The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems

Similar documents
September 20 Homework Solutions

5.1-The Initial-Value Problems For Ordinary Differential Equations

M r. d 2. R t a M. Structural Mechanics Section. Exam CT5141 Theory of Elasticity Friday 31 October 2003, 9:00 12:00 hours. Problem 1 (3 points)

e t dt e t dt = lim e t dt T (1 e T ) = 1

Minimum Squared Error

Minimum Squared Error

Average & instantaneous velocity and acceleration Motion with constant acceleration

0 for t < 0 1 for t > 0

4.8 Improper Integrals

Chapter Direct Method of Interpolation

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak

1.0 Electrical Systems

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Chapter 2. Motion along a straight line. 9/9/2015 Physics 218

Structural Dynamics and Earthquake Engineering

RESPONSE UNDER A GENERAL PERIODIC FORCE. When the external force F(t) is periodic with periodτ = 2π

PHYSICS 1210 Exam 1 University of Wyoming 14 February points

Physics 2A HW #3 Solutions

Contraction Mapping Principle Approach to Differential Equations

1 jordan.mcd Eigenvalue-eigenvector approach to solving first order ODEs. -- Jordan normal (canonical) form. Instructor: Nam Sun Wang

MATH 124 AND 125 FINAL EXAM REVIEW PACKET (Revised spring 2008)

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

Think of the Relationship Between Time and Space Again

A Kalman filtering simulation

Version 001 test-1 swinney (57010) 1. is constant at m/s.

6. Gas dynamics. Ideal gases Speed of infinitesimal disturbances in still gas

Location is relative. Coordinate Systems. Which of the following can be described with vectors??

Chapter 2: Evaluative Feedback

An object moving with speed v around a point at distance r, has an angular velocity. m/s m

Seismic history analysis of asymmetrical adjacent buildings with soil-structure interaction consideration

Some Inequalities variations on a common theme Lecture I, UL 2007

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 10: The High Beta Tokamak Con d and the High Flux Conserving Tokamak.

Dynamic Crack kpropagation in Fiber Reinforced Composites

Probability, Estimators, and Stationarity

Solutions to Problems from Chapter 2

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m

Magnetostatics Bar Magnet. Magnetostatics Oersted s Experiment

Procedia Computer Science

Finite element method for structural dynamic and stability analyses

2D Motion WS. A horizontally launched projectile s initial vertical velocity is zero. Solve the following problems with this information.

A Simple Model for Axial Displacement in a Cylindrical Pipe With Internal Shock Loading

Finite Element Analysis of Structures

(b) 10 yr. (b) 13 m. 1.6 m s, m s m s (c) 13.1 s. 32. (a) 20.0 s (b) No, the minimum distance to stop = 1.00 km. 1.

ME 141. Engineering Mechanics

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

DEFORMATION OF ACTIVE FLEXIBLE RODS WITH MEMORY SHAPE ALLOY FIBERS

An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples.

Hamilton-Jacobi irrotational hydrodynamics for binary neutron star inspiral

This UR does not apply to CSR Bulk Carriers and Oil Tankers or to container ships to which UR S11A is applicable.

3. Renewal Limit Theorems

3 Motion with constant acceleration: Linear and projectile motion

A new model for limit order book dynamics

Lecture 10: Wave equation, solution by spherical means

New effective moduli of isotropic viscoelastic composites. Part I. Theoretical justification

Physics 101 Lecture 4 Motion in 2D and 3D

Physic 231 Lecture 4. Mi it ftd l t. Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 = =

AN ANALYTICAL TOOL TO PREDICT LOAD DISTRIBUTION OF MULTI-BOLT SINGLE-LAP THICK LAMINATE JOINTS

Science Advertisement Intergovernmental Panel on Climate Change: The Physical Science Basis 2/3/2007 Physics 253

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

LAPLACE TRANSFORM OVERCOMING PRINCIPLE DRAWBACKS IN APPLICATION OF THE VARIATIONAL ITERATION METHOD TO FRACTIONAL HEAT EQUATIONS

EXERCISE - 01 CHECK YOUR GRASP

Mathematical Modeling

Observability of flow dependent structure functions and their use in data assimilation

3D Transformations. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 1/26/07 1

Transport Phenomena and Shrinkage Modeling During Convective Drying of Vegetables.

Longitudinal Strength Standard. S11 (cont) S11

SOME USEFUL MATHEMATICS

T-Match: Matching Techniques For Driving Yagi-Uda Antennas: T-Match. 2a s. Z in. (Sections 9.5 & 9.7 of Balanis)

Development of a New Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations

6.01: Introduction to EECS I Lecture 8 March 29, 2011

Nonlinear System Modelling: How to Estimate the. Highest Significant Order

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

Asymptotic relationship between trajectories of nominal and uncertain nonlinear systems on time scales

( ) ( ) ( ) ( ) ( ) ( y )

Road noise sensitivity analysis with respect to suspension geometry

A new model for solving fuzzy linear fractional programming problem with ranking function

NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model

IX.2 THE FOURIER TRANSFORM

LECTURE 5. is defined by the position vectors r, 1. and. The displacement vector (from P 1 to P 2 ) is defined through r and 1.

P441 Analytical Mechanics - I. Coupled Oscillators. c Alex R. Dzierba

Calculation method of flux measurements by static chambers

Systems Variables and Structural Controllability: An Inverted Pendulum Case

Physics 100: Lecture 1

Solutions for Nonlinear Partial Differential Equations By Tan-Cot Method

Soil-Pile Dynamic Interaction in the Viscous Damping Layered Soils

Neural assembly binding in linguistic representation

Ch.4 Motion in 2D. Ch.4 Motion in 2D

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics for Scientists and Engineers I

f t f a f x dx By Lin McMullin f x dx= f b f a. 2

Virtual 3D Sculpting

A NUMERICAL SOLUTION OF THE URYSOHN-TYPE FREDHOLM INTEGRAL EQUATIONS

Honours Introductory Maths Course 2011 Integration, Differential and Difference Equations

Ch.1. Group Work Units. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

10. State Space Methods

Transcription:

Swiss Federl Insiue of Pge 1 The Finie Elemen Mehod for he Anlysis of Non-Liner nd Dynmic Sysems Prof. Dr. Michel Hvbro Fber Dr. Nebojs Mojsilovic Swiss Federl Insiue of ETH Zurich, Swizerlnd Mehod of Finie Elemens II

Swiss Federl Insiue of Conens of Tody's Lecure Pge 2 Moivion, i overview nd orgnizion i of he course Inroducion o non-liner nlysis Formulion of he coninuum mechnics incremenl equions of moion Mehod of Finie Elemens II

Swiss Federl Insiue of Moivion, overview nd orgnizion of he course Pge 3 Moivion i In FEM 1 we lerned bou he sedy se nlysis of liner sysems however; he sysems we re deling wih in srucurl engineering re generlly no sedy se nd lso no liner We mus be ble o ssess he need for priculr ype of nlysis nd we mus be ble o perform i Mehod of Finie Elemens II

Swiss Federl Insiue of Moivion, overview nd orgnizion of he course Pge 4 Moivion Wh kind of problems re no sedy se nd liner? E.g. when he: meril behves non-linerly deformions become big (p-δ effecs) lods vry fs compred o he eigenfrequencies of he srucure Generl feure: Response becomes lod ph dependen Mehod of Finie Elemens II

Swiss Federl Insiue of Moivion, overview nd orgnizion of he course Pge 5 Moivion Wh is he dded vlue of being ble o ssess he non-liner non-sedy se response of srucures? E.g. ssessing he; - srucurl response of srucures o exreme evens (rock-fll, erhquke, hurricnes) - performnce (filures nd deformions) of soils - verifying simple models Mehod of Finie Elemens II

Swiss Federl Insiue of Moivion, overview nd orgnizion of he course Pge 6 Sedy se problems (Liner/Non-liner): The response of he sysem does no chnge over ime KU = R Propgion problems (Liner/Non-liner): The response of he sysem chnges over ime MU&& () + CU& () + KU () = R () Eigenvlue problems: No unique soluion o he response of he sysem Av = λ Bv Mehod of Finie Elemens II

Swiss Federl Insiue of Moivion, overview nd orgnizion of he course Pge 7 Orgnision i The lecures will be given by: M. H. Fber nd N. Mojsilovic Exercises will be orgnized/ended by: K. Nishijim Office hours: 14:00 16:00 on Thursdys, HIL E22.3. Mehod of Finie Elemens II

Swiss Federl Insiue of Moivion, overview nd orgnizion of he course Pge 8 Orgnision i PowerPoin files wih he presenions will be up-loded on our home-pge one dy in dvnce of he lecures hp://www.ibk.ehz.ch/f/educion/fe _ II The lecure s such will follow he book: "Finie Elemen Procedures" by K.J. Bhe, Prenice Hll, 1996 Mehod of Finie Elemens II

Swiss Federl Insiue of Moivion, overview nd orgnizion of he course Pge 9 Overview De Subjec(s) Course book Pges: 28.09.2007 Non-liner Finie Elemen Clculions in solids nd srucurl mechnics Inroducion o non-liner clculions The incremenl pproch o coninuum mechnics 485-502 05.10.2007 Non-liner Finie Elemen Clculions in solids nd srucurl mechnics Deformion grdiens, srin nd sress ensors The Lngrngin formulion only meril nonlineriy 12.10.2007 Non-liner Finie Elemen Clculions in solids nd srucurl mechnics Displcemen bsed iso-prmeric finie elemens in coninuum mechnics 19.10.2007 Non-liner Finie Elemen Clculions in solids nd srucurl mechnics Displcemen bsed iso-prmeric finie elemens in coninuum mechnics Mehod of Finie Elemens II 502-528 538-548 548-560

Swiss Federl Insiue of Moivion, overview nd orgnizion of he course Pge 10 Overview De Subjec(s) Course book Pges: 26.10.2007 Non-liner Finie Elemen Clculions in solids nd srucurl mechnics Tol Lngrngin formulion Exended Lngrngin formulion Srucurl elemens 561-578 02.11.2007 Non-liner Finie Elemen Clculions in solids nd srucurl mechnics Inroducion of consiuive relions Non-liner consiuive relions 09.11.2007 Non-liner Finie Elemen Clculions in solids nd srucurl mechnics Conc problems Prcicl considerions 16.11.2007 Dynmicl Finie Elemen Clculions Inroducion Direc inegrion mehods 581-617 622-640 768-784 Mehod of Finie Elemens II

Swiss Federl Insiue of Moivion, overview nd orgnizion of he course Pge 11 Overview De Subjec(s) Course book Pges: 23.11.2007 Dynmicl Finie Elemen Clculions 785-800 Mode superposiion 30.11.2007 Dynmicl Finie Elemen Clculions 801-815815 Anlysis of direc inegrion mehods 07.12.2007 Dynmicl Finie Elemen Clculions Soluion of dynmicl non-liner problems 14.12.2007 Soluion of Eigen vlue problems The vecor ierion mehod 824-830 887-910 21.12.2007 Soluion of Eigen vlue problems 911-937 937 The rnsformion mehod Mehod of Finie Elemens II

Swiss Federl Insiue of Inroducion i o non-liner nlysis Pge 12 Previsously we considered d he soluion of he following liner nd sic problem: KU = R for hese problems we hve he convenien propery of lineriy, i.e: KU = λr U = λu If his is no he cse we re deling wih non-liner problem! Mehod of Finie Elemens II

Swiss Federl Insiue of Inroducion i o non-liner nlysis Pge 13 Previsously we considered d he soluion of he following liner nd sic problem: KU = R we ssumed: smll displcemens when developing he siffness mrix K nd he lod vecor R, becuse we performed ll inegrions over he originl elemen volume h he B mrix is consn independen of elemen displcemens he sress-srin mrix C is consn boundry consrins re consn Mehod of Finie Elemens II

Swiss Federl Insiue of Inroducion i o non-liner nlysis Pge 14 Clssificion of non-liner nlysis Type of nlysis Descripion Typicl formulion used Sress nd srin mesures used Merilly-nonliner only Infiniesiml displcemens nd Merillynonliner-only Engineering srin nd sress srins; sress rin relion is nonliner (MNO) Lrge displcemens, lrge roions bu smll Displcemens nd roions of fibers re lrge; bu fiber Tol Lgrnge (TL) Second Piol- Kirchoff sress, Green-Lgrnge srins exensions nd ngle chnges srin beween fibers re smll; sress srin Upded Lgrnge (UL) Cuchy sress, Almnsi srin relionship my be Lrge displcemens, lrge roions nd lrge srins Mehod of Finie Elemens II liner or non-liner Displcemens nd roions of fibers re lrge; fiber exensions nd ngle chnges beween fibers my lso be lrge; sress srin relionship my be liner or non-liner Tol Lgrnge (TL) Second Piol- Kirchoff sress, Green-Lgrnge Upded Lgrnge (UL) srin Cuchy sress, Logrihmic srin

Swiss Federl Insiue of Pge 15 Inroducion i o non-liner nlysis Clssificion of non-liner nlysis σ Δ P 2 σ = P / A E L ε = σ / E 1 P 2 Δ=ε L ε < 0.04 ε L Liner elsic (infiniesiml displcemens) Mehod of Finie Elemens II

Swiss Federl Insiue of Pge 16 Inroducion i o non-liner nlysis L Clssificion of non-liner nlysis Δ P 2 P 2 σ = P / A ε ε < σ σ σy E E T Y = + 0.04 σ σ Y 1 E P / A 1 E T ε L Merilly nonliner only (infiniesiml displcemens, bu nonliner sress-srin relion) Mehod of Finie Elemens II

Swiss Federl Insiue of Inroducion i o non-liner nlysis Pge 17 Clssificion of non-liner nlysis y x L ε < 0.04 Δ= ε L Lrge displcemens nd lrge roions bu smll srins (liner or nonliner meril behvior) Mehod of Finie Elemens II

Swiss Federl Insiue of Inroducion i o non-liner nlysis Pge 18 Clssificion of non-liner nlysis Lrge displcemens nd lrge roions nd lrge srins (liner or nonliner meril behvior) Mehod of Finie Elemens II

Swiss Federl Insiue of Inroducion i o non-liner nlysis Pge 19 Clssificion of non-liner nlysis P 2 P 2 Δ Chnging boundry condiions Mehod of Finie Elemens II

Swiss Federl Insiue of Inroducion i o non-liner nlysis Pge 20 7 2 Exmple: Simple br srucure E = 10 N / cm R 4 3 2 1 Are = 1cm Secion L = 10cm 2 u Secion b L = R 5cm σ σ Y 1 E 1 ε = 0.002 E T ET = 10 N / cm σ Y :yield sress ε :yield srin ε Y ε 5 2 2 4 6 Mehod of Finie Elemens II

Swiss Federl Insiue of Inroducion i o non-liner nlysis Exmple: Simple br srucure ε Are = 1cm Secion L = 10cm 2 u =, εb = L + σb = σ R A σ A u Secion b L = u L b R 5cm σ σ Y R 4 3 2 1 1 E 1 ε = 0.002 ε = (elsic region) E σ σ Y Δσ ε = εy + (plsic region) i ) Δ ε = (unloding) E E T Mehod of Finie Elemens II E T 7 2 E = 10 N / cm 5 2 ET = 10 N / cm σ : yield sress Y ε Y : yield srin ε 2 4 6 Pge 21

Swiss Federl Insiue of Inroducion i o non-liner nlysis u Exmple: Simple br srucure ε, Are = 1cm Secion L = 10cm 2 u Secion b L = R 5cm σ σ Y R 4 3 2 1 E 1 1 ε = 0.002 E T E = 10 N / cm ET = 10 N / cm σ Y : yield sress ε : yield srin Y ε 7 2 5 2 2 4 6 = εb = L R+ σ A= σ A b σ ε = E ε = ε + Δ ε = Y u L b (elsic region) σ σy E T Δσ (unloding) E Pge 22 (plsic region) Boh secions elsic 1 1 R = EA u ( + ) u = L L 310 R R 2 R σ =, σb = 3 A 3 A b 6 Mehod of Finie Elemens II

Swiss Federl Insiue of Inroducion i o non-liner nlysis u Exmple: Simple br srucure 7 2 E = 10 N / cm ε, Are = 1cm Secion L = 10cm 2 u Secion b L = R 5cm secion b will be plsic when R = σ u u = E, b ET( Y) Y L σ = L ε σ b EA u ET A u R = + ETεYA+ σya L L σ σ Y R 4 3 2 1 1 E 1 ε = 0.002 E T 5 2 ET = 10 N / cm σ Y : yield sress ε : yield srin Y ε 2 4 6 Secion is elsic while secion b is plsic T Y Y Mehod of Finie Elemens II b 2 σ A 3 Y R / A + E ε σ R u = = 1.9412 10 6 E/ L + E/ L 1.02 10 b 2 = εb = L R+ σ A= σ A b σ u L b Pge 23 ε = (elsic region) E σ σy ε = εy + (plsic region) ET Δσ Δ ε = (unloding) E

Swiss Federl Insiue of Inroducion i o non-liner nlysis Pge 24 Wh did we lern from he exmple? The bsic problem in generl nonliner nlysis is o find se of equilibrium beween exernlly pplied lods nd elemen nodl forces R F = 0 R = R + R + R B S C We mus chieve equilibrium for ll ime seps when incremening he loding Very generl pproch F = F R I = B τ dv m V ( m) ( m) T ( m) ( m) includes implicily lso dynmic nlysis! Mehod of Finie Elemens II

Swiss Federl Insiue of Inroducion i o non-liner nlysis Pge 25 The bsic pproch in incremenl nylsis is R F = 0 +Δ +Δ +Δ ssuming h R is independen of he deformions we hve +Δ F = F+ F We know he soluion F ime nd F is he incremen in he nodl poin forces corresponding o n incremen in he displcemens nd sresses from ime o ime +Δ his we cn pproxime by F = KU Tngen siffness mrix Mehod of Finie Elemens II F K = U

Swiss Federl Insiue of Inroducion i o non-liner nlysis Pge 26 The bsic pproch in incremenl nylsis is We my now subsiue he ngen siffness mrix ino he equlibrium relion KU = R F +Δ U = U+ U +Δ which h gives us scheme for he clculion l of he displcemens he exc displcemens ime +Δ correspond o he pplied lods +Δ however we only deermined hese pproximely s we used ngen siffness mrix hus we my hve o iere o find he soluion Mehod of Finie Elemens II

Swiss Federl Insiue of Inroducion i o non-liner nlysis Pge 27 The bsic pproch in incremenl nylsis is We my use he Newon-Rphson ierion scheme o find he equlibrium wihin ech lod incremen K Δ U = R F (ou of blnce lod vecor) +Δ ( i 1) ( i) +Δ +Δ ( i 1) U = U +ΔU +Δ () i +Δ ( i 1) () i wih iniil condiions U = U ; K = K ; F = F +Δ (0) +Δ (0) +Δ (0) Mehod of Finie Elemens II

Swiss Federl Insiue of Inroducion i o non-liner nlysis Pge 28 The bsic pproch in incremenl nylsis is I my be expensive o clcule he ngen siffness mrix nd; in he Modified Newon-Rphson ierion scheme i is hus only clculed in he beginning of ech new lod sep in he qusi-newon ierion schemes he secn siffness mrix is used insed of he ngen mrix Mehod of Finie Elemens II

Swiss Federl Insiue of The coninuum mechnics incremenl equions Pge 29 The bsic problem: We wn o esblish he soluion using n incremenl formulion The equilibrium mus be esblished for he considered body in is curren configurion In proceeding we dop Lgrngin formulion where rck he movemen of ll pricles of he body (loced in Cresin coordine sysem) Anoher pproch would be n Eulerin formulion where he moion of meril hrough sionry conrol volume is considered Mehod of Finie Elemens II

Swiss Federl Insiue of The coninuum mechnics incremenl equions Pge 30 The bsic problem: x 3 δu 1 δu = δu2 δu 3 Configurion corresponding o vriion in displcemens +Δ δu u Configurion ime +Δ Surfce re Volume +Δ V +Δ S x 2 Configurion ime 0 Surfce re Volume 0 V 0 S Configurion ime Surfce re Volume V S x (or x, x, x ) 0 + Δ 1 1 1 1 Mehod of Finie Elemens II

Swiss Federl Insiue of The coninuum mechnics incremenl equions The Lgrngin formulion We express equilibrium of he body ime +Δ using he principle of virul displcemens +Δ +Δ +Δ τδ ed V R +Δ V +Δ +Δ ij = +Δ ij +Δ +Δ j x 3 x (or x, x, x ) 0 + Δ 1 1 1 1 δu1 δu = δu2 δu 3 Configurion corresponding o vriion in displcemens +Δ δu u 0 Surfce re S 0 Volume V x 2 Pge 31 Configurion ime + Δ +Δ Surfce re S +Δ Volume V Configurion ime Surfce re S Configurion ime 0 Volume V τ : Cresin componens of he Cuchy sress ensor 1 δu δ u i j δ e = ( + ) = srin ensor corresponding o virul displcemens 2 x x i δui : Componens of virul displcemen vecor imposed ime +Δ +Δ xi : Cresin coordine ime +Δ +Δ V : Volume ime +Δ +Δ +Δ B +Δ +Δ S S +Δ R = f δ ud V = f δ u d S V Mehod of Finie Elemens II i i i i S +Δ +Δ f

Swiss Federl Insiue of The coninuum mechnics incremenl equions The Lgrngin formulion We express equilibrium of he body ime +Δ using he principle of virul displcemens R= f δud V = f δu d S +Δ +Δ B +Δ +Δ S S +Δ i i i i where f +Δ +Δ : exernlly pllied forces per uni volume V S f +Δ B i +Δ S fi +Δ S f : surfce ime +Δ S +Δ δui : δui evlued he surfce Sf x 3 x (or x, x, x ) 0 + Δ 1 1 1 1 : exernlly pllied surfce rcions per uni surfce δu1 δu = δu2 δu 3 Configurion corresponding o vriion in displcemens +Δ δu u 0 Surfce re S 0 Volume V x 2 Pge 32 Configurion ime + Δ +Δ Surfce re S +Δ Volume V Configurion ime Surfce re S Configurion ime 0 Volume V Mehod of Finie Elemens II

Swiss Federl Insiue of The coninuum mechnics incremenl equions Pge 33 The Lgrngin formulion We recognize h our derivions from liner finie elemen heory re unchnged bu pplied o he body in he configurion ime +Δ Mehod of Finie Elemens II

Swiss Federl Insiue of The coninuum mechnics incremenl equions Pge 34 In he furher we inroduce n pproprie noion: Coordines nd displcemens re reled s: x = x + u 0 i i i x = x + u +Δ 0 +Δ i i i Incremens in displcemens re reled s: +Δ ui = ui ui Reference configurions re indexed s e.g.: f +Δ S 0 i where he lower lef index indices he reference configurion τ = τ +Δ +Δ ij +Δ ij Differeniion is indexed s: u +Δ 0 +Δ i 0 m 0 u i, j=, x = 0 +Δ m, n +Δ xj xn x Mehod of Finie Elemens II