RHESSI and AIA observations of the FERMI behind-the-limb flare on 2014 September 1

Similar documents
X-ray Imaging & Spectral Statistics of Small Solar Flares Observed with RHESSI

Large Solar Flares. Albert Y. Shih NASA/GSFC 2014 Oct 21

X-ray observations of Solar Flares. Marina Battaglia Fachhochschule Nordwestschweiz (FHNW)

Microwave and hard X-ray imaging observations of energetic electrons in solar flares: event of 2003 June 17

The Sun and the Solar System in Gamma Rays

Relationship between plasma temperature and HXR intensity from INTEGRAL

Working Group 3: Coronal X-ray and gamma-ray sources, and their relation to CMEs and SEPs

Observation of solar high energy gamma and X-ray emission and solar energetic particles

Energetic particles and X-ray emission in solar flares

LWS Workshop, Boulder March Work Supported by NASA/LWS

CHAPTER 5 INVESTIGATING SOLAR VARIABLES AFFECTING TERRESTRIAL ENVIRONMENT

Power conversion factor in solar flares

TRACE DOWNFLOWS AND ENERGY RELEASE

Downflow as a Reconnection Outflow

Multi-wavelength VLA and Spacecraft Observations of Evolving Coronal Structures Outside Flares

Characteristics of Two Simple Microwave. Abstract. We present simultaneous microwave and X-ray data for two microwave

Radoslav Bucik (MPS) in collaboration with Davina E. Innes (MPS) & Glenn M. Mason (JHU)

arxiv: v1 [astro-ph.sr] 17 Jul 2013

Double Coronal Hard and Soft X-Ray Source as Evidence of Magnetic Reconnection: The M1.4 Flare 1

ENERGY RELEASE DURING SLOW LONG DURATION FLARES

Next%Genera*on%Solar% Physics%Mission%% %

Flare Energy Release in the Low Atmosphere

Toward Interplanetary Space Weather: Strategies for Manned Missions to Mars

Photospheric and chromospheric polarimetry of solar flares

Received ; accepted ; published

Millimeter, Microwave, Hard X ray and Soft X ray Observations of Energetic Electron Populations in Solar Flares

Fermi GBM Science Highlights.

Particle Acceleration and Transport on the Sun

X-ray solar flare loops: temporal variations in length, corpulence, position, temperature and pressure.

Working Group 2: From Flares to Microflares A Critique of the Standard Models. 8 th RHESSI Workshop Potsdam, Germany 2 6 Sept 2008

The Solar Flare: A Strongly Turbulent Particle Accelerator

An Overview of a Solar Storm at Mars

GRB : Modeling of Multiwavelength Data

Mechanisms for particle heating in flares

arxiv: v2 [astro-ph.sr] 26 Sep 2012

Relativistic Solar Electrons - where and how are they formed?

CO-SPATIAL WHITE LIGHT AND HARD X-RAY FLARE FOOTPOINTS SEEN ABOVE THE SOLAR LIMB

Possible stereoscopic Hard X-ray observations with STIX and SORENTO instruments

Simulation of the charging process of the LISA test masses due to solar particles.

Some open problems for magnetic reconnection in solar flares

arxiv: v1 [astro-ph.sr] 26 Oct 2010

High energy particles from the Sun. Arto Sandroos Sun-Earth connections

A new concept of Balmer continuum flux measurement in solar flares

FOOTPOINT MOTION OF THE CONTINUUM EMISSION IN THE 2002 SEPTEMBER 30 WHITE-LIGHT FLARE

Observations of Solar Jets

Time-domain astronomy with the Fermi Gamma-ray Burst Monitor

Electron flux maps of solar flares: a regularization approach to RHESSI imaging spectroscopy

RHESSI Solar Flare Polarimetry

arxiv: v1 [astro-ph.sr] 2 Sep 2013

AGILE GRBs: detections and upper limits

Mapping the non thermal emission in Coma cluster of galaxies using the FeXXV/FeXXVI line ratio

Using Solar Neutrons to Understand Solar Acceleration Processes

Fermi Source Analyses and Identifying VERITAS Candidates

Solar Radio Bursts from the Ground

EUV Blast Waves in Impulsive Solar Energetic Particle Events

Quasi-Periodic Pulsations in Solar Flares RHESSI 15 Meeting. Peter T. Gallagher, Brian Dennis, Jack Ireland, Andrew Inglis 29 July 2016

Abstract. 1. Introduction

EVIDENCE FOR MAGNETIC RECONNECTION IN THREE HOMOLOGOUS SOLAR FLARES OBSERVED BY RHESSI

Solar EUV Spectral Irradiance: Measurements. Frank Eparvier

arxiv: v1 [astro-ph.sr] 22 Mar 2018

arxiv: v2 [astro-ph.he] 26 Mar 2010

Phillip Chamberlin NASA Goddard Space Flight Center Solar Physics Laboratory Greenbelt, MD USA

Coronal Signatures of a Flare Generated Type-II Solar Radio Burst

pre Proposal in response to the 2010 call for a medium-size mission opportunity in ESA s science programme for a launch in 2022.

arxiv: v1 [astro-ph.he] 2 Apr 2013

Magnetic twists and energy releases in solar flares

Future prospects for solar flare (but not only) X-ray polarimetric missions

HARD X-RAY AND MICROWAVE OBSERVATIONS OF MICROFLARES

arxiv: v1 [astro-ph.sr] 22 Oct 2018

STRUCTURE ON INTERPLANETARY SHOCK FRONTS: TYPE II RADIO BURST SOURCE REGIONS

arxiv: v1 [astro-ph.he] 13 Feb 2015

The Fermi Zoo : GRB prompt spectra. Michael S. Briggs (Univ. Alabama in Huntsville) for the Fermi GBM & LAT Teams

arxiv: v1 [astro-ph.sr] 2 Feb 2017

This is the author s final accepted version.

Solar Gamma-Ray Line Spectroscopy Physics of a Flaring Star

EVOLUTION OF THE LOOP-TOP SOURCE OF SOLAR FLARES: HEATING AND COOLING PROCESSES

Coronal Mass Ejections and Extreme Events of Solar Cycle 23. Nat Gopalswamy NASA Goddard Space Flight Center Greenbelt, Maryland, USA

Energy partition in two solar flare/cme events

The Sun. Never look directly at the Sun, especially NOT through an unfiltered telescope!!

Charge-exchange limits on low-energy α-particle fluxes in solar flares

IMPULSIVE THERMAL X-RAY EMISSION FROM A LOW-LYING CORONAL LOOP

Status of AGILE (and gravitational wave source search)

The Frequency Agile Solar Radiotelescope

Radio and Hard X ray Images of High Energy Electrons in a Compact X-class Solar Flare

Exploring the Role of Magnetic Reconnection in Solar Eruptive Events

Electron acceleration and turbulence in solar flares

Radio Probes of Extrasolar Space Weather

Lecture 7: Radio Observations of Coronal Mass Ejections

Solar Flare Variations

Radio Emission from the Sun Observed by LOFAR and SKA

7-8 March 2012: a busy period in the geospace

High-temperature solar flare plasma behaviour from crystal spectrometer observations

Solar flares have been phenomena of both academic

RHESSI Images and spectra of two small flares

The Sun. Basic Properties. Radius: Mass: Luminosity: Effective Temperature:

arxiv: v1 [astro-ph.sr] 21 Aug 2016

Evidence for extended acceleration of solar flare ions from 1 8 MeV solar neutrons detected with the MESSENGER Neutron Spectrometer

EVE Improvements to The Flare Irradiance Spectral Model. (FISM) Improvements to space weather research, the flare energy budget, and instrument design

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1

FIRST IMAGES OF A SOLAR FLARE AT MILLIMETER WAVELENGTHS

Transcription:

RHESSI and AIA observations of the FERMI behind-the-limb flare on 214 September 1 Säm Krucker Space Sciences Laboratory, UC Berkeley University of Applied Sciences Northwestern Switzerland Melissa Pesce-Rollins, INFN, Pisa Richard Schwartz, GSFC Pascal Saint-Hilaire, Gordon Hurford, SSL, UCB

Outlook Sep 1, 214 behind the limb event (Melissa s talk) Compare time profiles and spectra between FERMI and RHESSI RHESSI source locations compared to >1 MeV centroid location Thermal Non-thermal AIA observations

Fermi time profiles >1 MeV (LAT) 5 kev (GBM) 3 kev (GBM) 15 kev (GBM) 2 min 11: 11:6 11:12 11:18 11:24 11:3 11:36 Start Time (1-Sep-14 1:54:49)

Messenger XRS sees flare on disk flare normal

XRS fits gives EM=4x1 49 cm -3 & T=3 MK GOES X1.3 >1 MeV (LAT) 5 kev (GBM) 3 kev (GBM) 15 kev (GBM) 2.6-5.9 kev (XRS) 11: 11:6 11:12 11:18 11:24 11:3 11:36 Start Time (1-Sep-14 1:54:49)

SXR derivative: impulsive phase is before HXR and >1 MeV bursts >1 MeV (LAT) 5 kev (GBM) 3 kev (GBM) 15 kev (GBM) 2.6-5.9 kev (XRS) d/dt 2.6-5.9 kev 11: 11:6 11:12 11:18 11:24 11:3 11:36 Start Time (1-Sep-14 1:54:49)

GOES high shows initial increase occulted GOES high is 1-4 of total >1 MeV (LAT) 5 kev (GBM) 3 kev (GBM) 15 kev (GBM) GOES high 11: 11:6 11:12 11:18 11:24 11:3 11:36 Start Time (1-Sep-14 1:54:49)

GOES high emission from impulsive phase! >1 MeV (LAT) 5 kev (GBM) 3 kev (GBM) 15 kev (GBM) 2.6-5.9 GOES high kev (XRS) d/dt 2.6-5.9 kev impulsive phase 11: 11:6 11:12 11:18 11:24 11:3 11:36 Start Time (1-Sep-14 1:54:49)

normalized flux 1..8.6.4.2. 131 A 15 kev Same onset as 15 kev and GOES high. Escaping hot structure.

GOES flux [W m -2 ] 1-6 energy [kev] 1-7 RHESSI coverage counts s -1 1-8 1-9 1 8 6 4 2 movie 4-8 kev RHESSI thermal emission originates from three different locations: - Western limb AR - Disk AR - Behind the limb event 4 counts s -1 3 2 1 15-3 kev 1 1 8 1 impulsive phase SAA 6 4 2 hhmm 214 Sep 1 11 112

Fermi & RHESSI time profiles >1 MeV (LAT) 5 kev (GBM) 3 kev (GBM) 15 kev (GBM) 4-8 kev (RHESSI) 15-3 kev (RHESSI) SAA 11: 11:6 11:12 11:18 11:24 11:3 11:36 Start Time (1-Sep-14 1:54:49)

ratio photons s -1 cm -2 kev -1 11:1:56 to 11:13:2 UT GBM and RHESSI HXR spectra GBM: g ~ 2. RHSI: g ~ 1.8.1.1 2. 1.5 Power law! High energy (>5 kev) electrons alone cannot reproduce the spectra. ~3 orders of magnitude fainter than largest flares (e.g. Dec 6, 25 with flux of 1 ph/s/cm2/kev at 3 kev) Instantaneous electrons above 2 kev: 1..5. 1 1 energy [kev] 1.x1 36 (1 8 /n) electrons. Thick target: 2x1 26 erg/s for electrons above 2 kev. Number of counts above 15 kev is 2 cts/min/det more than enough for imaging

Y (arcsecs) Y (arcsecs) Y (arcsecs) Y (arcsecs) Coarse resolution imaging (11:18-11:28UT) 4-6 kev -5 5 1 8.5-12 kev -5 5 1 1 5-5 7-8.5 kev -1 1 6-7 kev -1-5 5 1-1 -5 5 1 25-8 kev 5-5 -1 12-25 kev -1-5 5 1 1 5-5 -1 1 5-1 -5 5 1-5 -1

Y (arcsecs) Y (arcsecs) Y (arcsecs) Y (arcsecs) 7-8.5 kev Coarse resolution imaging (11:11-11:28UT) 4-6 kev -5 5 1 8.5-12 kev -5 5 1 1 5-5 -1 1 6-7 kev -1-5 5 1-1 -5 5 1 25-8 kev 5-5 -1 12-25 kev -1-5 5 1 1 5-5 -1 1-1 -5 5 1 5-5 -1

Y (arcsecs) Y (arcsecs) Y (arcsecs) Y (arcsecs) 7-8.5 kev Coarse resolution imaging (11:11-4-6 kev -5 5 1 1 1 5-5 -1 6-7 kev 5-1 -5 5 1-5 -1 11:28UT) -1-5 5 1 25-8 kev No image above 15 kev despite large number of counts Source significantly larger than s/c 9 resolution of 18 8.5-12 kev -5 5 1 1 1 5-5 -1 12-25 kev -1-5 5 1 5-5 -1-1 -5 5 1

Y (arcsecs) Y (arcsecs) Y (arcsecs) chromospheric source at limb with 8 arcsec FWHM Possibilities for unresolved source 15 1 5-5 -1 15 gaussian above limb with 3 arcsec FWHM -15-15 -1-5 5 1 1 1 5-5 -1-15 -15-1 -5 5 1 15 e.g. accelerated electrons trapped above flare site highly occulted gaussian with 3 arcsec FWHM 15 1 e.g. accelerated electrons trapped behind CME 5-5 -1-15 -15-1 -5 5 1 15 e.g. shockaccelerated electrons getting access to visible part of disk

normalized flux LASCO CME images 1..8 >1 MeV (LAT) 5 kev (GBM) 3 kev (GBM) 15 kev (GBM) 11: 11:6 11:12 11:18 11:24 11:3 11:36 Start Time (1-Sep-14 1:54:49).6.4.2.

first grid second grid off axis source is visible on axis direction 9 o rotated off axis source partially visible or masked on axis direction

count rate.4.3.2.1. subcollimator 6 & source size of 4 arcsec on-axis 3 arcsec 6 arcsec 9 arcsec 12 arcsec 15 arcsec 18 arcsec 9 18 27 36 roll angle

count rate.4.3.2.1. subcollimator 6 & offset of 11 arcsec source size 4 arcsec 6 arcsec 8 arcsec 1 arcsec 12 arcsec 14 arcsec 9 18 27 36 roll angle

flux.6.4.2. 15 arcsec & 3 arcsec FWHM subcoll 1 subcoll 2 subcoll 3 subcoll 4 subcoll 5 subcoll 6 subcoll 7 subcoll 8 subcoll 9 9 18 27 36 roll angle

counts per second counts per second RHESSI observations (no bkg subtr.) 2-6 kev 1 8 2-6 kev 6 8 4 2 subcoll 6 subcoll 3 subcoll 1..2.4.6.8 1. rotation period 6 4 2 subcoll 9 subcoll 8..2.4.6.8 1. rotation period

count rate Expected profiles (3 cases).4.3.2.1. subcollimator 6 ondisk (6" offset); size=4 arcsec at limb; size=4 arcsec 5 arcsec above limb; size=1 arcsec 9 18 27 36 roll angle

count rate Expected profiles (3 cases).4.3.2.1. subcollimator 6 observed 2-8 kev, bkg subtracted (11:11-11:13UT) ondisk (6" offset); size=4 arcsec at limb; size=4 arcsec 5 arcsec above limb; size=1 arcsec 9 18 27 36 roll angle

MARS: GRS 22 Oct 27 flare Earth MARS EARTH RHESSI 15-25 kev giant flare seen by GRS (MARS) same onset as emission seen by RHESSI! Krucker, White, & Lin 27

size motion HXR emission from electrons in magnetic structures within coronal mass ejections. speed of CME front ~ 2 km/s HXR from CME very large source (>2 arcsec) expanding and rising ~4 km/s 3 ~8 km/s filament ~ 1 km/s Krucker, White, & Lin, ApJL, 27