Odd Answers: Chapter Eight Contemporary Calculus 1 { ( 3+2 } = lim { 1. { 2. arctan(a) 2. arctan(3) } = 2( π 2 ) 2. arctan(3)

Similar documents
1. Evaluate the integrals. a. (9 pts) x e x/2 dx. Solution: Using integration by parts, let u = x du = dx and dv = e x/2 dx v = 2e x/2.

Math Calculus II Homework # Due Date Solutions

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval.

Math156 Review for Exam 4

6.6 Inverse Trigonometric Functions

Analytic Trigonometry

Math Analysis Chapter 5 Notes: Analytic Trigonometric

AP Calculus Summer Packet

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1)

Chapter 7: Techniques of Integration

Chapter 2 Overview: Anti-Derivatives. As noted in the introduction, Calculus is essentially comprised of four operations.

Math 1B Calculus Test 3 Spring 10 Name Write all responses on separate paper. Show your work for credit.

7.3 Inverse Trigonometric Functions

The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. sin

Pre- Calculus Mathematics Trigonometric Identities and Equations

Review (2) Calculus II (201-nyb-05/05,06) Winter 2019

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically

2 Trigonometric functions

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters

First Midterm Examination

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x)

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS

Sect 7.4 Trigonometric Functions of Any Angles

a k 0, then k + 1 = 2 lim 1 + 1

8.3 Partial Fraction Decomposition

Trigonometric substitutions (8.3).

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

Integration Techniques for the AB exam

Lesson 33 - Trigonometric Identities. Pre-Calculus

1969 AP Calculus BC: Section I

Solutions to Homework Assignment #2

MATH 162. Midterm Exam 1 - Solutions February 22, 2007

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2

SET 1. (1) Solve for x: (a) e 2x = 5 3x

Fall 2016, MA 252, Calculus II, Final Exam Preview Solutions

Math 181, Exam 2, Fall 2014 Problem 1 Solution. sin 3 (x) cos(x) dx.

Precalculus Review. Functions to KNOW! 1. Polynomial Functions. Types: General form Generic Graph and unique properties. Constants. Linear.

Department of Mathematical Sciences. Math 226 Calculus Spring 2016 Exam 2V2 DO NOT TURN OVER THIS PAGE UNTIL INSTRUCTED TO DO SO

HOMEWORK SOLUTIONS MATH 1910 Sections 8.2, 8.3, 8.5 Fall 2016

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

Math 226 Calculus Spring 2016 Exam 2V1

Final Exam Review Quesitons

MATH QUIZ 3 1/2. sin 1 xdx. π/2. cos 2 (x)dx. x 3 4x 10 x 2 x 6 dx.

Section 7.4 #1, 5, 6, 8, 12, 13, 44, 53; Section 7.5 #7, 10, 11, 20, 22; Section 7.7 #1, 4, 10, 15, 22, 44

Methods of Integration

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36

Chapter 5 Notes. 5.1 Using Fundamental Identities

1993 AP Calculus AB: Section I

Math 152 Take Home Test 1

Unit 3. Integration. 3A. Differentials, indefinite integration. y x. c) Method 1 (slow way) Substitute: u = 8 + 9x, du = 9dx.

secθ 1 cosθ The pythagorean identities can also be expressed as radicals

Final Exam 2011 Winter Term 2 Solutions

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

Math Section 4.3 Unit Circle Trigonometry

Lesson 28 Working with Special Triangles

Math 102 Spring 2008: Solutions: HW #3 Instructor: Fei Xu

2 Recollection of elementary functions. II

Summer Packet Greetings Future AP Calculus Scholar,

9. The x axis is a horizontal line so a 1 1 function can touch the x axis in at most one place.

THE INVERSE TRIGONOMETRIC FUNCTIONS

Math 162: Calculus IIA

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim

Differential Equaitons Equations

More Final Practice Problems

APPM 1360 Final Exam Spring 2016

MATH 101 Midterm Examination Spring 2009

Mathematics 1052, Calculus II Exam 1, April 3rd, 2010

MA 114 Worksheet #01: Integration by parts


Summary: Primer on Integral Calculus:

(x/2) 2 +1 Add them together and throw in a constant c.

4.4 Integration by u-sub & pattern recognition

Spring 2015, MA 252, Calculus II, Final Exam Preview Solutions

AP CALCULUS. DUE THE FIRST DAY OF SCHOOL! This work will count as part of your first quarter grade.

Solutions to Test 2 Spring = y+x dy dx +0 = ex+y x+y dy. e x = dy dx (ex+y x) = y e x+y. dx = y ex+y e x+y x

Calculus I Sample Final exam

Public Assessment of the HKDSE Mathematics Examination

( ) ( ) ( ) ( ) MATHEMATICS Precalculus Martin Huard Fall 2007 Semester Review. 1. Simplify each expression. 4a b c. x y. 18x. x 2x.

PRELIM 2 REVIEW QUESTIONS Math 1910 Section 205/209

MATH Section 210

Integration Techniques for the AB exam

MATH section 3.1 Maximum and Minimum Values Page 1 of 7

Section 1.2 A Catalog of Essential Functions

Part I: Multiple Choice Mark the correct answer on the bubble sheet provided. n=1. a) None b) 1 c) 2 d) 3 e) 1, 2 f) 1, 3 g) 2, 3 h) 1, 2, 3

Integration Exercises - Part 3 (Sol'ns) (Hyperbolic Functions) (12 pages; 6/2/18) (The constant of integration has been omitted throughout.

Monroe Township High School Mathematics Department

MATH 127 SAMPLE FINAL EXAM I II III TOTAL

Final Exam SOLUTIONS MAT 131 Fall 2011

b n x n + b n 1 x n b 1 x + b 0

WORKSHEET 1 SOLUTION Chapter 2 Differentiation

Fall 2013 Hour Exam 2 11/08/13 Time Limit: 50 Minutes

Calculus First Semester Review Name: Section: Evaluate the function: (g o f )( 2) f (x + h) f (x) h. m(x + h) m(x)

Math Final Exam Review

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx

Integration by Substitution

Review for Cumulative Test 2

Flash Card Construction Instructions

Math Worksheet 1 SHOW ALL OF YOUR WORK! f(x) = (x a) 2 + b. = x 2 + 6x + ( 6 2 )2 ( 6 2 )2 + 7 = (x 2 + 6x + 9) = (x + 3) 2 2

Transcription:

Odd Answers: Chapter Eight Contemporary Calculus PROBLEM ANSWERS Chapter Eight Section 8.. lim { A 0 } lim { ( A ) ( 00 ) } lim { 00 A } 00.. lim {. arctan() A } lim {. arctan(a). arctan() } ( π ). arctan() 0.644. 5. Use u ln(). lim { 5. ln( ln() ) A e } lim { 5. ln( ln(a) ) 5. ln( ln(e) ) } lim { 5. ln( ln(a) ) 0 }. DIVERGES.. lim { ln( ) A } lim { ln(a ) ln( ) } lim { ln(a ) 0 }. DIVERGES. 9. lim { A ( ) } lim { (A ) ( ) } lim { (A ) + }.. lim { + A } lim { A+ + } lim { A+ + 5 } 5.. lim A!0 + { 4 A } lim A!0 + { 4 A } 4. 5. lim { 4 6 /4 } lim A!0 + A { 4 (6) /4 4 A/4 } lim { 4 A/4 }. A!0 + A!0 +. lim A! " { arcsin( ) A 0 } lim A! " { arcsin( A ) arcsin( 0 ) } π 0 π. 9. lim { cos() A } lim { cos(a) cos( ) } lim 0.46 cos(a) DNE. DIVERGES.. lim / { ln cos() A 0 } DIVERGES. lim { ln cos(a) ln cos(0) } lim / 0 ln cos(a) DNE. /

Odd Answers: Chapter Eight Contemporary Calculus. (a) A R: R A R: R (b) lim R R P d R P( R ) R P( R R R ) RP. R R P d R P( R ) R P( R R R ) RP. R P # d lim R +A R R P( R+A ) R lim R P( R+A R ) R P( R ) RP. 5. ( + ) d d which converges by the p test. + d < Therefore, ( + ) d converges.. Fof > 0, ln() < so + ln() < and Then d + ln() >. d which diverges by the p test. Therefore, + ln() d diverges. 9. cos() so 0 + cos() and 0 + cos(). Then + cos() d d which converges by the p test. Therefore, + cos() d converges.. V 0 π ( 4 d which converges by the p test. + ) d < π 0 Therefore, V 0 π ( + ) d converges.. (a) A d < A k k (b) A d > A k k Section 8.. u +, du d, du 6 d: u du u + C ( + ) + C.. u, du d, du 6 d: u du. u 6 4 6 6 5.6

Odd Answers: Chapter Eight Contemporary Calculus 5. u + : 6 ln( + ) + C.. u + : cos( + ) + C. 9. u e +, du e d: sec ( u ) du tan( u ) tan(e + ) 0 tan(e + ) tan(+).9. u ln(), du d: u du u + C ( ln() ) + C.. u sin(), du cos() d: e u du e u + C e sin() + C. 5. u, du d: 0.5 5 + u du 5 arctan( u ) 5 arctan( ) 5 arctan(9) 5 arctan(). u, du d: cos(u) du sin(u) sin( ) ( sin( ) ( sin() ) 0.6 9. u 5 + sin (), du. sin(). cos() d: u du ln u + C ln 5 + sin () + C.. 5 ln + 5 + C.. ln 5 + ln 48 ln 8 ln 48 8 ln( 6 ).58 5. arctan( + ) 0 arctan( ) arctan(.5 ) 0.44. u e, du e d: + u du arctan( u ) + C arctan( e ) + C. 9. u + ln(), du d: u du ln u ln + ln() e ln.08. u, du d: u du u/ ( ) / 0 (0) / () /. u + sin(), du cos() d: u du 4 u4 + C 4 ( + sin() ) 4 + C. 5. u ln(), du d: u du u/ ( ln() ) / e ( ln(e) ) / ( ln() ) /.

Odd Answers: Chapter Eight Contemporary Calculus 4. u 5 + tan(), du sec () d: u du ln u + C ln 5 + tan() + C. 9. u 5, du d: tan(u) du ln sec(u) + C ln sec( 5) + C. 4. u 5, du 5 d: 5 eu du 5 eu 5 e5 0 5 e5 5 e0 9.48 4. 4. (+) + d. arctan( + ) + C. 45. (+5) + 4 d. arctan( +5 ) + C. ( ) + 49 d. arctan( ) + C. 49. ln + 4 + 5 +. arctan( + ) + C. 5.. ln 6 + 0 + 9. arctan( ) + C. 5. 6 4 + d + ( ) + 9 d. ln 4 + +. arctan( ) + C. Section 8... ln() d u ln(). Then dv d, du d, and v 6. v du ln(). 6 6. d 6 ln() 6 d 6 ln() +C.. 4 ln() d dv 4 d. Then u ln(), du d, and v 5 5. v du ln(). 5 5 5 5. d 5 5. ln() 5 4 d 5.. arctan() d dv d. Then u arctan(), du v du arctan().. + d, and v. + d. arctan() 5 5. ln() 5 5 + C. + d. arctan() { arctan() } + C. arctan(). +. arctan() } + C.. 0 e d 0. e d. Put u. Then dv e d, du d, and v e. v du. e e d. e 9 e 0 {. e () 9 e () } { 0. e (0) 9 e (0) } 9 4 9 e.

Odd Answers: Chapter Eight Contemporary Calculus 5 9.. sec(). tan() d. Put u. Then dv sec(). tan() d, du d, and v sec(). v du. sec() sec() d. sec() ln sec() + tan() + C. π/. π/. cos() d Put u. Then dv cos() d, du d, and v sin(). v du. sin() sin(). d. sin() + 9 cos() π/ {.π. sin(.π ) + 9 cos(.π } {.π. sin(.π ) + 9 cos(.π ) }.88. π/.. cos( ) d. Use u substitution! Put u. Then du 6 d and du d. cos( u ). du. sin( u ) + C. sin( ) + C. 5. ln( + 5) d. Put u ln( + 5). Then dv d, du + 5 d, and v. v du ln( + 5).. + 5 d. ln( + 5) 5 + 5 d. ln( + 5) { 5. ln + 5 } {. ln() + 5. ln } {. ln() + 5. ln }. ln(). ln() 4.8. e. ( ln() ) d. Put u ( ln() ). Then dv d, du. ln(). d, and v. v du ( ln() ).. ln(). d. ( ln() ). ln() d. ( ln() ) {. ln() } e { e( ln(e) ) e. ln(e) + e } { ( ln() ). ln() + } e 0.8. 9. arcsin() d. Put u arcsin(). Then dv d, du v du arcsin()... arcsin() d, and v. d (use u sub with u ) d. arcsin() u ( ) du. arcsin() + u + C. arcsin() + + C.

Odd Answers: Chapter Eight Contemporary Calculus 6.. arctan() d. Put u arctan(). Then dv d, du v du arctan().. + 9 d, and v. + 9 d. arctan() / + 9 d. arctan() { 9. arctan() } + C. arctan() 6 + 8 arctan() } + C.. ln() d. Use u substitution! Put u ln(). Then du d. u du u ( ln() ) ( ln() ) ( ln() ) ( ln() ) 0.40. 5. (a) sin () d { S. C + S d } { S. C C } + K { sin (). cos(). cos() } + K. (b) sin 4 () d 4 { S. C + S d } 4 { S4. C + [ ( SC + ) ] } + K 4 { S. C SC + } + K 4 { sin (). cos() sin(). cos() + } + K (c) on your own.. (a) sec () d { sec()tan() + sec() d } { sec(). tan() + ln sec() + tan() } + K (b) and (c) on your own. 9. cos ( + ) d. First do a substitution: u +. Then du d and d du. cos ( u ) du { ( C. S + C du ) } 6 { C. S + S } + K 6 { cos (u). sin(u) + sin(u) } + K 6 { cos ( + ). sin( + ) + sin( + ) } + K.. ( + 5) 9 d. (a) By parts: put u. Then dv ( + 5) 9 d, du d, and v 40 ( + 5) 0. v du. 40 ( + 5) 0. 40 ( + 5) 0 40 4 ( + 5) + C. 40 ( + 5) 0 d (b) Substitution: put u + 5. Then du d and d du. Also, ( u 5 ). ( u 5 ). u 9 du 4 u 0 5u 9 du 4 { u 5 0 u0 } + C 84 ( + 5) 5 80 ( + 5) 0 + C. The answers (antiderivatives) in parts (a) and (b) look different, but you can check that the derivative of each answer is. ( + 5) 9.

Odd Answers: Chapter Eight Contemporary Calculus. (a) Make an informed prediction. (b) 0 sin() d cos() 0 ( cos()) ( cos(0)) cos(0) cos() 0.54 0.46.. sin() d. cos() + sin() 0 {. cos() + sin()} { 0. cos(0) + sin(0)} sin() cos() 0.0. 0 5. (a) Make an informed prediction. (b) See problem : V ais V y ais. On your own. y0 e π. y. e y dy π π( ln() ) d π(e ).5. y. e y dy (use integration by parts with u y, dv e y dy : see Eample ) y0 π( y. e y e y ) 0 π(. e e ) π(0. e 0 e 0 ) π(0) π( ) π 6.8. 9.. arctan() d. Put u arctan(). Then dv d, du + d, and v. v du arctan(). 40 50. On your own.. arctan() d + + d (dividing by + ). arctan() { ln( + ) } + C. arctan() 6 + 6 ln( + ) } + C. Section 8.4. A + B + + 5 +. A + + B + 8 + + 9 + 8 5. Divide first: + 5 + 5 + 5 + 5 + 5 + 5 + 5( + 5) ( + 5) + 5.. 6 + 9 5 ( + 5)( ) A + B +5 + C A( + 4 5) + B( ) + C( + 5) ( + 5)( ). Solving : A + B + C 6 : 4A B + 5C 9 k: 5A 5 we get A, B, and C 0 so

Odd Answers: Chapter Eight Contemporary Calculus 8 6 + 9 5 ( + 5)( ) + +5 + 0 + +5. 9. 8 + ( + ) A + B + C + A( + ) + (B + C) ( + ). Solving : A + B 8 : C k: A we get A, B 5, and C so 8 + ( + ) + 5 +.. + + 6 ( + ) A + B + C + A()( + ) + B( + ) +C( ) ( + ). Solving : A + C : A + B k: B 6 we get A 0, B, and C so + + 6 ( + ) 0 + + +.. + ( + )( 5) d + + 4 5 d ln + + 4. ln 5 + C. 5 5. 5 d + + d ln + + ln ln + 5 ln( 4 6 ) ln( ) 0.69.. () + 5 + d. ln + 5. ln + + C () + + 4 d. ln + + 4. ln + C 9. + 5 + d + 5 d + 5. ln + C.. + 9 + 4 + 6 + 5 d + + + + 5 d +. ln + ln + 5 + C.. d. Use u substitution with u. Then du so u du ln u + C ln + C. A partial fraction decomposition also works but takes longer.

Odd Answers: Chapter Eight Contemporary Calculus 9 5. + 4 + 0 + 0 d + 6 d + 6ln + C.. + 9 6 + d + + 5 + d. ln + + 5. ln + + C. 9. + + + d + + d. ln +. arctan( ) + C.. (a) + + d (+) + d arctan( + ) + C. (b) + + d ( + ) d ( + ) + C + + C. (c) + + 0 d ( + ) d / + / + d ln. Prob. : f() + 5 +. () + 5. ( + ). Then Prob. : g() f '(). () 5. ( + ) and f ''() 4. () + 0. ( + ). + + 4. ( + ) + 4. ( ). Then ln + + C. g '(). ( + ) 4. ( ) and g ''() 6. ( + ) + 8. ( ). + 5 + 5 5. Prob. 5: f() + 5 Prob. 6: On your own. + 5 so f '() 5 and f ''() 0. d. (a) Solve dt (00 ). Separate the variables: (00 ) d dt. Use partial fractions: (00 ) A + B 00 0.0 + 0.0 00 (solving A+B 0 and 00A ) so { 0.0 + 0.0 00 } d dt and, integrating, 0.0 + 0.0 00 d dt. Then 0.0. ln 0.0. ln 00 t + C so ln Using the initial condition (0) 50: ln 00 00t + K. ( K 00C is a constant ) 50 00 50 ln( ) 00. (0) + K so K ln( ). Finally, ln 00 00. t + ln() so 00 e00t. e ln(). e 00t and 00. e 00t. e 00t. Graph this on your own.

Odd Answers: Chapter Eight Contemporary Calculus 0 (b) In this part it is easier to use the form Put 0 and solve Put 0 and solve Put 00. Then 00 00. e 00t. 0 00 0. e 00t : 6. e 00t so t 0 00 0. e 00t :. e 00t so t 00 00 ln( ) 0.0069. ln( ) 0.0. is undefined (division by 0) so (t) is never equal to 00. (c) limit (as t becomes arbitrarily large) of 00. e 00t. e 00t is 00 00. (d) The population (t) is decling to the "carrying capacity" M 00 of the enviroment. 9. (a) Solve d dt ( )(5 ) by separating the variables and using partial fractions to rewrite the fraction. (b) 5 5 ekt and (t). e kt 5. e kt. (As t gets big, approaches 5.) Solve d dt (6 )(6 ) (6 ) by separating the variables: (6 ) d dt and integrating. 6 t + C (C 6 ) so 6t + t + 6 6t + 6 6t +. (As t gets big, approaches 6.) Section 8.5.. sin(θ) (a) 9 9 9sin (θ) 9( sin (θ) ) 9cos (θ) so (b) d cos(θ) dθ 9 cos(θ)... sec(θ) (a) 9 9sec (θ) 9 9( sec (θ) ) 9tan (θ) so (b) d sec(θ)tan(θ) dθ 9 tan(θ). 5. tan(θ) (a) + + tan (θ) ( + tan (θ) ) sec (θ) so (b) d sec (θ) dθ + sec(θ)... sin(θ) (a) θ arcsin( / ) (b) & (c) f(θ) cos(θ). tan(θ) cos( arcsin(/) ). tan( arcsin(/) ) 9. 9. 9.. sec(θ) (a) θ arcsec( / ) (b) & (c) f(θ) + sin (θ) + sin ( arcsec(/) ) + ( 9 )

Odd Answers: Chapter Eight Contemporary Calculus. 5. tan(θ) (a) θ arctan( /5 ) (b) & (c) f(θ) cos (θ) + cot(θ) ( 5 5 + ) + ( 5 ) 5 5 + + 5. Same as Practice. Sorry. 5.. tan(θ). d sec (θ) dθ. + 49 49 tan (θ) + 49 49( tan (θ) + ) 49 sec (θ). + 49 d 49 sec (θ) sec (θ) dθ sec(θ) dθ ln sec(θ) + tan(θ) + C ln sec( arctan(/) ) + tan( arctan(/) ) + C ln + 49 + + C.. 6. sin(θ). d 6 cos(θ) dθ. 6 6 cos (θ). 6 d 6 cos (θ) 6 cos(θ) dθ 6 cos (θ) dθ (use Table #4) 6 { θ + sin(θ). cos(θ) } + C 6 { arcsin( /6 ) + ( 6 ). ( 6 6 ) } + C. 9. 6. tan(θ). d 6. sec (θ) dθ. 6 + 6 sec (θ). 6 + d 6 + 6. sec (θ) dθ sec(θ) dθ (use Table #) ln sec(θ) + tan(θ) + C ln 6 + 6 + 6 + C or ln 6 + + + K.. Similar to 9:. tan(θ). 49 + d ln 49 + + + C.. 5. sin(θ). 5 cos( arcsin(/5) ) + C 5 5 5 + C 5 + C. 5.. tan(θ). ln cos( arctan(/) ) + C ln + C (now some algebra) 49 + ln + ln 49 + + C ln 49 + + K. (A u substitution with u 49 + is much easier.)

Odd Answers: Chapter Eight Contemporary Calculus.. sec(θ). 9 cos(θ) sin (θ) dθ (put u sin(θ) ) 9 sin(θ) + C csc(θ) + C 9 + 9 + C. 9. 5. sec(θ). θ + C arcsec( 5 ) + C.. 5. sin(θ). 5 ln sec(θ) + tan(θ) + C 5 ln 5 5 + 5 + C (after lots of algebra) 0 ln 5 + 5 + C.. Similar to 9. ln a + a + a + C ln a + + + K. 5. a. tan(θ). a a + + C.. + u. Then u. tan(θ). ln sec(θ) + tan(θ) + C ln u + 9 + u + C ln u +9 + u ln() + C ln u +9 + u + K ln (+) + 9 + (+) + K. 9. arctan( +5 ) + C 4. ln (+) + + 4 + + C. Section 8.6. sin ( ) d sin( 6 ) + C sin( ). cos( ) 6 + C.. Put u sin( e ). sin ( e ) + C. ( If you put w cos( e ) then cos ( e ) + C.) 5. 9. 8 π. 4 4 sin ( ) + C or 4 cos ( ) + C. Put u cos( ). 8 cos4 ( ) + C.

Odd Answers: Chapter Eight Contemporary Calculus. sin ( ) cos ( ) d ( cos(6) ) ( + cos(6) ) d 4 cos ( 6 ) d 4 4 cos ( 6 ) d 4 4 { + sin( ) 4 } + C. 5. 0 tan ( 5 ) + C.. 9 sec ( ) + C. π 9. m n. 0 sin( m ) sin( n ) d { sin( (m n)π ) m n { sin( (m n) ) m n sin( (m+n)π ) m + n } sin( (m+n) ) m + n } π 0 sin( (m n)0 ) { m n sin( (m+n)0 ) m + n } { 0 0 } { 0 0 } 0. π. 0 π sin( m ) sin( m ) d 0 { π sin ( m ) d sin( mπ ) cos( mπ ) m } { sin( m ) cos( m ) m π 0 sin( 0 ) cos( 0 ) m } π. 0. On your own.