Nodal Sets of High-Energy Arithmetic Random Waves

Similar documents
Second Order Results for Nodal Sets of Gaussian Random Waves

Stein s Method and Stochastic Geometry

NON-UNIVERSALITY OF THE NAZAROV-SODIN CONSTANT

Gaussian Fields and Percolation

King s Research Portal

On the spatial distribution of critical points of Random Plane Waves

Eigenvalue statistics and lattice points

Arithmetic quantum chaos and random wave conjecture. 9th Mathematical Physics Meeting. Goran Djankovi

Kolmogorov Berry-Esseen bounds for binomial functionals

Measures on spaces of Riemannian metrics CMS meeting December 6, 2015

NEW FUNCTIONAL INEQUALITIES

Different scaling regimes for geometric Poisson functionals

Nodal lines of random waves Many questions and few answers. M. Sodin (Tel Aviv) Ascona, May 2010

Stein s method and weak convergence on Wiener space

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell

Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends

Geometric bounds for Steklov eigenvalues

A REMARK ON MINIMAL NODAL SOLUTIONS OF AN ELLIPTIC PROBLEM IN A BALL. Olaf Torné. 1. Introduction

arxiv: v1 [math.pr] 7 May 2013

Convergence at first and second order of some approximations of stochastic integrals

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Statistical signal processing

YAIZA CANZANI AND BORIS HANIN

Quantum ergodicity. Nalini Anantharaman. 22 août Université de Strasbourg

Spectral theory, geometry and dynamical systems

SYMPLECTIC GEOMETRY: LECTURE 5

Chaos, Quantum Mechanics and Number Theory

The spectral zeta function

Gaussian Phase Transitions and Conic Intrinsic Volumes: Steining the Steiner formula

The Gaussian free field, Gibbs measures and NLS on planar domains

Quantum Ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces

Ergodicity of quantum eigenfunctions in classically chaotic systems

Hilbert Space Methods for Reduced-Rank Gaussian Process Regression

Einstein-Hilbert action on Connes-Landi noncommutative manifolds

Variations on Quantum Ergodic Theorems. Michael Taylor

The discrete Fourier restriction phenomenon: the non-lattice case

Malliavin calculus and central limit theorems

Setting. Monochromatic random waves model the eigenfunctions of a quantization of a classically chaotic hamiltonian (M. Berry).

THE SELBERG TRACE FORMULA OF COMPACT RIEMANN SURFACES

Minimization problems on the Hardy-Sobolev inequality

Exponentially Accurate Semiclassical Tunneling Wave Functions in One Dimension

Zeros and Nodal Lines of Modular Forms

Lecture 1 Introduction

Eigenvalues of Robin Laplacians on infinite sectors and application to polygons

Order and chaos in wave propagation

COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW

Decouplings and applications

Convex inequalities, isoperimetry and spectral gap III

Independence of some multiple Poisson stochastic integrals with variable-sign kernels

Spectral measure of Brownian field on hyperbolic plane

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that

Inverse Scattering with Partial data on Asymptotically Hyperbolic Manifolds

The Theorem of Gauß-Bonnet in Complex Analysis 1

A gentle introduction to Quantum Ergodicity

4 Divergence theorem and its consequences

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

On rational approximation of algebraic functions. Julius Borcea. Rikard Bøgvad & Boris Shapiro

Nodal domain distributions for quantum maps

Math 4263 Homework Set 1

The nodal count mystery

Control from an Interior Hypersurface

Index theory on manifolds with corners: Generalized Gauss-Bonnet formulas

Note on the Chen-Lin Result with the Li-Zhang Method

conditional cdf, conditional pdf, total probability theorem?

Heat equations with singular potentials: Hardy & Carleman inequalities, well-posedness & control

Asymptotics for posterior hazards

Normal approximation of geometric Poisson functionals

Hypothesis testing for Stochastic PDEs. Igor Cialenco

Estimates in surfaces with positive constant Gauss curvature

UNIQUENESS RESULTS ON SURFACES WITH BOUNDARY

A. Iosevich and I. Laba January 9, Introduction

CUTOFF RESOLVENT ESTIMATES AND THE SEMILINEAR SCHRÖDINGER EQUATION

ON MEHLER S FORMULA. Giovanni Peccati (Luxembourg University) Conférence Géométrie Stochastique Nantes April 7, 2016

REMARKS ON THE MEMBRANE AND BUCKLING EIGENVALUES FOR PLANAR DOMAINS. Leonid Friedlander

Statistical mechanics of random billiard systems

MATH 614 Dynamical Systems and Chaos Lecture 38: Ergodicity (continued). Mixing.

Periodic Schrödinger operators with δ -potentials

M. Ledoux Université de Toulouse, France

Spectral applications of metric surgeries

Recursion Systems and Recursion Operators for the Soliton Equations Related to Rational Linear Problem with Reductions

Differential Geometry qualifying exam 562 January 2019 Show all your work for full credit

Recitation 2: Probability

Optimal shape and placement of actuators or sensors for PDE models

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

arxiv: v4 [math.dg] 18 Jun 2015

DECOUPLING INEQUALITIES IN HARMONIC ANALYSIS AND APPLICATIONS

Review (Probability & Linear Algebra)

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Bifurcation and symmetry breaking in geometric variational problems

Introduction to Spectral Geometry

Lecture I: Asymptotics for large GUE random matrices

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction

Centre de recherches mathématiques

Course Description for Real Analysis, Math 156

Advances in Manifold Learning Presented by: Naku Nak l Verm r a June 10, 2008

Using heat invariants to hear the geometry of orbifolds. Emily Dryden CAMGSD

The Stein and Chen-Stein Methods for Functionals of Non-Symmetric Bernoulli Processes

Desingularization of an immersed self-shrinker.

Learning gradients: prescriptive models

Transcription:

Nodal Sets of High-Energy Arithmetic Random Waves Maurizia Rossi UR Mathématiques, Université du Luxembourg Probabilistic Methods in Spectral Geometry and PDE Montréal August 22-26, 2016 M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 1 / 29

This talk is mainly based on Non-Universality of nodal length distribution for arithmetic random waves, joint work with Domenico Marinucci, Giovanni Peccati, Igor Wigman and Phase singularities in complex arithmetic random waves, joint work with Federico Dalmao, Ivan Nourdin, Giovanni Peccati. M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 2 / 29

outline 1 Berry s Random Wave Model 2 Arithmetic Random Waves 3 Nodal Length Mean & Variance Asymptotic Distribution: Non-Universal NCLT 4 Nodal Intersections Number Phase Singularities Mean, Variance and Distribution M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 3 / 29

deterministic eigenfunctions (M, g) compact Riemannian manifold of dimension 2 g Laplace-Beltrami operator g f + Ef = 0 eigenvalues E 0 E 1 E 2 E 3... eigenfunctions f 0, f 1, f 2, f 3,... o.b. of L 2 (M) Behavior of f j for large j : the zeroes f 1 j (0) f j real zeroes are disjoint union of smooth curves (length) M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 4 / 29

berry s random wave model For generic chaotic surfaces, compare f j W j W j = (W j (x)) x R 2 centered Gaussian field on the plane Cov (W j (x), W j (y)) = J 0 ( E j x y ), x, y R 2. stationary and isotropic! Q : Compare??? Example: nodal length on T = R 2 /Z 2 (the 2-torus). Take a representative planar domain U R 2 and study nodal length of W j restricted to U (r.v.) Expected nodal length per unit area of W j : E j /2 2 Predicted variance : log E j [Berry, 2002] M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 5 / 29

toral eigenfunctions T := R 2 /Z 2 2-torus Laplacian f + Ef = 0 Eigenvalues E n = 4π 2 n, n = sum of two integer squares S = {n = λ 2 1 + λ 2 2, λ 1, λ 2 Z} Set of frequencies Λ n = {λ = (λ 1, λ 2 ) Z 2 : λ 2 1 + λ 2 2 = n} Λ n =: N n (grows on average as log n...) Eigenfunctions (λ Λ n ) e λ (x) := e i2π λ,x, x T L 2 -o.b. M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 6 / 29

Probability measure on S 1 induced by Λ n µ n = 1 N n density-1 sequence {n j } j {n} s.t. δ n λ λ Λ n µ nj dθ/2π. other weak-* partial limit of {µ n } n [Kurlberg-Wigman, 2016]. µ(k) := z k dµ(z), k Z, Fourier coefficients S 1 η [ 1, 1], {n j } j s.t. µ nj (4) η If µ nj dθ/2π, then µ nj (4) 0. M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 7 / 29

random laplace eigenfunctions on the torus n S T n (x) = 1 Nn λ Λ n a λ e λ (x), x T {a λ } λ Λn iid complex-gaussian except for a λ = a λ ( T n is real!!!) E[a λ ] = 0 E[ a λ 2 ] = 1 T n centered Gaussian random field r n (x y) = Cov (T n (x), T n (y)) = 1 cos(2π λ, x y ), N n λ Λ n x, y T T n stationary ARW approximate Berry s RWM M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 8 / 29

nodal length Nodal lines Tn 1 (0) = {x T : T n (x) = 0} disjoint union of smooth curves L n := length(t 1 n (0)) AIM: to study the sequence of random variables {L n } n S M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 9 / 29

mean & asymptotic variance Theorem [Rudnick-Wigman, 2008] For fixed n S, E[L n ] = 1 2 En = 1 2 2 4π2 n. 2 Consistent with the expected nodal length for the RWM! Theorem [Krishnapur-Kurlberg-Wigman, 2013] As N n + E n Var(L n ) = c n (1 + o(1)) Nn 2 c n = 1 + µ n(4) 2 512 µ n (4) = 4-th Fourier coefficient of µ n M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 10 / 29

more about the asymptotic variance µ n (4) 1 variance order of magnitude E n /N 2 n Natural guess: E n /N n Non-Universality Berry s cancellation phenomenon η [ 1, 1], {n j } j s.t. µ nj (4) η Var(L nj ) 1 + η2 512 E nj N 2 n j M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 11 / 29

nodal length in wiener chaoses Integral form L n = length(t 1 n (0)) = T δ 0 (T n (x)) T n (x) dx gradient T n = ( 1 T n, 2 T n ), i := / x i (i = 1, 2). L n L 2 (P) and functional of a Gaussian field Wiener-Itô chaos expansion in L 2 (P) L 2 (P) = + q=0 C q L n = + q=0 L n [q] = + q=0 Proj (L n C q ) if q m, then C q C m Cov (L n [q], L n [m]) = 0 0 order projection is the mean: L n [0] = E[L n ]. M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 12 / 29

chaotic decomposition Proposition L n = E[L n ] + q 2, L n [2q] = T + q=1 L n [q], E[L n ] = 1 2 En. 2 odd chaoses L n [2q + 1] = 0, q 0 En 2 q u u=0 k=0 α 2k,2u 2k β 2q 2u (2k)!(2u 2k)!(2q 2u)! H 2q 2u (T n (x))h 2k ( 1 T n (x))h 2u 2k ( 2 T n (x)) dx, Var( i T n (x)) = E n 2 2 i := i (i = 1, 2). E n M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 13 / 29

2nd chaos component vanishes (berry s cancellation) + α 2,0β 0 2! L n [2] = T En 2 ( α0,0 β 2 2! H 2 ( 1 T n (x)) dx + α 0,2β 0 2! T H 2 (T n (x)) dx+ T ) H 2 ( 2 T n (x)) dx Lemma [R. (2015), Marinucci, Peccati, R., Wigman (2016)] Proof L n [2] = 0 H 2 (t) = t 2 1 ( i T n (x)) 2 dx = T n (x) ii T n (x) dx ( ii := 2 / x 2 i ) T T 11 T n + 22 T n = T n = E n T n α 2,0 = α 0,2 M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 14 / 29

4th chaos component (variance) L n E[L n ] = L n [4] + q 3 L n [2q] Var(L n ) = Var(L n [4]) + q 3 Var(L n [2q]). Lemma as N n +, Var(L n [4]) lim n + Var(L n ) = 1. L n E[L n ] Var(Ln ) = L n [4] Var(Ln [4]) + o P(1) 4th chaos dominates the whole series. M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 15 / 29

4th chaos component (distribution) W (n) = L n [4] = W 1 (n) W 2 (n) W 3 (n) W 4 (n) Proposition As N n +, L n [4] = E n 512 N 2 n En 2 ( α0,0 β 4 4! T = 1 n N n /2 ) H 4 (T n (x)) dx +... λ=(λ 1,λ 2 ) Λ n λ 2 >0 ( aλ 2 1 ) n λ 2 1 λ 2 2 λ 1 λ 2 ( ) 1+W 1 (n) 2 2W 2 (n) 2 2W 3 (n) 2 4W 4 (n) 2 +o P (1). M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 16 / 29

Lemma For {n j } S s.t. N nj + and µ nj (4) η, W (n j ) d Z(η) = Z 1 Z 2 Z 3 Z 4, where Z(η) is a centered Gaussian vector with covariance Σ = Σ(η) = 1 1 2 1 3+η 2 8 1 1 η 2 8 0 0 0 1 0 2 1 η 0 8 3+η 0 8 1 η 8. The eigenvalues of Σ are 0, 3 2, 1 η 8, 1+η 4 Σ is singular. M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 17 / 29

η [0, 1] M η := 1 2 1 + η 2 (2 (1 + η)x2 1 (1 η)x 2 2), X = (X 1, X 2 ) standard bivariate Gaussian. η 1 η 2 the distributions of M η1 and M η2 are. Theorem [Marinucci, Peccati, R., Wigman (2016)] For {n j } S s.t. N nj + and µ nj (4) η L nj E[L nj ] Var(Lnj ) law M η Non-Universal NonCLT. M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 18 / 29

nodal intersections as phase singularities n S. T n and T n two independent Gaussian Laplace eigenfunctions. I n := Tn 1 (0) T 1 n (0) I n is the number of zeroes of complex arithmetic random waves! Θ n (x) := 1 Nn λ Λ n v λ e λ (x), x T, {v λ } λ Λn i.i.d. complex-gaussian: R(v λ ) and I(v λ ) i.i.d. N (0, 1) T n (x) = R(Θ n (x)) Tn (x) = I(Θ n (x)) The set of zeroes of Θ n coincides with Tn 1 (0) Phase singularities T 1 n (0) M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 19 / 29

complex berry s random wave model Complex ARW approximate complex Berry s RWM complex centered Gaussian field, whose real and imaginary parts are independent (real) RWM Cov (W j (x), W j (y)) = J 0 ( E j x y ), x, y R 2. [Berry, 2002] Expected number of phase singularities E j /(4π) Predicted variance E j log E j M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 20 / 29

nodal intersections number Theorem [Dalmao, Nourdin, Peccati, R. (2016)] (i) n S, E[I n ] = E n 4π. Ĩ nj (ii) As N n +, En 2 Var(I n ) = d n (1 + o(1)), Nn 2 d n = 3 µ n(4) 2 + 5. 128π 2 (iii) As N nj + and µ nj (4) η, ( 1 1 + η 2 10 + 6η 2 2 A + 1 η ) B 2(C 2), 2 A, B, C ind, A law = 2X 2 + 2Y 2 4Z 2 law = B, C law = X 2 + Y 2 (X, Y, Z) N (0, I 3 3 ). M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 21 / 29

steps of the proof T n := (T n, T n ) 2-dim. Gaussian field on T 1. I n = δ 0 (T n (x)) J Tn (x) dx (integral form) T 2. I n = E[I n ] + I n [2q] (chaotic expansion) q 1 3. I n [2] = 0 (Berry s cancellation) En 2 4. As N n +, Var(I n [4]) = d n (1 + o(1)) Nn ( ) 2 5. As N n +, Var I n [2q] = o(var(i n [4])) q 3 6. As N n +, Ĩ n = Ĩn[4] + o P (1) 7. NonCentral and NonUniversal asymptotic distribution of Ĩn[4]. M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 22 / 29

Proposition ( ) Var I n [2q] = o(var(i n [4])), as N n + q 3 }{{} =:proj(i n C 6 ) Sketch of the proof T = disjoint union of little squares Q (translation of Q 0 = [0, 1/M) [0, 1/M), where M E n, along k/m, k Z 2 ) proj(i n C 6 ) = ) proj (I n Q C 6 Q Var(proj(I n C 6 )) = Q,Q Cov ( ) ( )) proj (I n Q C 6, proj I C n Q 6 Split the sum into good and bad pairs of squares M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 23 / 29

bad = singular pairs of squares Fix ε 1 > 0 small number Definition [ Rudnick, Wigman (2014)] (Q, Q ) is singular if (x, y) Q Q s.t. r n (x y) > ε 1 or 1 r n (x y) > ε 1 n or 2 r n (x y) > ε 1 n or 11 r n (x y) > ε 1 n or 12 r n (x y) > ε 1 n or 22 r n (x y) > ε 1 n. Q,Q sing. Q,Q sing. ( ) ( Cov proj (I n Q C 6, proj I C n Q 6)) Var ( )) ( ( )) proj (I n Q C 6 Var proj I C n Q 6 meas(b Q ) ( )) E n Var proj (I n Q0 C 6. 1/E n B Q = union of all squares Q s.t. (Q, Q ) is a singular pair. M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 24 / 29

Lemma Lemma ( ) meas(b Q ) = O r n (x) 6 dx. T ( )) Var proj (I n Q0 C 6 = O(1). Proof ( )) Var proj (I n Q0 C 6 E[In 2 Q0 ] = = E[In 2 Q0 ] E[I n Q0 ] + E[I n Q0 ]. }{{}}{{} =:A =:B (fine!) A = 2nd fact moment = K 2 (x, y) dxdy = 1 K Q 0 Q 0 M 2 2 (x) dx, Q 0 [ ] K 2 (x) := p (Tn(x),Tn(0))(0, 0)E J Tn (x) J Tn (0) T n (x) = T n (0) = 0, where p (Tn(x),Tn(0)) is the density of (T n (x), T n (0)). M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 25 / 29

kac-rice around the origin K 2 (x) det Ω n(x) 1 r n (x) 2, x T, where det(ω n (x)) = E ( E 2 2 ( 1r n (x)) 2 + ( 2 r n (x)) 2 ) =: Ψ 1 r n (x) 2 n (x) Taylor: as x 0 Recall M E n 1 E n Ψ n (x) = E 3 n x 2 + E 4 n O( x 4 ) K 2 (x) E 2 n K 2 (x) dx 1 E 2 Q 0 En 2 n = O(1). M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 26 / 29

end of the proof So far ( ) Var I n [2q] q 3 }{{} =:proj(i n C 6 ) ( ) = O En 2 r n (x) 6 dx T Now r n (x) 6 dx = S 6(n) T Nn 6 [Bombieri-Bourgain, 2015] so that q 3 }{{} S 6 (n) = O(N 7/2 n ), ( ) Var I n [2q] = o(en/n 2 n) 2 = o(var(l n [4]). M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 27 / 29

Berry (2002) Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature.. J. Phys. A. Bombieri, Bourgain (2015) A problem on sums of two squares. Int. Math. Res. Not. Dalmao, Nourdin, Peccati, Rossi (2016) Phase singularities in complex arithmetic random waves. ArXiv: 1608.05631 Krishnapur, Kurlberg, Wigman (2013) Nodal length fluctuations for arithmetic random waves. Ann. of Math. (2) Kurlberg, Wigman (2016) On probability measures arising from lattice points on circles. Math. Ann. Marinucci, Peccati, Rossi, Wigman (2016) Non-Universality of nodal length distribution for arithmetic random waves. Geom. Funct. Anal. Rossi (2015) The geometry of spherical random fields. PhD Thesis. Rudnick, Wigman (2008) On the volume of nodal sets for eigenfunctions of the Laplacian on the torus. Ann. Henri Poincaré. Rudnick, Wigman (2014) Nodal intersections for random eigenfunctions on the torus. Am. J. Math. (to appear) M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 28 / 29

for your attention... M. Rossi (Université du Luxembourg) Random Nodal Sets on the Torus Montréal 23.08.2016 29 / 29