z z 3 E d z d d d u u d z z w u Constitutiv Equations E, G φ d zφ z z 9

TIMOSHENKO BEAM THEORY (continud) Equilibrium Equations dn dm dv d f 0, V 0, N q0 d d d d d Bam Constitutiv Equations A du d du N da E z da EA d d d d d A A du d d M z da E z z da EI d d d d A A V Ks z da GKs da GAK s d d A 0

WEAK FORMS OF TBT b 0 ( ) ( ) a b 4 0 a dv du EA w vf d v( ) Q v( ) Q a b 4 b a dv N vfd v Q v Q d d d d d b dv dv GAK s N vq d a d d d d v ( ) Q v ( ) Q a b 5 0 dv d EI GAK v d d d d v ( ) Q v ( ) Q b 3 s 3 a 3 a 3 3 b 6 Bams

FINITE ELEMENT MODELS OF TIMOSHENKO BEAMS Finit Elmnt Approimation m n p () () (3) jj jj jj j j j u u ( ), w w ( ), S ( ) 3 K K K F u 3 K K K w F 3 3 33 S 3 K K K F w w s s w 3 3 3 3 m= n= w w s s s m= n= 3

SHEAR LOCKING IN TIMOSHENKO BEAMS () Thick bam princs shar dformation, () Shar dformation is ngligibl in thin bams, Linar intrpolation of both w, d d w() w () w () () S () S (), w w S S In th thin bam limit it is not possibl for th lmnt to raliz th rquirmnt d 3

SHEAR LOCKING - REMEDY In th thin bam limit, φ should bcom constant so that it matchs /d. Howvr, if φ is a constant thn th bnding nrgy bcoms zro. If w can mimic th two stats (constant and linar) in th formulation, w can ovrcom th problm. Numrical intgration of th cofficints allows us to valuat both φ and dφ/d as constants. Th trms highlightd should b valuatd using rducd intgration. K ij () () b d d i j GAKs... d a d d () b 3 di ( 3) 3 ij GAKs j ji K d K a d (3) (3) b 33 d d i j (3) (3) Ki j EI GAKsi j d a d d 4

NUMERICAL EXAMPLES Pinnd-pinnd bam (EBT) w 0 Dflction,.0.0.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.0 q 0 Pinnd-pinnd Clampd-clampd 0.0 0.00 0.0.0.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 0.0 Load, q 0 q 0 Nonlinar Problms: (-D) - 5

Pinnd-pinnd bam (TBT) L = Lngth, H = Hight of th bam (in.) w L H = 00 q 0 L H = 50 L H = 0 q (psi.) Nonlinar Problms: (-D) - 6

Pinnd-pinnd bam (EBT, TBT).0 L/ H = 0(TBT) w 0.8 L/ H = 0(EBT) q0 L/ H = 50 (TBT,EBT) Dflction 0.6 0.4 L/ H = 80 (TBT,EBT) L/ H = 00 (TBT,EBT) 0. 0.0 w = w(0.5 L) EH L 4 3 H = bam hight L = bam lngth 0 3 4 5 6 7 8 9 0 Load (lb/in), q 0 Bams 7

Hingd-Hingd bam (EBT and TBT) Nondimnsional dflction w = weh 3 /ql 4 0.3 0. 0. EBT = Eulr Brnoulli bam thory TBT = Timoshnko bam thory TBT EBT L/H=0 TBT L/H=00 q 0 0.0 Load, q 0 (psi) 0 4 6 8 0 Nonlinar Problms: (-D) - 8

SUMMARY In this lctur w hav covrd th following topics: Drivd th govrning quations of th Eulr-Brnoulli bam thory Drivd th govrning quations of th Timoshnko bam thory Dvlopd Wak forms of EBT and TBT Dvlopd Finit lmnt modls of EBT and TBT Discussd mmbran locking (du to th gomtric nonlinarity) Discussd shar locking in Timoshnko bam finit lmnt Discussd ampls 9