Measurement of 226 Ra, 232 Th and 40 K in Arum Grown on the Bank of Rupsha River, Khulna, Bangladesh Using HPGe Detector

Similar documents
Assessment of dose due to natural radio-nuclides in vegetables of high background radiation area in south-eastern part of Bangladesh

Estimating the natural and artificial radioactivity in soil samples from some oil sites in Kirkuk-Iraq using high resolution gamma rays spectrometry

Radioactivity measurements and risk assessments in soil samples at south and middle of Qatar

Canadian Journal of Physics. Determination of Radioactivity Levels of Salt Minerals on the Market

Activity Concentrations and Associated Gamma Doses of 238 U and 235 U in Jordan

The Pharmaceutical and Chemical Journal, 2017, 4(6): Research Article

Earth & Environmental Science Research & Reviews

Radiometric assessment of natural radioactivity levels around Mrima Hill, Kenya

Assessment of Natural Radioactivity Levels and Radiological Hazards of Cement in Iraq

Assessment of Natural Radioactivity Levels and Radiological Significance of Bottled Drinking Water in Bangladesh

Journal of American Science 2013;9(12)

GAMMA DOSE RATE, ANNUAL EFFECTIVE DOSE AND COLLECTIVE EFFECTIVE DOSE OF FOOD CROP PRODUCING REGION OF ONDO STATE, NIGERIA

Natural Radiation Map of the Sudan

Study of Natural and Artificial Radioactivity in some Food Grains

Analysis of natural radioactivity and artificial radionuclides in soil samples in the Najran region of Saudi Arabia

Jordan Journal of Physics

N.N. Jibiri * and P.E. Biere

Natural Radioactivity and Associated Dose Rates in Soil Samples of Malnichera Tea Garden in Sylhet District of Bangladesh

Radioactive Waste Management

1. Introduction. I. Jahan 1,*, M. L. Ali 2, M. A. Haydar 2, M. I. Ali 2, D. Paul 2, S. M. A. Islam 1

Determination of Absorbed and Effective Dose from Natural Background Radiation around a Nuclear Research Facility

RADIOACTIVITY IN CHEMICAL FERTILIZERS

Measurement of Radioactivity Levels and Assessment of Radiation Hazards for Plants Species Grown at Scrap Yard (B) at Al-Tuwaitha Nuclear Site (Iraq)

THE ANNUAL EFFECTIVE DOSE FROM NATURAL RADIONUCLIDES SOIL SURFACES OF UZHGOROD AREA

Study of Natural Radioactivity and Radiological Hazard of Sand, Sediment, and Soil Samples from Inani Beach, Cox s Bazar, Bangladesh

WHAT IS IONIZING RADIATION

ASSESSMENT OF RADIOACTIVITY CONCENTRATION IN SOIL OF SOME MINING AREAS IN CENTRAL NASARAWA STATE, NIGERIA

Ministry of Science and Technology, Baghdad, IRAQ

Radionuclides in food and water. Dr. Ljudmila Benedik

Measurement of Gamma Emitting Radionuclides in Environmental Samples of Talagang Tehsil-District Chakwal

J. Rad. Nucl. Appl. 2, No. 1, (2017) 17 Journal of Radiation and Nuclear Applications An International Journal

2016 No. 410 (W. 128) WATER, ENGLAND AND WALES. The Water Supply (Water Quality) (Amendment) Regulations 2016

Terrestrial gamma dose rates along one of the coastal highways in Sri Lanka

A Study on the Radioactivity Level in Raw Materials, Final Products and Wastes of the Phosphate Fertilizer Industries in Bangladesh

Aligarh Muslim University, Aligarh , India. INTRODUCTION

Natural Radioactivity in Dust Storm Samples from Al-Najaf, Iraq

Background Radiation in Najaf city, Iraq

Assessment of the natural radioactivity and its radiological hazards in some Egyptian rock phosphates

Key words: Gamma ray, Radioactivity, NOR, Abeokuta

ARTICLE IN PRESS. Available online at ScienceDirect. Journal of Taibah University for Science xxx (2015) xxx xxx

Nserdin A. Ragab 4. 2 Physics Department, Faculty of Sciences, Sudan University of Sciences and Technology, Sudan

Natural Radioactivity in Soil Samples For Selected Regions in Baghdad Governorate

Natural radioactivity levels in phosphate fertilizer and its environmental implications in Assuit governorate, Upper Egypt

Determination of natural radionuclides 40K, eu and eth in environmental samples from the vicinity of Aramar Experimental Center, Brazil

Natural environmental radioactivity and estimation of radiation exposure from saline soils

Occupational Exposures during the U-Exploration Activities at Seila Area, South Eastern Desert, Egypt

Determination of natural radiation contamination for some types of legumes available in the Iraqi markets

Gamma Ray Spectrometric Analysis of Naturally Occurring Radioactive Materials (NORMS) in Gold Bearing Soil using NaI (Tl) Technique

Alao A.Adewumi * Department of Physics, Federal College of Education (Tech) Omoku, Rivers State, Nigeria *Corresponding author:

Evaluation of Natural Radioactivity and its Radiation Hazards in Some Building and Decorative Materials in Iraq

Journal of Natural Sciences Research ISSN (Paper) ISSN (Online) Vol.4, No.12, 2014

Radiological significance of Egyptian limestone and alabaster used for construction of dwellings

Iranian Journal of Medical Physics

Natural radioactivity in soil at regions around the uranium mine in Abu-Skhair Najaf Province, Iraq

Nuclear units and applications

DETERMINATION OF ABSORBED DOSE RATES ABOVE SOILS AND ROCK OUTCROPS IN SELECTED AREAS OF ABEOKUTA, NIGERIA

Evaluation and analysis of 226 Ra, 232 Th, 40 K and radon exhalation rate in various grey cements

Measurement of Radioactivity in Soil Samples for Selected Regions in Thi-Qar Governorate-Iraq

CALIBRATION OF IN VITRO BIOASSAY METHODOLOGY FOR DETERMINATION OF 131 I IN URINE

Investigation of depleted uranium contamination in south west of Iraq

Environmental radiology assessment in Lahad Datu, Sabah

Investigation of Radioactivity Levels and Radiation Hazards for Plants Species Grown at Scrap Yard (A) at Al-Tuwaitha Nuclear Site (Iraq)

Transfer of Natural Radionuclides from Soil to Plants in North Western Parts of Dhaka

ESTIMATION OF RADIATION EXPOSURE ASSOCIATED WITH THE SALINE SOIL OF LAHORE, PAKISTAN

Available online at ScienceDirect. Physics Procedia 80 (2015 )

Sensitivity of the IRD whole-body counter for in vivo measurements in the case of accidental intakes

Complement: Natural sources of radiations

Evaluation of natural radioactivity in Selected Soil Samples from the Archaeological of Ur City by using HPGe detector

RADIOACTIVITY AND RADIOLOGICAL IMPACT ASSESSMENT IN OTA-DUMPING SITE, OGUN STATE, NIGERIA M.

Assessment of Radiation Dose from Radioactive Waste in Bangladesh and Probable Impact on Health

BASIC OF RADIATION; ORIGIN AND UNITS

Pelagia Research Library. Advances in Applied Science Research, 2017, 8(1):36-41

Studies of the Terrestrial outdoor Gamma Dose Rate Levels in Ogun-Osun River Basins Development Authority Headquarters, Abeokuta, Nigeria

Hazard Indices and Age Group Parameters of Powder Milk Consumed in Iraq

Radiological Risk Analysis of Soil inside the Ship Breaking Area, Chittagong, Bangladesh

Activities of the International Commission on Radiological Protection

Radiation dose to the eyes of readers at the least distance of distinct vision from Nigerian daily newspapers

Lower Bound of Optimization for the Public Considering Dose Distribution of Radiation due to Natural Background Radiation

Mapping the Baseline of Terrestrial Gamma Radiation in China

EVALUATION OF Ra, Th, K AND RADIUM EQUIVALENT ACTIVITY IN SAND SAMPLES FROM CAMBURI BEACH, VITÓRIA, ESPÍRITO SANTO, BRAZIL.

Journal of American Science 2014;10(2) Evaluation of Natural Radioactivity in Different Regions in Sudan

RADON EQUILIBRIUM MEASUREMENT IN THE AIR *

CURRENT CAPABILITIES OF THE IRD-CNEN WHOLE BODY COUNTER FOR IN VIVO MONITORING OF INTERNALLY DEPOSITED RADIONUCLIDES IN HUMAN BODY

Muhammad, Musa Auwal; Idris, Isa Funtua; Simon, Peter Malam and Arabi, Suleiman Abdullahi

PHYSICAL CHARACTERIZATION BY GAMMA (Γ) ENERGY SPECTROMETRY OF DRESSED ILMENITE ORE SAND FROM SOUTHEAST MADAGASCAR (FORT DAUPHIN)

The Influence of Mount Sinabung Volcanic Ash and Phoshate Fertilizers on Natural Radionuclide Content in Agricultural Soils

Measurement of Natural Radioactivity In Beach Sediments From North East Coast of Tamilnadu, India

Full length Research Article Natural Radioactivity and Hazard Assessment of Imported Ceramic Tiles in Nigeria Ademola J. A.

CHAPTER VI RADIOACTIVITY IN VEGETABLES AND WATER. Vegetables are essential components of human diet as they

RADIOLOGICAL ASSESSMENT OF DAM WATER AND SEDIMENTS FOR NATURAL RADIOACTIVITY AND ITS OVERALL HEALTH DETRIMENTS

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions

Identification of Naturally Occurring Radioactive Material in Sand

The Concentration Of Natural Radionuclides In Soil Samples From The Practical Year Agricultural Farmland, University Of Ibadan

Radioactivity measurements and radiation dose assessments in soil of Al-Qassim region, Saudi Arabia

NORM and TENORM: Occurrence, Characterizing, Handling and Disposal

Key words Surface radiation dose; Annual effective dose; Cancer risk

IOSR Journal of Applied Physics (IOSR-JAP) e-issn: Volume 8, Issue 5 Ver. III (Sep - Oct. 2016), PP

Background Gamma Radiation Mapping in Bangladesh: Radioactivity in the Surface Soil of BhawalGahr Area of Gazipur

Estimating radiation dose from building materials

Study of the radiological doses and hazard indices in soil samples from Karbala city, Iraq

Transcription:

ISSN 1022-8594 JUJS 2018 Jahangirnagar University Journal of Science Vol. 41, No.1, pp.57-66 Measurement of 226 Ra, 232 Th and 40 K in Arum Grown on the Bank of Rupsha River, Khulna, Using HPGe Detector Jolly Sultana 1*, Nur Nahar 1, Debasish Paul 2 and Idris Ali 2 1 Khulna university of Engineering and Technology, Khulna 2 Health Physics and Radioactive Waste Management Unit, Saver, Dhaka Abstract The radioactivity level in the Arum samples have been analyzed by gamma-ray spectrometry system using a High Purity Germanium detector of 20% relative efficiency, collected from different locations on the Bank of Rupsha River at Rupsha upazilla in Khulna,. A total of 8 Arum samples have been collected from 8 locations of the area under investigation to identify the probable radionuclides, activity concentrations and the radiological risks to human from intake of Arum vegetables. Natural radionuclides such as 226 Ra, 232 Th and 40 K have been found in the samples and no artificial radionuclide has been detected in any of the sample. In Arum samples activity concentrations have been found to be varied from BDL to 8.78 ± 3.08, average 5.77 ± 2.97 Bq Kg -1, BDL to 2.53 ± 4.32 Bq Kg -1 and 426.91 ± 107.23 to 1280.71 ± 133.89, average 758.298 ± 109.66 Bq Kg -1. The annual effective dose of Arum samples has been found that intake high effective dose of 40 K of 454.90 µsv y -1. The natural radioactivity concentrations of 226 Ra, 232 Th and 40 K for all samples are higher than the worldwide average values. These values of doses are much below the permissible level, and, therefore, there is no immediate health risk on general public due to natural radioactivity present in the samples of the study area. Keywords: Natural radionuclides, Arum, Activity concentrations, HPGe. Introduction Radiation is a part and parcel of our environment. There is no place or element in the universe without radiation. At the very beginning when there were no sign of lives in the universe, still was full of radiation [1]. Radiation and radioactivity are presence all the constituents of our environment such as soil, water, air, plants, wood, vegetables, food, fruits etc. all living and non living components [2]. Radiation is everywhere, but high level of radiation definitely harmful to human being [3]. Studies on radiation levels and radionuclide distribution in the environment provide vital radiological baseline information. Such information is essential in * E-mail of correspondence: jsa_kuet@yahoo.com

58 Sultana et. al. understanding human exposure from different sources of radiation. The present study is to determine the probable radionuclides, radioactivity concentration and annual effective dose in the agricultural crops i. e., Arum vegetables. The present work helps the determination of radiation dose received by the people from these crops to human food-chain. Methodology Arum samples have been collected from different parts on the Bank of Rupsha River at Rupsha Upazilla in Khulna City,. Using a GPS device geographical coordinates of sampling sites were recorded. The coordinates of the sampling sites of Rupsha river is in between 22 46 4.17 N to 22 50 31.86 N and 89 33 11.39 E to 89 36 5.85 E. A total of 8 Arum samples have been collected from in and around the Rupsha river located at Rupsha area, Khulna during the period of 30/04/2015 to 02/05/2015. Samples have been collected from equidistant locations with a distance of about 1 km from each other. The radionuclide contents and their activity levels of the each sample were measured using a calibrated HPGe detector of energy resolution of 2.0 KeV at 1.33 MeV of Cobalt-60 for a period of 10,000s at Health Physics, Atomic Energy Commission Saver, Dhaka. An error analysis of the data has also been performed. Moreover, based on the activity level and the annual intake of radionuclides through the consumption of these samples, the annual effective doses due to these radionuclides has also been estimated. The activity concentrations of each radionuclide in the sample was determined by using the count per second (cps) after subtracting the background counts from the gross counts for the same counting time under the selected photo peaks, weight of the sample, the photo-peak efficiency and the gamma intensity at a specific energy as [4]. cps A E I W Where, A = Activity concentrations of the sample in Bq kg -1 cps = The net counts per second = cps for the sample - cps for the background value (1)

Measurement of 226 Ra, 232 Th and 40 K in Arum Grown on the Bank of Rupsha River 59 E = The counting efficiency of the gamma energy, I = Absolute intensity of the gamma ray and W = Net weight of the sample (in kilogram). The errors in the measurements were expressed in terms of standard deviation (± σ), where σ is expressed as [3]: N T s 2 s N T Where, N s is the sample counts measured in time T s, and N b is the background counts measured in time T b. The standard deviation ± 2σ in cps was converted into activity in Bq kg -1 according to equation (01). Annual Effective Dose (AED): The annual effective dose due to the intake of radionuclides from food and vegetables samples was calculated using the following equation (Ajayi and Owolabi, 2008): b 2 b 1 2 (2) AED (µsv) = C I E 10 6 (3) Where, C is the activity concentration of radionuclides in the collected samples (Bq kg -1 ), I is the annual intake of food and vegetables, E is the ingested dose conversion factor for radionuclides (Sv Bq -1 ) (ICRP, 1977). The absorbed dose rate was converted into annual effective dose equivalent by using a conversion factor of 0.7 Sv Gy -1 recommended by the UNSCEAR 2000 and 0.2 for the outdoor occupancy factor by considering that the people on the average, spent 20% of their time in outdoors. The effective dose due to natural activity in the Arum samples was calculated by: E (msvyr -1 ) = D 24 365.25 0.2 0.7 10-6 (4) The detector efficiency calibration curve as a function of energy for solid matrixes is shown in Figure 1. The energy calibration of the detector was performed by 137 Cs and Cobalt-60 point sources. Table 1 shows daughter radionuclides for Radiun and Thorium with their energy. Results and Discussion The activity concentration of all the daughter nuclides of 226 Ra & 232 Th series in Arum samples has been given in Table 2. It is seen that the

60 Sultana et. al. concentration of 214 Pb, 214 B, 212 Pb, 208 Tl and 228 Ac has been found to be varied between BDL to11.12 ± 2.55 Bq kg -1, BDL to 6.44 ± 3.6 Bq kg, -1 BDL to 4.53 ± 1.21 Bq kg -1, BDL to 5.19 ± 3.57 Bq kg -1 and BDL to 1.84 ± 8.36 Bq kg, -1 respectively. On the other hand, the activity concentration of 226 Ra, 232 Th and 40 K in Arum samples has been found to be varied between BDL. to 8.78 ± 3.08 Bqkg -1, BDL to 2.53 ± 4.32 Bqkg -1, and 426.91 ± 107.23 Bq kg -1 to 1280.71 ± 133.89 Bq kg -1 respectively, with an average of 5.77 ± 2.97 Bq kg -1 of 226 Ra, maximum Arum samples have been found BDL for 232 Th and 758.298 ± 109.66 Bq kg -1 of 40 K The highest activity concentration of 1280.71 ± 133.89 Bq kg -1 for 40 K was found in Arum sample (sample ID Arum 2) collected from Khan Mohammadpur. The values of activity concentration in Arum samples are shown in Table 3. Annual intake of radionuclides in the Arum samples and estimated annual effective dose has been calculated (Table 4). Comparison of the present study with different parts of and the world for radionuclides in vegetables samples (Bq Kg -1 ) have also been given in Table 5. Figure 1: Efficiency curve

Measurement of 226 Ra, 232 Th and 40 K in Arum Grown on the Bank of Rupsha River 61 Table 1: Daughter radionuclides for 226 Ra and 232 Th with their energy Principal Daughter Intensity Energy (KeV) radionuclide product (yields) 214 Pb 295.18 0.1815 214 Pb 351.92 0.351 214 Bi 609.35 0.446 226 Ra 214 Bi 1120.5 0.147 214 Bi 1764.5 0.151 214 Pb 238.76 0.435 208 Tl 583.24 0.307 228 Ac 911.32 0.266 232 Th 228 Ac 969.19 0.1623 208 Tl 2613.2 0.356 40 K 1460.9 0.107 (a) (b) (c) Picture 1: (a) Sampling Locations, (b) Arum sample grown on the Bank of Rupsha River and (c) Arum sample dry in sun shine Picture 1 shows (a) Arum samples grown on the bank of Rupsha River, (b) drying process of Arum sample in sun shine and (c) Prepared samples. Figure 2 shows (a) Activity concentrations of daughters ( 214 Pb ; 214 Bi) of 226 Ra, (b) Activity concentrations of daughters ( 212 Pb. 208 Tl, 228 Ac) of 232 Th, (c) Activity concentrations of parents nuclei 226 Ra, 232 Th and 40 K, (d) Variation of estimated Annual Effective Dose respectively. The activity

62 Sultana et. al. concentration of 226 Ra in all sample of this area is higher than the other part of. According to a report by (UNSCER,2000) the total exposure per person resulting from ingestion of terrestrial radioisotopes should be 0.29 msv, of which 0.17 msv is from 40 K and 0.12mSv is from thorium and uranium series. In the present study it shows that people intake high effective Dose of 40 K of 454.90 µsvy -1 by Arum samples. The effective dose of 40 K (0.45 msv) is high than world safe value (0.29 msv) in Arum and and 232 Th (0.24 msv) is low World safe value. The natural radioactivity concentrations of 226 Ra, 232 Th and 40 K for all samples is higher than the worldwide average values. So further study should be needed with more samples as well as radioactivity in soil and water of this area should also be analyzed. Table 2: Activity concentrations of radioactive daughter elements of 226 Ra and 232 Th radioactive series in Arum samples under study. *BDL: Below Detection Level Sl Sampling Sample Activity concentration (Bq kg -1 ) No Location ID 214 Pb 214 Bi 212 Pb 208 Tl 228 Ac 1 Deara Arum 1 2.88 ± 2.95 BDL 0.79 ± 1.04 BDL BDL 2 Khanmd.pur Arum 2 2.47 ± 2.38 BDL 1.79 ± 1.2 BDL BDL 3 Aichgati Arum 3 11.12 ± 2.55 6.44 ± 3.6 0.69 ±.99 2.15 ± 1.25 BDL 4 Joypur Arum 4 5.662.21 BDL BDL BDL BDL 5 Jabusa Arum 5 BDL BDL 0.66 ±.96 BDL BDL 6 Elahipur Arum 6 6.84 ± 2.4 BDL 0.56 ± 1.03 5.19 ± 3.57 1.84 ± 8.36 7 Noeihati Arum 7 3.37 ± 2.17 2.15 ± 3.56 4.53 ± 1.21 2.43 ± 3.39 BDL 8 Kharabad Arum 8 2.85 ± 1.92 BDL 0.62 ±.9 4.85 ± 3.11 BDL Maximum 11.12 ± 2.55 6.44 ± 3.6 4.53 ± 1.21 5.19 ± 3.57 1.84 ± 8.36 Minimum BDL BDL BDL BDL BDL Average 5.03 ± 2.26 4.29 ± 3.58 1.38 ± 1.05 3.66 ± 2.83 1.84 ± 8.36

Measurement of 226 Ra, 232 Th and 40 K in Arum Grown on the Bank of Rupsha River 63 Table 3: Activity concentration of radionuclei 226 Ra, 232 Th and -40 K in Arum Samples SI Sampling Activity concentration (Bq kg -1 ) Sample ID NO. Location Ra, Th K 1 Deara Arum 1 BDL BDL 1034.32 ± 115.53 2 Khan md.pur Arum 2 BDL BDL 1280.71 ± 133.89 3 Aichgati Arum 3 8.78 ± 3.08 BDL 701.79 ± 106.97 4 Joypur Arum 4 BDL BDL 571.75 ± 102.71 5 Jabusa Arum 5 BDL BDL 638.94 ± 102.52 6 Elahipur Arum 6 BDL 2.53 ± 4.32 426.91 ± 107.23 7 Noeihati Arum 7 2.76 ± 2.9 BDL 783.99 ± 111.77 8 Kharabad Arum 8 BDL BDL 627.97 ± 96.68 Maximum 8.78 ± 3.08 2.53 ± 4.32 1280.71 ± 133.89 Minimum BDL BDL 426.91 ± 107.23 Average 5.77 ± 2.97-758.298 ± 109.66 Table 4: Annual intake of radionuclides and estimated annual effective Dose Sl Sampling Sample Annual Intake (usv) Annual effective dose (usv) No Location ID 226 Ra 232 Th 40 K 226 Ra 232 Th 40 K 1 Deara Arum 1 - - 15514.80 - - 77.57 2 Khan d.pur Arum 2 - - 19210.65 - - 96.05 3 Aichgati Arum 3 131.70-10526.85 36.88-52.63 4 Joypur Arum 4 - - 8576.25 - - 42.88 5 Jabusa Arum 5 - - 9584.10 - - 47.92 6 Elahipur Arum 6-37.95 6403.65-28.08 32.02 7 Noeihati Arum 7 41.40-11759.85 11.59-58.80 8 Kharabad Arum 8 - - 9419.55 - - 47.10 (a) (b)

64 Sultana et. al. (c) (d) Figure. 2: (a) Activity concentrations of daughters ( 214 Pb ; 214 Bi) of 226 Ra, (b) Activity concentrations of daughters ( 212 Pb. 208 Ti, 228 Ac) of 232 Th, (c) Activity concentrations of parents nuclei 226 Ra, 232 Th and 40 K (d) Variation of estimated annual effective dose Table 5: Comparison of the present study with different parts of and the world for radio nuclides in vegetables samples (Bq Kg -1 ). Region Samples Radio-nuclides (Bq Kg -1 ) References name Ra Th K Jamalpur, Ladies finger _ 8-248 1274-4860 Kustia, Redamaranth _ 5.5-23 870-1231 Tangail, Redamaranth _ 9 23.6 1109-1383 [6] Jessore, Redamaranth _ 4-19 204-366 Savar, Rice 2.86 26.61 1.93 42.63 307-498 [7], vegetables Cox s Bazar 80.95 83.53 1691.45 [8] Malaysia vegetables 17.5 65.2 446 [9] Nigeria vegetables 83.5-684.5 [10] Iran vegetables 67 0.5 91.73 [11] China vegetables 0.32-111 [12] World average Vegetables/ 0.03 0.0005 - [5] value Fruits Khulna 1112.65- [13] Papaya 13.29-77.96 0-26.2 1712.47 Khulna Arum O 8.78 0 2.53 426.91-1280.71 Present study

Measurement of 226 Ra, 232 Th and 40 K in Arum Grown on the Bank of Rupsha River 65 Conclusions The results have been indicated that only the natural radionuclides ( 226 Ra, 232 Th and 40 K) are present in the samples and no artificial radionuclide has been detected in the samples. The natural radioactivity concentrations and annul effective dose of 226 Ra, 232 Th and 40 K for all sample are higher than the worldwide average values. The estimated annual effective dose found in this study for an adult individual in is relatively higher than that of the world average value. However, these values of doses are much below the permissible level set by International Commission Radiological Protection [14], and, therefore, there is no immediate health risk on general public due to natural radioactivity present in the samples of the study area. The investigation conducted under the current study is very important concerning the radiological safety of the public and the environment in these areas. This study also provides current exposure level and base-line database for the development of future guidelines in the country. References [1] Kannan, V., Rajan, M.P., Lyengar, M. P. and Ramesh, R. (2002), Distribution of natural and anthropogenic rodionuelides in soil and beachsand Samples of Kalpakkam (India), Appl. Rodiat. Isot. Vol. 57, pp 109-119. [2] Kaplan I., (1964), Nuclear Physics, Department of Nuclear Engineering, MIT, 2nd Edition,, Addison-Wesley Series in Nuclear Science and Engineering, Addison-Wesley Publishing Company, Inc. [3] Knoll, G.F. (1989), Radiation Detection and Measurement, 3rd edition, John Wiley and Sons, pp 388-89. [4] Usif, M. A., and Taher, A. E., (2008), Radiological assessment of Abu-Tartur phosphate, western desert Egypt, Radiation Protection Dosimetry, Vol. 130, pp 228-235. [5] UNSCEAR, (2000), Sources and effects of ionizing radiation, Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly, UN, N.Y, USA, Annex. [6] Yeasmin, S., et. al., (2012), Distribution of radioactive levels of environmental samples from different upazilla of, Journal of Physics, II.

66 Sultana et. al. [7] Imrose, J., (2015), Study on the distribution of natural and probable artificial radioactivity in the environmental element in the low-land area of Ashulia, Saver. M. Sc Thesis, Department of Physics, Jhangirnagar University, (May). [8] Ashna, I., Begum, A., Yeasmin, S., (2014), Assessment of dose due to natural radionuclides in vegetables of high background radiation area in south-eastern part of. International Journal of Radiation Research, July, Vol. 12, No 3. [9] Hariandra, M., Amin, Y. M. (2008), Transfer of Radionuclides K-40, Th-232 and Ra-226 from Mining Soil to Sawi (Japanese Mustard), CURRENT ISSUES OF PHYSICS IN MALAYSIA: National Physics Conference 2007 - PERFIK 2007. AIP, Conference Proceedings, Vol. 1017, pp. 245-249. [10] Jibiri N. N, Farai I. P, Alausa S.K. (2007), Activity concentrations of (226) Ra, (228) Th, and (40) K in different food crops from a high background radiation area in Bitsichi, Jos Plateau, Nigeria, Radiat Environ Biophys. [11] Vahid, C., and Elham, S., (2013), Measurement of 226 Ra, 232 Th, 137 Cs and 40 K activities of Wheat and Corn Products in EIlam Province Iran and Resultant Annual Ingestion Radiation Dose, Iran J Public Health. Vol. 42(8), pp 903 914. [12] Tuo F., Zhang Q., Zhou Q., Xu C., Zhang J, Li W, Zhang J, Su X.( 23 Feb 2016), Measurement of (238)U, (228)Ra, (226)Ra, (40)K and (137)Cs in foodstuffs samples collected from coastal areas of China,; 111:40-4. doi: 10.1016/j.apradiso. [13] Nahar, N., (2016): Study of radioactivity levels in different kinds of food stuff grown on the bank o Rupsha river and its impact on human health, M.Sc. Thesis, Department of Physics, Khulna University of Engineering and Technology, April. [14] ICRP, (1977), Publication 26, Recommendations of the International Commission on Radiological Protection, Volume 1, No. 3, Published in the Annals of the ICRP, Pergamon Press, Oxford.