Renormalization Group Equations

Similar documents
Asymptotically safe Quantum Gravity. Nonperturbative renormalizability and fractal space-times

Critical exponents in quantum Einstein gravity

Asymptotic Safety in the ADM formalism of gravity

Asymptotically Safe Gravity connecting continuum and Monte Carlo

UV completion of the Standard Model

Functional Renormalization Group Equations from a Differential Operator Perspective

Quantum Gravity and the Renormalization Group

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

A functional renormalization group equation for foliated space-times

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications

RG flow of the Higgs potential. Holger Gies

RG flow of the Higgs potential. Holger Gies

Running Couplings in Topologically Massive Gravity

RG flow of the Higgs potential. Holger Gies

Black hole thermodynamics under the microscope

Asymptotic Safety and Limit Cycles in minisuperspace quantum gravity

The Functional Renormalization Group Method An Introduction

MCRG Flow for the Nonlinear Sigma Model

Vacuum stability and the mass of the Higgs boson. Holger Gies

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U.

Mesonic and nucleon fluctuation effects at finite baryon density

The asymptotic-safety paradigm for quantum gravity

arxiv: v1 [hep-th] 24 Mar 2016

Causal RG equation for Quantum Einstein Gravity

Asymptotically free nonabelian Higgs models. Holger Gies

Dimensional Reduction in the Renormalisation Group:

Mesonic and nucleon fluctuation effects in nuclear medium

Critical Region of the QCD Phase Transition

Asymptotically safe inflation from quadratic gravity

Inverse square potential, scale anomaly, and complex extension

Asymptotic safety in the sine Gordon model a

Critical exponents in quantum Einstein gravity

arxiv:hep-th/ v1 2 May 1997

Attractor Structure of Gauged Nambu-Jona-Lasinio Model

QCD Phases with Functional Methods

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

Asymptotic safety of gravity and the Higgs boson mass. Mikhail Shaposhnikov Quarks 2010, Kolomna, June 6-12, 2010

The fixed point structure of the 3d O(N) model and its non-trivial UV fixed point

On avoiding Ostrogradski instabilities within Asymptotic Safety

Wilsonian renormalization

FERMION MASSES FROM A CROSSOVER MECHANISM

Functional RG methods in QCD

Renormalization Group Study of the Chiral Phase Transition

arxiv:hep-th/ v1 16 Oct 2000

Non-perturbative Study of Chiral Phase Transition

The status of asymptotic safety for quantum gravity and the Standard Model

Lattice Quantum Gravity and Asymptotic Safety

THE RENORMALIZATION GROUP AND WEYL-INVARIANCE

The ultraviolet behavior of quantum gravity with fakeons

Introduction to Renormalization Group

Local RG, Quantum RG, and Holographic RG. Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis

Gravitational Renormalization in Large Extra Dimensions

A Modern View of Quantum Gravity. John F. Donoghue at Universität Wien October 13, 2015

Critical Behavior II: Renormalization Group Theory

Constraints on matter from asymptotic safety

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology

Gravitational Waves and New Perspectives for Quantum Gravity

Analytic continuation of functional renormalization group equations

Scale without conformal invariance

Introduction to Renormalization

Scale symmetry a link from quantum gravity to cosmology

Effective Field Theory

RG Limit Cycles (Part I)

The mass of the Higgs boson

Infrared Divergences in. Quantum Gravity. General reference: Quantum Gravitation (Springer Tracts in Modern Physics, 2009).

arxiv: v1 [hep-ph] 22 Aug 2011

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Late-time quantum backreaction in cosmology

8.821 String Theory Fall 2008

Towards a quantitative FRG approach for the BCS-BEC crossover

Gravity vs Yang-Mills theory. Kirill Krasnov (Nottingham)

Hermann Nicolai MPI für Gravitationsphysik, Potsdam (Albert Einstein Institut) STRINGS 2012, München, July 2012

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Why Be Natural? Jonathan Bain. Department of Technology, Culture and Society Tandon School of Engineering, New York University Brooklyn, New York

The effective field theory of general relativity and running couplings

On asymptotic safety in matter-gravity systems

Quantum Einstein Gravity a status report

Unification from Functional Renormalization

Introduction to Instantons. T. Daniel Brennan. Quantum Mechanics. Quantum Field Theory. Effects of Instanton- Matter Interactions.

German physicist stops Universe

Supersymmetry breaking as a quantum phase transition

Landau s Fermi Liquid Theory

Quantum Fields in Curved Spacetime

Status of Hořava Gravity

LEADING LOGARITHMS FOR THE NUCLEON MASS

Scale and Conformal Invariance in d = 4

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Scuola Internazionale Superiore di Studi Avanzati

arxiv: v1 [hep-th] 21 Oct 2008

One-loop renormalization in a toy model of Hořava-Lifshitz gravity

Pairing in many-fermion systems: an exact-renormalisation-group treatment

The Ward Identity from the Background Field Dependence of the Effective Action

Holography and the (Exact) Renormalization Group

Phase Transitions and Renormalization:

Effect of the Trace Anomaly on the Cosmological Constant. Jurjen F. Koksma

Introduction to Group Field Theory

Manifestly diffeomorphism invariant classical Exact Renormalization Group

Light-Cone Quantization of Electrodynamics

Finite Temperature Field Theory

Transcription:

Renormalization Group Equations Idea: study the dependence of correlation functions on the scale k Various options: k = Λ: Wilson, Wegner-Houghton, coarse graining constant physics, cutoff/uv insensitivity k = µ: Gell-Mann-Low constant physics, fixing scale insensitivity k = m R : Callan, Symanzik (CS) compare theories with different masses

Renormalization Group Equations Idea: study the dependence of correlation functions on the scale k Various options: k = Λ: Wilson, Wegner-Houghton, coarse graining constant physics, cutoff/uv insensitivity k = µ: Gell-Mann-Low constant physics, fixing scale insensitivity k = m R : Callan, Symanzik (CS) compare theories with different masses Advantage of CS idea: start with massive theories = suppressed fluctuations connect with differential equation to small mass theories = regime with strong correlations

Renormalization Group Equations Callan-Symanzik: m 2 m 2 + k 2 Flow of master formula: ( k Z k [J] = Dφ 1 2 ) d 4 x( k k 2 )φ(x)φ(x) e S[φ] 1 k 2 2 2 φ2 + Jφ

Renormalization Group Equations Callan-Symanzik: m 2 m 2 + k 2 Flow of master formula: ( k Z k [J] = Dφ 1 2 = 1 2 = 1 2 Tr[ ( k k 2 )G (2) ] k ) d 4 x( k k 2 )φ(x)φ(x) e S[φ] 1 k 2 2 2 φ2 + Jφ d 4 x( k k 2 )G (2) k (x, x)

Renormalization Group Equations Callan-Symanzik: m 2 m 2 + k 2 Flow of master formula: ( k Z k [J] = Dφ 1 2 = 1 2 = 1 2 Tr[ ( k k 2 )G (2) ] k ) d 4 x( k k 2 )φ(x)φ(x) e S[φ] 1 k 2 2 2 φ2 + Jφ d 4 x( k k 2 )G (2) k (x, x) Legendre transformation to Γ[φ]: k Γ k [φ] = 1 2 Tr [ ( k k 2 ) Γ (2) k + k 2 ] Problem: still UV divergent in D=4

Wetterich Equation Idea: replace mass deformation by momentum dependent function 1 (m 2 + k 2 )φ 2 1 d 4 p φ( p) (m 2 + R k (p)) φ(p) 2 2 RG flow equation: t Γ k k k Γ k = 1 2 Tr tr k (Γ (2) k (WETTERICH 93) + R k ) 1 = Exact Renormalization Group

RG flow in Theory Space t Γ k = 1 2 Tr 1 t R k + R k Γ (2) k RG trajectory: Γ k =Λ = S micro UV: k Λ k IR: k 0

RG flow in Theory Space t Γ k = 1 2 Tr 1 t R k + R k Γ (2) k RG trajectory: UV: k Λ k IR: k 0

RG flow in Theory Space t Γ k = 1 2 Tr 1 t R k + R k Γ (2) k RG trajectory: UV: k Λ k IR: k 0

RG flow in Theory Space t Γ k = 1 2 Tr 1 t R k + R k Γ (2) k RG trajectory: Γ k 0 = Γ UV: k Λ k IR: k 0

RG flow in Theory Space t Γ k = 1 2 Tr 1 t R k + R k Γ (2) k regulator function R k RG trajectory: Γ k=λ = S bare Γ k=0 = Γ 1PI eff

RG flow in Theory Space t Γ k = 1 2 Tr 1 t R k + R k Γ (2) k role of the regulator R k (O) e.g., chiral symmetry OK! R ψ k = Rψ k (i / )

RG flow in Theory Space t Γ k = 1 2 Tr 1 t R k + R k Γ (2) k role of the regulator R k (O) e.g., chiral symmetry OK! R ψ k = Rψ k (i / )

RG flow in Theory Space t Γ k = 1 2 Tr 1 t R k + R k Γ (2) k role of the regulator R k (O) e.g., chiral symmetry OK! R ψ k = Rψ k (i / )

RG flow in Theory Space t Γ k = 1 2 Tr 1 t R k + R k Γ (2) k role of the regulator R k (O) e.g., chiral symmetry OK! R ψ k = Rψ k (i / )

Lesson RG flow equation... exact equation RG flow equation (+ b.c.)... can serve as definition of QFT Wilsonian momentum-shell integration... treats physics scale by scale key element: scale-dependent exact propagator: 1 G k (x, y) = (x, y) Γ (2) k + R k

A Simple Example: 0 + 1 dimensional QFT classical action of the Euclidean anharmonic oscillator ( 1 S[x] = dτ 2 + 1 2ẋ 2 ω2 x 2 + 1 ) 24 λx 4 truncated effective action Γ k [x] = dτ ( ) 1 2 + V k (x), V k (x) = V 0,k + 1 2ẋ 2 ω k 2 x 2 + 1 24 λ k x 4... second functional derivative Γ (2) k [x] = 2 τ + V k (x)

A Simple Example: 0 + 1 dimensional QFT e.g., linear regulator R k (p 2 ) = (k 2 p 2 ) θ(k 2 p 2 ) (LITIM 00) flow equation flow of the potential t Γ k [φ] = 1 2 Tr [ t R k (Γ (2) k [φ] + R k) 1] = L τ dpτ 2π t V k (x) = 1 π k 2 θ(k 2 p 2 τ ) k 2 + V k (x) k 3 k 2 + V k (x)

A Simple Example: 0 + 1 dimensional QFT polynomial expansion V k (x) = 1 2 ω k 2 x 2 + 1 24 λ k x 4 + E 0,k + const. k coupling flows ( β functions) (const. k fixed such that d dk E 0,k = 0 for ω k = 0) x 0 : x 2 : x 4 : d dk E 0,k = 1 π d dk ω k 2 = 2 π d dk λ k = 24 π ( k 2 ) k 2 + ω 2 1 k k 2 λ k (k 2 + ω 2 k ) 2 2 k 2 (k 2 + ω k 3 ) 2 ( λk 2 (1) (2) ) 2 +... (3)

A Simple Example: 0 + 1 dimensional QFT truncate to (1) (ω k ω) E 0 = E 0,k 0 = 1 2 ω (HO) truncate to (1)+(2) and solve perturbatively E 0 = 1 2 ω + 3 ( ) λ 4 ω 24ω 3 82 ( ) 2 λ 40 ω 24ω 3 +... compare with perturbation theory E 0 = 1 2 ω + 3 ( ) λ 4 ω 24ω 3 105 ( ) 2 λ 40 ω 24ω 3 +... (BENDER&WU) = 1-loop exact, 2-loop 20% error

A Simple Example: 0 + 1 dimensional QFT truncate to (1) (ω k ω) E 0 = E 0,k 0 = 1 2 ω (HO) truncate to (1)+(2) and solve perturbatively E 0 = 1 2 ω + 3 ( ) λ 4 ω 24ω 3 82 ( ) 2 λ 40 ω 24ω 3 +... compare with perturbation theory E 0 = 1 2 ω + 3 ( ) λ 4 ω 24ω 3 105 ( ) 2 λ 40 ω 24ω 3 +... (BENDER&WU) = 1-loop exact, 2-loop 20% error

A Simple Example: 0 + 1 dimensional QFT truncate to (1) (ω k ω) E 0 = E 0,k 0 = 1 2 ω (HO) truncate to (1)+(2) and solve perturbatively E 0 = 1 2 ω + 3 ( ) λ 4 ω 24ω 3 82 ( ) 2 λ 40 ω 24ω 3 +... compare with perturbation theory E 0 = 1 2 ω + 3 ( ) λ 4 ω 24ω 3 105 ( ) 2 λ 40 ω 24ω 3 +... (BENDER&WU) = 1-loop exact, 2-loop 20% error

A Simple Example: 0 + 1 dimensional QFT ground state energy E 0 /E HO vs. λ 24 (ω = 1, m = 1 2 ) 1.4 1.3 1.2 1.1 exact - - - 2-loop perturb. truncated to (2) truncated to (3) 0.2 0.4 0.6 0.8 1

A Simple Example: 0 + 1 dimensional QFT strong-coupling limit E 0 = ( ) 1/3 λ [ α 0 + O(λ )] 2/3 24 α 0 = 0.66798... (JANKE& KLEINERT) α 0 (2) = 0.6920... error: 4% α 0 (3) = 0.6620... error: <1%

Lesson RG flow equation... encodes perturbative & nonperturbative physics already in simple approximations key element: scale-dependent exact propagator: many applications... 1 G k (x, y) = (x, y) Γ (2) k + R k

RG flow in Theory Space t Γ k = 1 2 Tr 1 t R k + R k Γ (2) k RG trajectory: Γ k =Λ = S micro UV: k Λ k IR: k 0

RG flow in Theory Space t Γ k = 1 2 Tr 1 t R k + R k Γ (2) k RG trajectory: UV: k Λ k IR: k 0

RG flow in Theory Space t Γ k = 1 2 Tr 1 t R k + R k Γ (2) k RG trajectory: UV: k Λ k IR: k 0

RG flow in Theory Space t Γ k = 1 2 Tr 1 t R k + R k Γ (2) k RG trajectory: Γ k 0 = Γ UV: k Λ k IR: k 0

RG flow in Theory Space t Γ k = 1 2 Tr 1 t R k + R k Γ (2) k Abstract viewpoint: FRG provides vector field on theory space [PICTURE: F. SAUERESSIG] search for RG trajectories that can be completed to arbitrarily high scales = fundamental theory candidates: fixed points = bare action ( ˆ= microscopic action) is a result rather than an initial condition

Quantum field theory gravity Problem of Physics? expected typical scale of QG effects: M Planck 10 19 GeV early/late universe cosmology? astrophysical singularities? hierarchy problems (gauge hierarchy, cosmological constant & coincidence problem) Minimum requirements: compatibility with observed physics existence of semiclassical GR regime D = 4 = D RG, cr compatibility with observed matter content of the universe

QFT Gravity (GOROFF,SAGNOTTI 85 86; VAN DE VEN 92) perturbative quantization fails Γ 2-loop div = 1 209 1 ɛ 2880 (16π 2 ) 2 d 4 x gc µνρσ C ρσλτ C λτ µν = Any quantum theory of gravity has to explain the fate of C 3

Spacetime Dimensionality (perturbative) QFT: X X δ(γ) = d nei [φi ] + nvα δ(vα ) α i = RG critical dimension: 4 (gauge + matter, Yukawa/Higgs) DRG, cr = 2 (gravity, pure fermionic matter) (macroscopic) universe: D=4 It is not known whether the fact that space time has just four dimensions is a mere coincidence or is logically connected with this property. (J. Z INN -J USTIN, IN QFT AND CRITICAL PHENOMENA )

Quantizing Gravity I know of only one promising approach to this problem... (S. WEINBERG, IN CRITICAL PHENOMENA FOR FIELD THEORISTS (1976))

Asymptotic Safety

Necessity of Renormalizability IR physics well separated from UV physics (... no/mild cutoff Λ dependence) # of physical parameters <... or countably (... predictive power) = realized by perturbative RG... =... and by Asymptotic Safety (WEINBERG 76)

Asymptotic Safety g i g 2 Theory Space g 1

Asymptotic Safety g i effective action Γ k g 2 Theory Space g 1

Asymptotic Safety g i RG step functional RG: (WETTERICH 93) t Γ k = 1 2 Tr tr k (Γ (2) k + R k ) 1 (WILSON 71; WEGNER,HOUGHTON 73; POLCHINSKI 84) g 2 Theory Space g 1

Asymptotic Safety g i Fixed Point g 2 Theory Space g 1

Asymptotic Safety g i UV repulsive, irrelevant Θ < 0 UV attractive, relevant Θ > 0 g 2 Theory Space g 1

Asymptotic Safety g i critical surface S g 2 Theory Space g 1

Asymptotic Safety g i = dim S = # Θ s>0 g 2 Theory Space g 1

Asymptotic Safety g i (Λ independence ) (# phys. parameters < ) (universality & predictivity ) g 2 Theory Space g 1

Asymptotic Safety FP regime: g i t g i = B i j (g j g j ) +... stability matrix g 2 g 1 B i j = β i(g ) g j critical exponents: { Θ } = spect( Bi j ) Theory Space

Mechanisms of Asymptotic Safety Dimensional Balancing

Non-Gaußian Fixed Points coupling ḡ with canonical dimension δ ḡ (D) in spacetime dimension D: [ḡ] = δ ḡ (D) critical RG dimension: δ ḡ (D RG, cr ) = 0 β g perturbative β function in D RG, crit, e.g.: β ḡ = b 0 ḡ 2 +... = if b 0 < 0: theory is asymptotically free (and safe)

Non-Gaußian Fixed Points away from D RG, cr (+ analyticity in D): β ḡ = b 0(D) k δḡ (D) ḡ2 +... dimensionless coupling in units of a given scale k g = ḡ k δ(ḡ;d) RG flow of dimensionless coupling: k d dk g β g = δ ḡ (D)g + b 0 (D) g 2

Non-Gaußian Fixed Points RG flow of dimensionless coupling: k d dk g β g = δ ḡ (D)g }{{} dimensional running +b 0 (D) g 2 }{{} fluctuation-induced running = NGFP g for: = g > 0 for: sign(δ ḡ (D)) = sign(b 0 (D)) δ ḡ (D), b 0 (D) < 0 β g g *

Example: Fermionic Systems for instance, Nambu Jona-Lasinio / Gross-Neveu in 3 dimensions: Γ k = d 3 x ψi / ψ + 1 2 λ( ψψ) 2 +..., [ λ] = 1 dim less coupling λ = k λ t λ = λ c λ 2 UV fixed point λ = 1/c critical exponent Θ = 1 = asymptotically safe proven to all orders in 1/N f expansion: (GAWEDZKI, KUPIAINEN 85; ROSENSTEIN, WARR, PARK 89; DE CALAN ET AL. 91)

Example: 3D Gross-Neveu model exact mapping to Yukawa model: ( ) Γ[ψ, σ] = d 3 Nf Z σ x 2 ( σ)2 + ψ(z ψ i / + i hσ)ψ + N f U(σ) (STRATONOVICH 58,HUBBARD 59) non-gaußian fixed point in Yukawa model: (BRAUN,HG,SCHERER 10)

Example: 3D Gross-Neveu model exact large-n f fixed point effective potential (BRAUN,HG,SCHERER 10) u (ρ) = 2d 8 ( 3d 4 ρ 2F 1 1 d 2, 1; 2 d (d 4)(d 2) ; 2 6d 8 ) d ρ d γ v d, ρ = σ2 2 exact critical exponents: Θ = 1, 1, 1, 3, 5, 7,... = dim S = 1 physical parameter

Example: 3D Gross-Neveu model critical exponents beyond large-n f (ν = 1/Θ 1 ) (BRAUN,HG,SCHERER 10) matches even with N f 0 limit (Ising model), excellent agreement with lattice simulations (available for N f = 2) (KARKKAINEN ET AL. 93)

Quantum Einstein Gravity (REUTER 96) effective action in Einstein-Hilbert truncation 1 Γ k = d D x g( R + 2Λ k ) 16πG k running dim less Newton s constant in D = 4: g = k 2 G k, Λ k = 0 t g = 2 g c g 2 + O(g 3 ), c = c[r k ] > 0 β g * g (DOU,PERCACCI 97) (SOUMA 99) (LAUSCHER,REUTER 01 02) (REUTER,SAUERESSIG 01) (NIEDERMAIER 02) (LITIM 03) (CODELLO,PERCACCI 06) (CODELLO,PERCACCI,RAHMEDE 07 08) (MACHADO,SAUERESSIG 07) (BENEDETTI,MACHADO,SAUERESSIG 09) (EICHHORN,HG,SCHERER 09) (DONKIN,PAWLOWSKI 12) (CHRISTIANSEN,LITIM,PAWLOWSKI,RODIGAST 12) (CHRISTIANSEN,MEIBOHM,PAWLOWSKI,REICHERT 15) (FALLS 15;CHRISTIANSEN 16) (DENZ,PAWLOWSKI,REICHERT 16)

Quantum Einstein Gravity (REUTER 96) effective action in Einstein-Hilbert truncation 1 Γ k = d D x g( R + 2Λ k ) 16πG k (DOU,PERCACCI 97) (SOUMA 99) (LAUSCHER,REUTER 01 02) (REUTER,SAUERESSIG 01) running G k and Λ k in D = 4: g = k 2 G k, λ = Λ k /k 2 e.g., sharp cutoff t g = (2 + η)g [5 ln[1 2λ] 2ζ(3) + 52 η ] t λ = 2(2 η)λ g π anomalous graviton dimension: η = 2g [ ] 18 + 5 ln(1 2λ) ζ(2) + 6 6π + 5g 1 2λ (NIEDERMAIER 02) (LITIM 03) (CODELLO,PERCACCI 06) (CODELLO,PERCACCI,RAHMEDE 07 08) (MACHADO,SAUERESSIG 07) (BENEDETTI,MACHADO,SAUERESSIG 09) (EICHHORN,HG,SCHERER 09) (DONKIN,PAWLOWSKI 12) (CHRISTIANSEN,LITIM,PAWLOWSKI,RODIGAST 12) (CHRISTIANSEN,MEIBOHM,PAWLOWSKI,REICHERT 15) (FALLS 15;CHRISTIANSEN 16) (DENZ,PAWLOWSKI,REICHERT 16)

RG flow of Quantum Einstein Gravity (REUTER,SAUERESSIG 01) critical exponents: ReΘ 1,2 2

From Quantum to Classical Gravity (HG,KNORR,LIPPOLDT 15) RG trajectories interconnecting the transplanckian and classical regimes exist : physical trajectory: gλ k "today" +3 10 122

Fate of two-loop counterterm operator expansion with background field method [PICTURE: F. SAUERESSIG]

Flow of Einstein-Hilbert + Goroff-Sagnotti effective action Γ k = Γ EH k + Γ GS k (HG,KNORR,LIPPOLDT,SAUERESSIG 16) Einstein-Hilbert Γ EH k = 1 16πG k d D x g( R + 2Λ k ) Goroff-Sagnotti: Γ GS k = σ k d D x g C µνρσ C ρσλτ C λτ µν dimensionless coupling constants g = k 2 G k, λ = Λ k /k 2, σ = σ k k 2

Flow of Einstein-Hilbert + Goroff-Sagnotti Fluctuations with GS vertex: Γ GS(2) σc µν αβ + O(R2 ) (HG,KNORR,LIPPOLDT,SAUERESSIG 16) BUT: trc µν αβ = 0 = Two-loop counterterm does not directly feed back into EH = Fixed point in Einstein-Hilbert sector is maintained asymptotic safety

Flow of Einstein-Hilbert + Goroff-Sagnotti Einstein-Hilbert: t g = (2 + η N ) g t λ = (η N 2) λ + g 2π ( (HG,KNORR,LIPPOLDT,SAUERESSIG 16) ) 5 1 2λ 4 5 6 η N 1 1 2λ Goroff-Sagnotti t σ = c 0 + (2 + c 1 ) σ + c 2 σ 2 + c 3 σ 3 (10 3 ) 3 terms g > 0 = c 3 > 0 = asymtotic safety extends to (irrelevant) GS term

Phase portrait (HG,KNORR,LIPPOLDT,SAUERESSIG 16) crossover to classical regime persists

Towards apparent convergence in Quantum Gravity (DENZ,PAWLOWSKI,REICHERT 16) systematic vertex expansion n 4 fully dynamical propagators = asymptotically safe fixed point = 3 relevant directions Λ R R 2 R µν R µν irrel. = promising path towards systematic scheme establishing asymptotic safety

Lesson FRG facilitates a search for quantizable theories candidates: RG fixed points Wilsonian renormalization extends beyond perturbative realm UV complete and predictive Asymptotic safety in fermion systems and in gravity... perturbatively nonrenormalizable, but nonperturbatively renormalizable Functional RG interconnects all physical scales... from Planck to Hubble

Lesson FRG facilitates a search for quantizable theories candidates: RG fixed points Wilsonian renormalization extends beyond perturbative realm UV complete and predictive Asymptotic safety in fermion systems and in gravity... perturbatively nonrenormalizable, but nonperturbatively renormalizable Functional RG interconnects all physical scales... from Planck to Hubble Why D=4?... no news yet

The flow of the Renormalization Group...... holds, I think, the supreme position among the laws of Nature. Sir Athur Eddington (1927) paraphrased by V. Rivasseau (2011)

The flow of the Renormalization Group... If someone points out to you that your pet theory of the universe is in disagreement with Maxwell s equations... Sir Athur Eddington (1927) paraphrased by V. Rivasseau (2011)

The flow of the Renormalization Group...... then so much the worse for Maxwell s equations. Sir Athur Eddington (1927) paraphrased by V. Rivasseau (2011)

The flow of the Renormalization Group... If it is found to be contradicted by observation... Sir Athur Eddington (1927) paraphrased by V. Rivasseau (2011)

The flow of the Renormalization Group...... well, these experimentalists do bungle things sometimes. Sir Athur Eddington (1927) paraphrased by V. Rivasseau (2011)

The flow of the Renormalization Group... But if your theory is found to be against the flow of the renormalization group... Sir Athur Eddington (1927) paraphrased by V. Rivasseau (2011)

The flow of the Renormalization Group... I can give you no hope; there is nothing for it but to collapse in deepest humiliation. Sir Athur Eddington (1927) paraphrased by V. Rivasseau (2011)