Electromechanical System Dynamics, energy Conversion, and Electromechanical Analogies. Modeling of Dynamic Systems

Similar documents
TEST-12 TOPIC : SHM and WAVES

Physics 232 Exam I Feb. 14, 2005

Physics 232 Exam I Feb. 13, 2006

EE757 Numerical Techniques in Electromagnetics Lecture 9

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics

Boundary Value Problems of Conformable. Fractional Differential Equation with Impulses

Solutions Manual 4.1. nonlinear. 4.2 The Fourier Series is: and the fundamental frequency is ω 2π

1. Six acceleration vectors are shown for the car whose velocity vector is directed forward. For each acceleration vector describe in words the

By Tom Irvine December 27,

Approach Method to Evaluate the Total Harmonic Distortion for a System Has Multiple Nonlinear Loads

THE FORCED KORTEWEG DE VRIES EQUATION

RESPONSE OF A RECTANGULAR PLATE TO BASE EXCITATION Revision E W( )

A new approach to Kudryashov s method for solving some nonlinear physical models

Multifunctional Simulation Instrument for Control Systems Based on MATLAB GUI

Energy Density / Energy Flux / Total Energy in 1D. Key Mathematics: density, flux, and the continuity equation.

LEADER & ACHIEVER COURSE PHASE : MLA,MLB,MLC, MLD, MLE,MLF, MLG, MLH, MLI, MLJ, MAZA,MAZB & MAZC TARGET : PRE-MEDICAL 2016

Transient Solution of the M/M/C 1 Queue with Additional C 2 Servers for Longer Queues and Balking

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

Local Fractional Kernel Transform in Fractal Space and Its Applications

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead)

Chapter 6 - Work and Energy

Fundamentals of Automatics

Time-domain Aeroelastic Analysis of Bridge using a Truncated Fourier Series of the Aerodynamic Transfer Function

ECE 636: Systems identification

Reinforcement Learning

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c)

12 th Mathematics Objective Test Solutions

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case

Free Flapping Vibration of Rotating Inclined Euler Beams

Parameter estimation methods for fault detection and isolation

Name: Period: Date: 2.1 Rules of Exponents

Systematic and Optimal Design of CMOS Two-Stage Opamps with Hybrid Cascode Compensation

Dynamic response under moving concentrated loads of non uniform rayleigh beam resting on pasternak foundation

DIFFERENCE EQUATIONS

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS

VARIATIONAL ITERATION METHOD (VIM) FOR SOLVING PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS

Numerical Integration - (4.3)

MATRIX ALGEBRA, Systems Linear Equations

Introduction to Modern Control Theory

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

ON SOME FRACTIONAL PARABOLIC EQUATIONS DRIVEN BY FRACTIONAL GAUSSIAN NOISE

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula

One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of

The evaluation of P, and T from these formulae indeed requires that the energy E be expressed as a function of the quantities N, V and S.

Supplement: Gauss-Jordan Reduction

The state space model needs 5 parameters, so it is not as convenient to use in this control study.

E will be denoted by n

Electrical Engineering Department Network Lab.

Fourier Series and Applications

Chapter 10. Simple Harmonic Motion and Elasticity. Goals for Chapter 10

Math 153: Lecture Notes For Chapter 1

On the convergence of the VHPM for the Zakharove-Kuznetsov equations

Forced Oscillation of Nonlinear Impulsive Hyperbolic Partial Differential Equation with Several Delays

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

LIMITS AND DERIVATIVES

Optimal Estimator for a Sample Set with Response Error. Ed Stanek

4. Runge-Kutta Formula For Differential Equations

Solution: APPM 1360 Final Spring 2013

Fractional-Order Control and Simulation of Wind Turbines with Full-Power Converters

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models

EE Midterm Test 1 - Solutions

Special Functions. Leon M. Hall. Professor of Mathematics University of Missouri-Rolla. Copyright c 1995 by Leon M. Hall. All rights reserved.

LIMITS AND DERIVATIVES NCERT

Robust Dynamic Output Feedback Second-Order Sliding Mode Controller for Uncertain Systems

ALGEBRA II CHAPTER 7 NOTES. Name

Unit 1 Chapter-3 Partial Fractions, Algebraic Relationships, Surds, Indices, Logarithms

Chemistry 1B, Fall 2016 Topics 21-22

Extension of Hardy Inequality on Weighted Sequence Spaces

LOCUS 1. Definite Integration CONCEPT NOTES. 01. Basic Properties. 02. More Properties. 03. Integration as Limit of a Sum

Graphing Review Part 3: Polynomials

ECE 570 Session 7 IC 752-E Computer Aided Engineering for Integrated Circuits. Transient analysis. Discuss time marching methods used in SPICE

Optimization of Rotating Machines Vibrations Limits by the Spring - Mass System Analysis

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 21 Base Excitation Shock: Classical Pulse

Bifurcations of fractional-order diffusionless Lorenz system

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

A Kalman filtering simulation

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3

ECE-314 Fall 2012 Review Questions

S.E. Sem. III [EXTC] Applied Mathematics - III

15/03/1439. Lecture 4: Linear Time Invariant (LTI) systems

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by

Interpolation. 1. What is interpolation?

MODERN CONTROL SYSTEMS

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences

RATE LAWS AND STOICHIOMETRY (3) Marcel Lacroix Université de Sherbrooke

Chapter 2. Foundations of quantum mechanics

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations

THE GENERATION OF THE CURVED SPUR GEARS TOOTHING

Experiment 6: Fourier Series

CONTROL SYSTEMS. Chapter 3 : Time Response Analysis

International Journal of Computer Sciences and Engineering. Research Paper Volume-6, Issue-1 E-ISSN:

Cape Cod Community College

THE GENERALIZED WARING PROCESS

Spectral Simulation of Turbulence. and Tracking of Small Particles

Schrödinger Equation Via Laplace-Beltrami Operator

6.003: Signals and Systems. Feedback, Poles, and Fundamental Modes

Transcription:

Elecroecicl Syse Dyics, eergy Coersio, d Elecroecicl Alogies Modelig of Dyic Syses Modelig of dyic syses y e doe i seerl wys: Use e sdrd equio of oio Newo s Lw for ecicl syses Use circuis eores O s lw d Kircoff s lws: KCL d KVL Aoer pproc uilizes e oio of eergy o odel e dyic syse Lgrge odel

Meicl Modelig d Syse Dyics Newoi Mecics: Trsliol Moio Te equios of oio of ecicl syses c e foud usig Newo s secod lw of oio F is e ecor su of ll forces pplied o e ody; is e ecor of ccelerio of e ody wi respec o ieril referece fre; d is e ss of e ody To pply Newo s lw, e free-ody digr i e coordie syse used sould e sudied F

Force : Fcoulo Trsliol Moio i Elecroecicl Syses Cosiderio of fricio is esseil for udersdig e operio of elecroecicl syses Fricio is ery cople olier peoeo d is ery difficul o odel fricio Te clssicl Coulo fricio is rerdig friciol force for rsliol oio or orque for roiol oio cges is sig wi e reersl of e direcio of oio, d e pliude of e friciol force or orque re cos Viscous fricio is rerdig force or orque is lier fucio of lier or gulr elociy 3

Newoi Mecics: Trsliol Moio For oe-diesiol roiol syses, Newo s secod lw of oio is epressed s e followig equio M is e su of ll oes ou e ceer of ss of ody N; J is e oe of ieril ou is ceer of ss kg/ ; d α is e gulr ccelerio of e ody rd/s M jα 4

Te Lgrge Equios of Moio Aloug Newo s lws of oio for e fudel foudio for e sudy of ecicl syses, ey c e srigforwrdly used o derie e dyics of elecroecicl oio deices ecuse elecrogeic d circuiry rsies eior us e cosidered Tis es, e circui dyics us e icorpored o fid ugeed odels Tis c e perfored y iegrig orsiol-ecicl dyics d sesor/cuor circuiry equios, wic c e deried usig Kircoff s lws Lgrge cocep llows oe o iegre e dyics of ecicl d elecricl copoes I eploys e sclr cocep rer e ecor cocep used i Newo s lw of oio o lyze uc wider rge of syses F Wi Lgrge dyics, focus is o e eire syse rer idiidul copoes Γ, D, Π re e ol kieic, dissipio, d poeil eergies of e syse q i d Q i re e geerlized coordies d e geerlized pplied forces ipu d d dγ d q i dγ dqi dd d q i dπ dq i Q i 5

Elecricl d Mecicl Couerprs Eergy Mecicl Elecricl Kieic Mss / Ieri 05 / 05 jω Iducor 05 Li Poeil Griy: g Sprig: 05 k Cpcior 05 C Dissipie Dper / Fricio 05 B Resisor Ri 6

Meicl Model for Siple Pedulu Te kieic eergy of e pedulu o is : Γ Te poeil eergy is : Π g gl cosθ lθ y 0 T, θ l θ g y g cosθ 7

Elecricl Coersio Ipu Elecricl Eergy Oupu Mecicl Eergy Couplig Elecrogeic Field Irreersile Eergy Coersio Eergy Losses Eergy Trsfer i Elecroecicl Syses For roiol oio, of curre d gulr displcee, is : T Were W c e elecrogeic orque, ψdi; wereψ is e flu i e i, θ s fucio dw c i, θ dθ 8

Elecroecicl Alogies Fro Newo s lw or usig Lgrge equios of oios, e secodorder differeil equios of rsliol-dyics d orsioldyics re foud s j d d d θ d B B d d k s F dθ ksθ T d Trsliol dyics Torsiol dyics 9

For series RLC circui, fid e crcerisic equio d defie e lyicl reliosips ewee e crcerisic roos d circuiry preers d i R di d i d L d LC L d R s s 0 L LC Te crcerisic roos re s R L R L LC s R L R L LC 0

Resisce, R o Appied olge Curre i i Ri R i R

Iducce, L H Appied olge Curre i i i L L di 0 d d L

Cpcice, C F Appied olge Curre i i d C d i C d 0 i C 3

4 Trsliol Dper, B N-sec F d F B d d B B F F B B F F 0 Lier posiio /sec Lier elociy i Newo force Appied B

5 Trsliol Sprig, k N F s s s s d k F d df k d d F k k F F 0 Lier posiio /sec Lier elociy i Newo force Appied

6 Roiol Dper, B N--sec/rd F θ d T B d d B B T T B B T T 0 rd Agulr displcee rd/sec Agulr elociy N - Appied orque θ θ ω ω ω θ ω ω B

7 Roiol Sprig, k s N--sec/rd F θ s s s d k T d dt k d d T k B T T 0 rd Agulr displcee rd/sec Agulr elociy N - orque Appied ω θ ω θ θ θ ω ω k s

Mss Grouded, kg Appied orque T N - Lier elociy /sec Lier posiio F 0 d d F d d d F 8

Mss Grouded, kg Appied orque T N - Agulr elociy ω rd/sec Agulr displcee θ rd θ ω T ω J J dω d θ J d d 0 T d F 9

Sedy-Se Alysis Se: Te se of dyic syse is e slles se of riles clled se riles so e kowledge of ese riles 0, ogeer wi e kowledge of e ipu for 0, deeries e eior of e syse for y ie 0 Se Vriles: Te se riles of dyic syse re e riles kig up e slles se of riles deerie e se of e dyic syse Se Vecor: If se riles re eeded o descrie e eior of gie syse, e e se riles c e cosidered e copoes of ecor Suc ecor is clled se ecor Se Spce: Te -diesiol spce wose coordies es cosis of e is, is,, is, were,,, re se riles, is clled se spce Se-Spce Equios: I se-spce lysis we re cocered wi ree ypes of riles re ioled i e odelig of dyic syse: ipu riles, oupu riles, d se riles 0

Se Vriles of Dyic Syse 0 iiil codiio u Ipu Dyic Syse Se y Oupu Te se riles descrie e fuure respose of syse, gie e prese se, e eciio ipus, d e equios descriig e dyics

Elecricl Eple: A RLC Circui i c ξ C / Li / 0 C ; d d d c L i L C u i L c is e ol iiil eergy of e ework USE KCL e jucio 0 u C i C i L C L R

3 Te Se Differeil Equio Equio Bu Se Differeil A ẋ Du Oupu Equio C y u u d d u u u u u u Se Vecor D :direc rsissio ri C :Oupu ri; B :ipu ri A :Se ri;

4 Te Oupu Equio Equio Bu Se Differeil A ẋ Du Oupu Equio H y y y y y y y y H D :direc rsissio ri H :Oupu ri; B :ipu ri A :Se ri;

Eple : Cosider e gie series RLC circui Derie e differeil equios p e circuiry dyics dc C i d di L d dc i d C di d L c Ri Ri c V R i C L 5

6 Eple : Usig e se-spce cocep, fid e se-spce odel d lyze e rsie dyics of e series RLC circui Bu A L i L R L C d di d d d d d d d d i Ri L d di i C d d c c c c 0-0 e corol is Tese re e ses ;

Coiue wi Vlues Assue R o, L 0 H, d C 05 F, fid e followig coefficies Te iiil codiios re ssued o e c 0 c0 5 V; d I 0 i 0 5 A Le e olge cross e cpcior e e oupu; y c Te oupu equio will e Te epded oupu equio i y 0 A -0 0-0 0 0 0 d B 0 5 5 y i c [ 0] H ; H [ 0] y 0 i c [ 0] [ ] H Du Te circui respose depeds o e lue of 7