Gerhard Stucki, Sandor VörösV

Similar documents
High-Energy Photon Beam Therapy Dosimetry with Ionisation Chambers

NACP-02 perturbation correction factors for the NPL primary standard of absorbed dose to water in high energy electron beams

Dosimetry: Electron Beams

Referensdosimetri. Crister Ceberg Medical Radiation Physics Lund University Sweden

ABSORBED DOSE TO WATER MEASUREMENTS IN HIGH ENERGY ELECTRON BEAMS USING DIFFERENT PLANE PARALLEL CHAMBERS *

ERRATA LIST AND UPDATES TO IAEA TRS-398 (2000) 1

Code of Practice for the Absorbed Dose Determination in High Energy Photon and Electron Beams

PHITS calculation of the radiation field in HIMAC BIO

Air Kerma Primary Standard: Experimental and. Simulation Studies on Cs-137. J. Cardoso, L. Santos, C. Oliveira

Clinical Implementation of the IPEM 2003 Code of Practice for Electron Dosimetry

Ion-Chamber Survey Meter OD-02

Survey Meter OD-01 Address: Phone: Fax: URL:

Determination of Ambient Dose Equivalent at INFLPR 7 MeV Linear Accelerator

factors for NE2561 ionization chambers in 3 cm x 3 cm beams of 6 MV and 10 MV photons

Bureau International des Poids et Mesures

FOREWORD In 1987 the IAEA published a Code of Practice entitled Absorbed Dose Determination in Photon and Electron Beams: An International Code of

Reference Dosimetry for Megavoltage Therapy Beams: Electrons

Monte Carlo Simulation concerning Particle Therapy

Instrumentation for Verification of Dose

Instrumentation for Verification of Dose

TITLE: Air Kerma Primary Standard: Experimental and Simulation Studies on Cs-137

Study of the uncertainty in the determination of the absorbed dose to water during external beam radiotherapy calibration

arxiv: v2 [physics.ins-det] 17 Jun 2014

8/2/2012 UPDATING TG-51. When will it end? Part 1 - photon addendum. What are these updates? Photons: Electrons: More widespread revision required

Updating reference dosimetry a decade after TG-51

N. E. Ipe*, K. E. Rosser, C. J. Moretti, J. W. Manning and M. J. Palmer

Comparison between TG-51 and TRS-398: Electron Contamination Effect on Photon Beam Quality Specification.

COMPARISON OF ABSORBED DOSE TO AIR CALIBRATION FACTORS FOR A PARALLEL PLATE IONIZATION CHAMBER*

ABSORBED DOSE BEAM QUALITY FACTORS FOR CYLINDRICAL ION CHAMBERS: EXPERIMENTAL DETERMINATION AT 6 AND 15 MV PHOTON BEAMS

Electron beam water calorimetry measurements to obtain beam quality conversion factors

Radiator. CBM-TRD TDR review 2017, March 14th. Cyrano Bergmann WWU Muenster, Germany

KCDB-Identifiers: EURAMET.RI(I)-K1.2 / EURAMET.RI(I)-K4.2 / EURAMET.RI(I)-K5.1. Pilot laboratory: BEV (AT) Andreas Steurer 1), Wilhelm Tiefenboeck

Radiation measurements around ESRF beamlines

NPL s progress towards absorbed dose standards for proton beams

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7

ABSORBED DOSE IN ION BEAMS: COMPARISON OF IONISATION- AND FLUENCE-BASED MEASUREMENTS

Composite field dosimetry

PRIMARY STANDARDS of AIR KERMA for 60 CO and X-RAYS & ABSORBED DOSE in PHOTON and ELECTRON BEAMS. Malcolm McEwen

An introduction to IAEA TRS-483

Comparison of the air kerma standards for 137 Cs and 60 Co gamma-ray beams between the IAEA and the NIST. Ronaldo Minniti 1 and Ladislav Czap 2

Chapter 9: Calibration of Photon and Electron Beams

Commissioning of the Beta Secondary Standard (BSS2)

Bureau International des Poids et Mesures

Toward 0.5% Electron Beam Polarimetry. Kent Paschke University of Virginia

Comments on ICRU Report 64: Dosimetry of High-Energy Photon Beams based on Standards of Absorbed Dose to Water

Chapter V: Cavity theories

Implementation of the IAEA-AAPM Code of Practice for the dosimetry of small static fields used in external beam radiotherapy

Volume 1 No. 4, October 2011 ISSN International Journal of Science and Technology IJST Journal. All rights reserved

Key comparison BIPM.RI(I)-K3 of the air-kerma standards of the BEV, Austria and the BIPM in medium-energy x-rays

Measurement of induced radioactivity in air and water for medical accelerators

Metrological traceability and specific needs in: - IR measurement for radiation protection (RP) - IR measurement for radiotherapy (RT)

Key comparison BIPM.RI(I)-K4 of the absorbed dose to water standards of the METAS, Switzerland and the BIPM in 60 Co gamma radiation

AIRFLY: Measurement of the Air Fluorescence induced by electrons

Simulation and data analysis with the BGO-OD experiment

STUDY OF THE OPTICAL ABSORPTION COEFFICIENT VARIATION IN SODA-LIME AND BOROSILICATE GLASSES DUE TO THEIR EXPOSURE TO GAMMA-RAYS

ELECTRON INTERACTIONS

RADIOTHERAPY: GRAPHITE CALORIMETRY, A BASIS OF THE TRACEABILITY CHAIN

FOOD IRRADIATION TECHNOLOGY. BAEN-625- Advances in Food Engineering

) for Varian TrueBeam high-dose-rate therapy beams

Industrial Irradiators for Radiation Processing

Specific Accreditation Criteria Calibration ISO/IEC Annex. Ionising radiation measurements

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France.

Ionizing Radiation Dosimetry and Medical Physics

Project Memorandum. N N o. = e (ρx)(µ/ρ) (1)

Ideas for an Interferometric Thermometer

Electron screening effect in nuclear reactions and radioactive decays

Progress Report on Radiation Dosimetry Standards at NMIJ/AIST and Photon Energy Spectra Measured in Fukushima

Radiation Dosimetry. Electron interactions with matter. Important processes in radiotherapy. Contents. Alun Beddoe

Radiation Detection and Measurement

CONSIDERATION ON THE H p(10) AND H*(10) SECONDARY STANDARD CHAMBER CHARACTERISTICS

Dosimetry and beam calibration

Calibration of an alanine/agarose gel

Plastic Scintillation Detectors: Principle and Application to Radiosurgery

Key comparison BIPM.RI(I)-K7 of the air-kerma standards of the CMI, Czech Republic and the BIPM in mammography x-rays

7. a XV-2 high spatial resolution lm detector (Kodak). Important parameters of these detectors are given in Table1. The ionization chambers and the di

APPLIED RADIATION PHYSICS

Calorimetry in particle physics experiments

Transport under magnetic fields with the EGSnrc simulation toolkit

Ionizing Radiation Group K.B. Lee

The PETAL+ project X-ray and particle diagnostics for plasma experiments at LMJ - PETAL

QUESTION 8 GIVEN. Electron beam kinetic energy = 20 MeV Peak current = 1 A Beam pulse length = 1 microsecond Beam pulse frequency = 10 Hz

Measurements of Radiation Doses Induced by High Intensity Laser between and W/cm 2 onto Solid Targets in LCLS MEC Instrument

Absorption of X-rays

Key comparison BIPM.RI(I)-K1 of the air-kerma standards of the NIM, China and the BIPM in 60 Co gamma radiation

The electron accelerator of the ISOF-CNR Institute: its characteristics and use

Energy device for monitoring 4-10 MeV industrial electron accelerators

Mass Yield Distribution in the Photon-induced Fission of 232 Th, 238 U, nat Pb, and 209 Bi

Propose a structure for an alcohol, C4H10O, that has the following

ABSTRACT. Keywords: Megavoltage, dosimetry, TG51 protocol, TG21 protocol, parallel-plate chambers, crosscomparison. INTRODUCTION

Study of the influence of phantom material and size on the calibration of ionization chambers in terms of absorbed dose to water

IHEP-BINP CEPC accelerator collaboration workshop Beam energy calibration without polarization

PTRAN. McPTRAN.MEDIA, McPTRAN.CAVITY & McPTRAN.RZ. Hugo Palmans

Improvements to the UK Primary Standard Therapy Level Electron Beam Calorimeter

8/4/2016. Determination of small field output factors, advantages and limitations of Monte Carlo simulations

The Metrology Light Source - Status

IAEA TRS May 2001 (V.10A) PUBLISHED BY THE IAEA ON BEHALF OF IAEA, WHO, PAHO, AND ESTRO INTERNATIONAL ATOMIC ENERGY AGENCY IAEA

HERA II Physics. Both ZEUS & H1 have made major upgrades in order to utilise the increase in HERA luminosity to the full.

The first model was based only on the CANBERRA information which we. drawing. Canberra refused any other information.

CHARACTERISTICS OF DEGRADED ELECTRON BEAMS PRODUCED BY NOVAC7 IORT ACCELERATOR

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE

Transcription:

idgenössisches Justiz- und Polizeidepartement JPD Bundesamt für Metrologie MTAS xperimental k Q,Q0 lectron Beam Quality Correction Factors for the Types NACP02 and PTW34001 Plane-parallel Chambers Gerhard Stucki, Sandor VörösV Federal Office of Metrology

xperimental k Q,Q0 lectron Beam Quality Correction Factors for the Types NACP02 and PTW34001 Plane-parallel Chambers 1) Irradiation facilities 2) Primary standard (electron beam) 3) Ionisation chamber calibration 4) Results for k Q,Q Q,Q 0 5) Comparison with TRS 398 6) Conclusions AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 2

1) MTAS Irradiation Facilities lectron accelerator (microtron) M22 lectron energies 5.3 to 22.5 MeV Conventional treatment head 10 photon beams: TPR 20,10 = 0.639 to 0.802 10 electron beams: R 50 = 1.75 to 8.54 g cmg -2 60 Co irradiation unit ALCYON II AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 3

AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 4 MTAS microtron M22

MTAS Standard Radiation Qualities for High - nergy lectron Beams Nominal electron energy [MeV] Radiation index Q (=R 50 ) [gcm -2 ] z ref [gcm -2 ] 5.5 1.75 0.95 6.0 1.95 1.07 7.5 2.62 1.47 9.0 3.31 1.89 10.0 3.70 2.12 12.0 4.35 2.51 15.0 5.67 3.30 18.0 6.90 4.04 20.5 7.52 4.41 22.5 8.54 5.02 AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 5

2) Primary Standard : Chemical Dosimeter (Fricke) Total Absorption xperiment Irradiation experiment: D = F abs m (1) Fricke solution abs = e N e - pencil beam 5.3-22.5 MeV AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 6

2) Primary Standard : Chemical Dosimeter (Fricke) Total Absorption xperiment UV- spectrometer read-out: Fricke solution D F ε Δ A T G ρ = (2) l T e - pencil beam 5.3-22.5 MeV AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 7

2) Primary Standard : Chemical Dosimeter (Fricke) Total Absorption xperiment Irradiation experiment: UV- spectrometer read-out: D = F abs m (1) Fricke solution D F = ε Δ A T G ρ l T (2) abs = e N e - pencil beam 5.3-22.5 MeV (1) + (2) G = Δ A T ε ρ l T m abs (3) AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 8

Total absorption experiment, 6 MeV vessel AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 9

Total absorption experiment, 22 MeV vessel AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 10

Magnetic spectrometer beam exit NMR probe beam entrance AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 11

Corrections 1) abs = e N F T Bremsstrahlung (about 8 % @ 22 MeV) Backscattering Fringe field spectrometer nergy losses (entrance- and exit windows, air gap, beam line) AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 12

2) Primary Standard : Chemical Dosimeter (Fricke) Total Absorption xperiment Irradiation experiment: UV- spectrometer read-out: D = F abs m (1) Fricke solution D F = ε Δ A T G ρ l T (2) abs = e N F T e - pencil beam 5.3-22.4 MeV (1) + (2) G = Δ A T ε ρ l T m abs (3) AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 13

1.015 G / <G> versus Beam nergy Measurements June 1999 to March 2000 1.010 G / <G> [1] 1.005 1.000 0.995 0.990 0.985 1999-2000 Norm 5 7 9 11 13 15 17 lectron nergy [ MeV ] G f() within the given uncertainties AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 14

G / <G> versus Beam nergy Measurements June 1999 to March 2000 + 2007 1.015 1.010 G / <G> [1] 1.005 1.000 0.995 0.990 0.985 1999-2000 Norm 2007 5 7 9 11 13 15 17 lectron nergy [ MeV ] AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 15

3) Ionisation Chamber Calibration Against Fricke Solution e - Fricke e - IC Monitor Monitor z ref z ref z ref = 0.6 R 50-0.1 gcm -2 D F = ΔA ε Gρl (3) D W = N M (4) D, W, Q Q AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 16

NACP02 chamber P bag PMMA holder AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 17

Corrections 2) Fricke solution -> > water -> f e Perturbations / wall effect due to P foil, PMMA holder etc -> f e Temperatue, air pressure, humidity etc. -> Π f i AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 18

3) Ionisation Chamber Calibration Against Fricke Solution D W = ΔA S εgρl S f e (5) e - Monitor z ref = 0.6 R 50-0.1 gcm -2 Fricke = ΔA ΔA S T l T l S N e m f f T e (6) G cancels out, since G does not depend on beam energy e - Monitor IC N D,W,Q = ΔA S ΔA T l T 1 l M Πf S Q i N e f f m T e (7) z ref AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 19

4) Results k Q,Q0 lectron Beam Quality Correction Factors Definition of k Q,Q0 (experimental): k = Q, Q 0 N N D D, w, w, Q, Q 0 Definition of k Q,Q0 k Q, Q0 ( s = ( s w, air w, air ) ) Q Q0 (theoretical): ( W ( W air air ) ) Q Q0 p p Q Q0 AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 20

Measurements in 60 Co beam: Primary standard: water calorimeter Measurements in electron beams: Primary standard: chemical dosimeter (total absorption in Fricke solution) No correlations between primary standards u kq = 1 %, (k = 1) u k Q,Q0 = 0.5 %, (k = 1) u kq > u > u kq,q Q,Q0 AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 21

xperimental k Q,Q0 Factors NACP02 (13 chambers) Q 0 = 60 Co 0.96 0.95 0.94 0.93 0.92 k Q [1] 0.91 0.90 0.89 0.88 0.87 TRS 398 <xp> Fit to xp 0.86 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 R 50 [g/cm 2 ] u kq = 1 %, (k = 1) AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 22

xperimental k Q,Q0 Factors NACP02 (13 chambers) Q 0 = 60 Co Q 0 = 7.523 gcm -2 0.96 1.08 0.95 1.07 0.94 1.06 0.93 1.05 0.92 1.04 k Q [1] 0.91 0.90 k Q,7.523 [1] 1.03 1.02 0.89 1.01 0.88 0.87 TRS 398 <xp> Fit to xp 1.00 0.99 TRS 398 <> Fit 0.86 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 R 50 [g/cm 2 ] 0.98 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 R 50 [g/cm 2 ] u kq = 1 %, (k = 1) u kq,q0 = 0.5 %, (k = 1) AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 23

xperimental k Factors Q,Q0 NACP02 Chambers, Q 0 =7.523 gcm -2 1.08 1.07 1.06 1.05 kq,7.523 [1] 1.04 1.03 1.02 1.01 chamber to chamber variation: 1.9 % 1.00 0.99 Individual Chambers <> Fit 0.98 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 R 50 [g/cm 2 ] AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 24

xperimental k Q,Q0 Factors PTW 34001 (18 Chambers) Q 0 = 60 Co 0.97 0.96 0.95 0.94 0.93 kq [1] 0.92 0.91 0.90 0.89 0.88 TRS 398 <xp> Fit to xp 0.87 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 R 50 [g/cm 2 ] u kq = 1 %, (k = 1) AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 25

xperimental k Q,Q0 Factors PTW 34001 (18 Chambers) Q 0 = 60 Co Q 0 =7.523 gcm -2 0.97 1.08 0.96 1.07 0.95 1.06 0.94 1.05 kq [1] 0.93 0.92 0.91 kq,7.523 [1] 1.04 1.03 1.02 0.90 1.01 0.89 0.88 TRS 398 <xp> Fit to xp 1.00 0.99 TRS 398 <xp> Fit to xp 0.87 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 R 50 [g/cm 2 ] 0.98 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 R 50 [g/cm 2 ] u kq = 1 %, (k = 1) u kq,q Q,Q0 = 0.5 %, (k = 1) AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 26

1.08 xperimental k Factors Q,Q0 as a Function of R 50 Individual PTW34001 Chambers, Q 0 =7.523 gcm -2 1.07 1.06 1.05 kq,7.523 [1] 1.04 1.03 1.02 1.01 chamber to chamber variation: 1.2 % 1.00 0.99 Individual Chambers <xp> Fit to exp 0.98 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 R 50 [g/cm 2 ] AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 27

5) Comparison with TRS 398 k Q, Q = ( s w, air ) ( W air 0 ( s ) ( W ) w, air Q 0 air Q ) Q Q 0 p p Q Q 0 Assumptions IAA TRS 398, Appendix II: (W air ) Q :=(W air ) Q0 p Q := p cav p dis p wall p cel and p cav =p dis =p cel :=1 p Q = p wall p wall := 1, in electron beams p wall 1, if Q = 60 Co k = Q,Q 0 (s (s w,air w,air ) ) Q Q 0 k Q = (s (s w,air w,air ) ) 60 Q Co 1 p wall AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 28

0.96 NACP02: k Q Factors, xperiment <> TRS 398 0.95 0.94 0.93 0.92 kq [1] 0.91 0.90 0.89 0.88 0.87 TRS 398 <xp> Fit to xp 0.86 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 R 50 [g/cm 2 ] u kq = 1 %, (k = 1) <p wall (exp)> = 1.022, σ = 0.004 p wall (TRS 398, V_12, 5 June 2006) ) = 1.024 AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 29

1.010 NACP02: k Q,Q0 - exp / k Q,Q0 -TRS398 kq,q0 - exp / k Q,Q0-TRS 398 [1] 1.005 1.000 0.995 0.5 % xp / IAA 398, Q0=Co-60 xp / TRS 398, Q0=7.523 gcm-2 Linear ( xp / IAA 398, Q0=Co-60) Linear ( xp / TRS 398, Q0=7.523 gcm-2) 0.990 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 <>=1.0021, σ=0.0026 Q 0 = 60 Co AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 30 R 50 [g/cm 2 ] <>=1.0028, σ=0.0024 Q 0 = 7.523 gcm -2

PTW 34001 : k Q Factors, xperiment <> TRS 398 0.97 0.96 0.95 0.94 0.93 kq [1] 0.92 0.91 0.90 0.89 0.88 TRS 398 <xp> Fit to xp 0.87 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 u kq = 1 %, (k = 1) R 50 [g/cm 2 ] <p wall (exp)> = 1.013, σ = 0.004 p wall (TRS 398, V_12, AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 31 V_12, 5 June 2006 5 June 2006) ) = 1.010

PTW 34001: k Q,Q0 - exp / k Q,Q0 -TRS398 1.010 xp / IAA 398, Q0=Co-60 xp / TRS 398, Q0=7.523 gcm-2 Linear ( xp / IAA 398, Q0=Co-60) Linear ( xp / TRS 398, Q0=7.523 gcm-2) kq - exp / k Q-TRS 398 [1] 1.005 1.000 0.995 0.5 % 0.990 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 <> = 0.9967, σ = 0.0027 Q 0 = 60 Co 60 Co AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 32 R 50 [g/cm 2 ] <> = 1.0026, σ = 0.0027 Q 0 = 7.523 gcm -2

Conclusions <P Q > (electron beams) : constant (within uncertainty) <k Q,Q0 (exp)> in agreement with k Q,Q 0 NACP02 chamber: <P wall (exp)> = 1.022 in agreement with p wall (TRS 398 (V_12)) ) = 1.024 mean ratio k (exp)/k Q,Q0 Q,Q (TRS), Q 0 0 = 60 Co: 1.0021 (σ:( : 0.26 %) mean ratio k (exp)/k Q,Q0 Q,Q (TRS), Q 0 0 = 7.523 gcm -2 : 1.0028 (σ:( : 0.24 %) chamber to chamber variation: 1.9 %! (TRS 398 (V_12) (V_12)) PTW34001 chamber: <P wall (exp)> = 1.013 in agreement with p wall (TRS 398 (V_12)) ) = 1.010 mean ratio k (exp)/k Q,Q0 Q,Q (TRS), Q 0 0 = 60 Co: 0.9967 (σ:( : 0.27 %) mean ratio k (exp)/k Q,Q0 Q,Q (TRS), Q 0 0 = 7.523 gcm -2 : 1.0026 (σ:( : 0.27 %) chamber to chamber variation: 1.2 %! AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 33

AbsDos 2007 I Gerhard Stucki I 11.05.2007 I 34 Thank you for your attention!