Inbuilt Modbus Protocol

Similar documents
1014/15 R Float Volt - - Voltage, L-L, ave of 3 phases 1016/17 R Float Volt - - Voltage, L-N, ave of 3 phases

KNX communication protocol

UMG 96 RM Basic unit Extension UMG 96RM-PN Extension UMG 96RM-P Extension UMG 96RM-CBM Power Analyser

MODBUS Protocol for CS141 network card families

DEIF A/S. MTR-2-015, -315, -415, MTR-2F-215 Multi-configurable AC transducer C. Modbus Communication Manual.

89BSD CALCULATION METHOD APPLICATION NOTE

MAN-SGY-012-V11 EC 5195 Fairford Electronics Ltd - Synergy Modbus RTU Programming Manual - 22nd February 2016 Page 1 of 59.

Communication and data formats

Electronic pressure-independent characterised control valve with energy monitoring

VISY-Quick Communication Protocol

Data byte 0 Data byte 1 Data byte 2 Data byte 3 Data byte 4. 0xA Register Address MSB data byte Data byte Data byte LSB data byte

Motors Automation Energy Transmission & Distribution Coatings. Servo Drive SCA06 V1.5X. Addendum to the Programming Manual SCA06 V1.

E51 MODBUS POINT MAP

About the Sens it Payload

PAX2S Modbus Register Table REVISED 2/20/12 LP0894A

- compressed air plants (refrigerating/adsorption dryers) - granulate dryers - medical gases - non-corrosive gases, e. g. nitrogen

Communication description SCYLAR -HEAT. Communication description

Leica TPS1200 GeoCOM Getting Started Manual

3-phase bidirectional energy meter with serial S-bus interface

MS BA01. PHT Combination Sensor SPECIFICATIONS

MKIII -MB USER S GUIDE 09/18/18. Rev. 3

Unit certificate for solar inverters

User's Guide. DISTO online. Leica Geosystems

Application Note - SolarEdge Inverters, Power Control Options

POINTS OF CAUTION BEFORE USE...

AN2970 Application note

Multimedia Systems WS 2010/2011

MP3 Digital Voice Module Model No.: VCM-SD Rev.A3. Content

O P E R A T I N G M A N U A L

Open Metering System Specification

ECE20B Final Exam, 200 Point Exam Closed Book, Closed Notes, Calculators Not Allowed June 12th, Name

605 series / Relion Protection and Control. Feeder Protection and Control/ Feeder Protection REF601/REJ601 Modbus Communication Protocol Manual

Multichannel Brake Infrared Temperature Sensor - Datasheet

S u b m e t e r N E R I S ( M ) D V H 5x. MAPPING

5 V 64K X 16 CMOS SRAM

EECS150 - Digital Design Lecture 23 - FFs revisited, FIFOs, ECCs, LSFRs. Cross-coupled NOR gates

Differential Pressure Sensor

Weather Station P03/3-Modbus-GPS for Modbus

MS BA01 Miniature Altimeter Module

CiA Draft Standard Proposal 447

AN2044 APPLICATION NOTE

Recovering MC56F8300 Family Devices from Extreme RFI

CBR-PB3-ATM ProBridge. User Manual

Information Technology Solutions Neptune Datasheet

MAGPOWR TENSION CONTROL DLCA NET-SLIM. User Manual. Digital Load Cell Amplifier MI 850A358 1 A

TYPE RECALL 1 RECALL 2 RECALL 3 RECALL 4, 8 RECALL 5, 7 RECALL 6 FORMAT #23 #30 #0 #7 #23 #20 MODE RUN TRACK POINT RUN RUN INC PARITY BAUD

WE TAKE BUILDING AUTOMATION PERSONALLY MANUAL PRESIGO PDT

BERMAD Irrigation. BIC2000 Weather Station SYSTEM GUIDE VERSIONS : BIC ; PC 4.90

CapaciTorr HV 200 HIGHLIGHTS

43iQ MODBUS Register Table

Appendices. RS232 Commands. RS232 Connector. Pin No Specification 1 N/A 2 RXD 3 TXD 4 DTR 5 GND 6 DSR 7 RTS 8 CTS 9 N/A.

GENERATOR INTERCONNECTION APPLICATION

Rain Watch TM Set up Manual. IC System with Rain Bird IC CONNECT

Remote Display Unit. Installers Handbook Copyright 2001 AirSense Technology Ltd. LM Remote Display Unit Installers Handbook Issue 1.

Cryptographic Hashing

King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

Using A54SX72A and RT54SX72S Quadrant Clocks

Installation Instructions: ICON Anti-Condensate Controller

M850-LTHN MultiPower Installation and Operation Manual (Revision 1.0.0) July 2014

AN922 Application note

ISSP User Guide CY3207ISSP. Revision C

CAL GAUSS CALIBRATION MAGNET

1. Write a program to calculate distance traveled by light

Electric Duct Heater. HECB Series Modbus Communication Module User Guide. HECB-Modbus Guide docx

Drive electronics pq12

Software BioScout-Calibrator June 2013

IO-Link Data Reference Guide: K50 Pro Touch Button with IO-Link

Application Note - SolarEdge Inverters, Power Control Options

Infrared Temperature Sensor - Datasheet

Standard Products ACT Channel Analog Multiplexer Module Radiation Tolerant & ESD Protected

Model M3484 Industrial Line Noise Filter Module Customer Reference Manual

ABB SpA COMEM Operating Unit Strada Regionale 11, Signolo Montebello Vicentino (VI) - ITALY

ECE260: Fundamentals of Computer Engineering

Operation Manual Contents subject to change without notice

N-channel TrenchMOS logic level FET

65 V, 100 ma NPN/PNP general-purpose transistor. Table 1. Product overview Type number Package NPN/NPN PNP/PNP Nexperia JEITA

OPERATING MANUAL. EIB-Kombisensor AS 315 N

OP-02 / OP-03 / OP-04

Getting Connected. Chapter 2, Part 2. Networking CS 3470, Section 1 Sarah Diesburg

5.0 V 256 K 16 CMOS SRAM

Standard Products ACT Channel Analog Multiplexer Module Radiation Tolerant & ESD Protected

Location Intelligence Infrastructure Asset Management. Confirm. Confirm Mapping Link to ArcMap Version v18.00b.am

ic-wg BLCC WGC PACKAGE SPECIFICATION

PSMN004-60B. N-channel TrenchMOS SiliconMAX standard level FET. High frequency computer motherboard DC-to-DC convertors

PSMN B. N-channel TrenchMOS SiliconMAX standard level FET. High frequency computer motherboard DC-to-DC convertors

Flow control unit FCU-400

Infrared Tire Temperature Sensor, IRTS-V2 - Datasheet

ic-wg BLCC WGC OPTO ENCODER PACKAGE SPECIFICATION

MODEL: R7K4FML3. Remote I/O R7K4F Series. POWER INPUT DC power R: 24 V DC (Operational voltage range: ±10 %; ripple 10 %p-p max.)

Figure 4.9 MARIE s Datapath

IES LM MEASUREMENT AND TEST REPORT For. ATG Electronics Corp 9020 Rancho Park Court Rancho Cucamonga, CA Test Model: HBUF-100W-50

Lamp and Control Panel (Lamp Panel)

IES LM MEASUREMENT AND TEST REPORT For. ATG Electronics Corp Rancho Park Court Rancho Cucamonga, CA Test Model: HBUF-150W-50

CapaciTorr HV Pumps. making innovation happen,together

3.3 V 256 K 16 CMOS SRAM

POLE WHEELS. Where the shaft is very large a cost-effective alternative is to add a pole band (see following section).

User's Manual altimeter V1.1

SA Technical Datasheet v2.1.doc

FATEK. FBs-1HLC. Precision Load Cell Module. Operation manual V1.1 06/07/2017 FATEK AUTOMATION CORP.

Replacing ATA5567/T5557/ TK5551 with ATA5577. Application Note. Replacing ATA5567/T5557/TK5551 with ATA5577

Transcription:

Inbuilt Modbus Protocol Technical description Revision 1.1 Page 1

1. Revisions History... 3 2. Preface... 3 2.1. Overview... 3 2.2. Default settings... 3 3. Modbus commands... 3 3.1. Read holding registers (function code 03)... 4 3.1.1. Frame layout... 4 3.2. Write single register (function code 06)... 4 3.2.1. Frame layout... 4 4. Internal registers... 5 4.1. General read-only registers... 6 4.2. Writable parameters and command... 6 4.3. Readable values (energies and other measurements)... 7 4.4.1. Values stored as Integer values... 8 5. References... 9 Page 2

1. Revisions History Revision 1.0 Revision 1.1 original version We introduced some corrections to the document (several errors in the protocol descriptions, without any real modification to the protocol itself). 2. Preface 2.1. Overview The present guide describes the RTU Modbus Protocol when implemented inside the Energy Meters, Power Meters and LED Network Analyzers. In these meters, ASCII Protocol is not supported The physical layer is standard RS-485. The link parameters are: xxx, N, 8, 1 (xxx is baudrate, N menas No parity, 8 means 8 bits per byte, 1 means 1 stop bit). Modbus address and Modbus Baud-rate are configurable by means of keyboard/display interface and by means of Modbus protocol itself. The Modbus address can be selected in the range 1 247. The Modbus Baud rate is selectable among one of the following: 1200, 2400, 4800, 9600, and 19200. Some recent Power and Energy Meters accept also a baud rate of 38400 baud. Refer to the product instruction manual for Modbus Address and Modbus Baud Rate modification by means of display/keyboard. When you order an product with inbuilt Modbus, you can choose between Big Endian format and Little Endian format. In the following table you can see the products with inbuilt Modbus, including their available baud rates: Energy Meter 1phase 80A NA 1200...38400 baud Energy Meter 1phase 80A NA 1200...38400 baud Energy Meter 1phase 125A NA 1200...38400 baud Energy Meter 1phase 125A DRM-125-1P-MOD 1200...38400 baud Energy Meter 3phase../1A NA 1200...38400 baud Energy Meter 3phase../1A NA 1200...38400 baud Energy Meter 3phase../5A NA 1200...38400 baud Energy Meter 3phase../5A DRB-5-3P-MOD 1200...38400 baud Energy Meter 3phase 80A NA 1200...19200 baud Energy Meter 3phase 80A DRB-80-3P-MOD 1200...19200 baud Network Analyzer 3phase../5A NA 1200...19200 baud Network Analyzer 3phase 80A NA 1200...19200 baud Power Meter 3phase../5A NA 1200...38400 baud Power Meter 3phase 63A NA 1200...38400 baud Note: Meter. In the rest of this document, we will use the term counter to indicate a generic Energy Meter, Network Analyzer or Power 2.2. Default settings These are the factory default settings: Protocol: Modbus RTU (fixed) Modbus Address: 001 Baud rate: 19200 bit/s Parity: None (fixed) Stop bits: 1 (fixed) 3. Modbus commands The protocol supports only two type of commands, one for reading the register values, one for writing the configuration registers. The reading is only possible for a block of registers (the command for a single register reading is not supported). Page 3

3.1. Read holding registers (function code 03) This function code is used to read the contents of a contiguous block of holding registers in a remote device. The Request frame specifies the starting register address and the number of registers. The register data in the response message are packed as two bytes per register, with the binary contents left justified within each byte. In case of Little Endian format, the first byte contains the low order bits and the second contains the high order bits; In case of Big Endian format, the first byte contains the high order bits and the second contains the low order bits. In many cases, a value is stored in more than one register (more than one word of 16 bits). For example, the active energy is represented using 4 registers (4 words or 8 bytes). Please refer to the chapter Internal registers for details. Warning! Because of the limited size of a Modbus frame, not all the internal registers can be sent on a single reading request. This means that a complete snapshot can only be acquired performing more (three) read holding registers calls with different starting address. Example: poll nr. 1 start 4099 nr. of registers 100 poll nr. 2 start 4197 nr. of registers 100 poll nr. 3 start 4297 nr. of registers 10 (16 in some models) 3.1.1. Frame layout ADR 03 STh STl NRh NRl CRCh CRCl ADR Modbus Address 03 Read holding register function code (fixed) STh Starting address register (high order bits) STl Starting address register (low order bits) NRh Number of registers (high order bits) NRl Number of registers (low order bits) CRCh Modbus Checksum (high order bits) CRCl Modbus Checksum (low order bits) 3.2. Write single register (function code 06) This function code is used to write a single holding register in a remote device. The Request specifies the address of the register to be written. The normal response is an echo of the request, returned after the register contents have been written. 3.2.1. Frame layout ADR 06 RAh RAl RVh RVl CRCh CRCl ADR Modbus Address 06 Write single register function code (fixed) RAh Register address (high order bits) RAl Register address (low order bits) RVh Register value (high order bits) RVl Register value (low order bits) CRCh Modbus Checksum (high order bits) CRCl Modbus Checksum (low order bits) Page 4

4. Internal registers This is the complete list of the internal registers. Register Address Designation DRB-5-3P- MOD DRB-80-3P- MOD counter types NA NA DRM-125-1P- MOD Notes 4099 Device type x x x 4100 Firmware version x x x 4101 Range overflow alarm x x x 4102 Running tariff x x x 4104 PID (Product Identification) bytes 1 and 2 x x x General 4105 PID bytes 3 and 4 x x x read-only 4106 PID bytes 5 and 6 x x x registers 4107 PID bytes 7 and 8 x x x 4108 PID bytes 9 and 10 x x x 4109 PID bytes 11 and 12 x x x 4110 PID bytes 13 and 14 x x x 4111 Read-only not used register. x x x always=0x0000 4112 Speed x x x writable parameter 4113 Read-only not used register. x x x always=0x0000 4114 Read-only not used register. x x x always=0x0000 4115 Modbus address x x x writable parameter 4116 Read-only not used register. x x x always=0x0000 4117 Value format x x x writable parameter 4118 Reset energy counters command x x x writable command 4119 Active Energy 1st phase T1, imp (kwh) x x x 4123 Active Energy 2nd phase T1, imp (kwh) x x 4127 Active Energy 3rd phase T1, imp (kwh) x x 4131 Active Energy Σ T1, imp (kwh) x x 4135 Active Energy 1st phase T2, imp (kwh) x x x 4139 Active Energy 2nd phase T2, imp (kwh) x x 4143 Active Energy 3rd phase T2, imp (kwh) x x 4147 Active Energy Σ T2, imp (kwh) x x 4151 Active Power 1st phase (kw) x x x 4153 Active Power 2nd phase (kw) x x 4155 Active Power 3rd phase (kw) x x 4157 Active Power Σ (kw) x x 4161 Active Energy 1st phase T1, exp (kwh) x x x 4165 Active Energy 2nd phase T1, exp (kwh) x x 4169 Active Energy 3rd phase T1, exp (kwh) x x 4173 Active Energy Σ T1, exp (kwh) x x 4177 Active Energy 1st phase T2, exp (kwh) x x x Readable 4181 Active Energy 2nd phase T2, exp (kwh) x x values (Energies and 4185 Active Energy 3rd phase T2, exp (kwh) x x other 4189 Active Energy Σ T2, exp (kwh) x x istantaneous 4193 Reactive Energy 1st phase T1, imp (kvarh) x x x measurements) 4197 Reactive Energy 2nd phase T1, imp (kvarh) x x 4201 Reactive Energy 3rd phase T1, imp (kvarh) x x 4205 Reactive Energy Σ T1, imp (kvarh) x x 4209 Reactive Energy 1st phase T2, imp (kvarh) x x x 4213 Reactive Energy 2nd phase T2, imp (kvarh) x x 4217 Reactive Energy 3rd phase T2, imp (kvarh) x x 4221 Reactive Energy Σ T2, imp (kvarh) x x 4225 Reactive Energy 1st phase T1, exp (kvarh) x x x Page 5

4229 Reactive Energy 2nd phase T1, exp (kvarh) x x 4233 Reactive Energy 3rd phase T1, exp (kvarh) x x 4237 Reactive Energy Σ T1, exp (kvarh) x x 4241 Reactive Energy 1st phase T2, exp (kvarh) x x x 4245 Reactive Energy 2nd phase T2, exp (kvarh) x x 4249 Reactive Energy 3rd phase T2, exp (kvarh) x x 4253 Reactive Energy Σ T2, exp (kvarh) x x 4257 Reactive Power 1st phase (kvar) x x x 4259 Reactive Power 2nd phase (kvar) x x 4261 Reactive Power 3rd phase (kvar) x x 4263 Reactive Power Σ (kvar) x x 4267 L1-N voltage (V) x x x 4269 L2-N voltage (V) x x 4271 L3-N voltage (V) x x 4273 L1-L2 voltage (V) x x 4275 L2-L3 voltage (V) x x 4277 L3-L1 voltage (V) x x 4279 phase1 current (A) x x x 4281 phase2 current (A) x x 4283 phase3 current (A) x x 4285 apparent power phase1 (kva) x x x 4287 apparent power phase2 (kva) x x 4289 apparent power phase3 (kva) x x 4291 apparent power Σ (kva) x x 4295 power factor cos φ phase1 x x x 4297 power factor cos φ phase2 x x 4299 power factor cos φ phase3 x x 4301 power factor cos φ Σ x x 4303 frequency (Hz) x x x 4305 Total Harmonic Distortion in % (V L1) x 4307 Total Harmonic Distortion in % (V L2) x 4309 Total Harmonic Distortion in % (V L3) x 4311 Total Harmonic Distortion in % (I L1) x 4313 Total Harmonic Distortion in % (I L2) x 4315 Total Harmonic Distortion in % (I L3) x 4.1. General read-only registers These registers store general read-only information. Register Designation Description 4099 Device type Code that identifies the type of device 1 Three phase counter 3 Single phase counter 4100 Firmware revision Firmware revision of the counter 4101 Range overflow alarm The register is set by the counter if it has the detected a value over the voltage or the current nominal threshold. The lowest order byte of the register is bit-coded as follows: n.u. n.u. OFV3 OFI3 OFV2 OFI2 OFV1 OFI1 Where: OFV Voltage overflow (on phase 1, 2 and 3) OFI Current overflow (on phase 1, 2 and 3) n.u. Not Used 4102-03 Running tariff 0 Tariff 1 is currently in use 1 Tariff 2 is currently in use 4104-10 PID Part number identification string (a maximum of 14 bytes) 4.2. Writable parameters and command Page 6

Three registers are used for the Modbus configuration. One register (4118) is dedicated to reset the energy registers internal to the counter (assuming that it is not MID certified) Register Designation Description 4112 Speed One of the following: 1200, 2400, 4800, 9600, 19200, 38400 4115 Modbus address From 1 to 247 4117 Value format 0 Numeric values are coded as floating point 32 bit 1 Numeric values are coded as integers (see par. 4.4) 4118 Reset energy counters command. 1 Reset active energy registers The command is accepted by not 2 Reset reactive energy registers MID certified counters 3 Reset all the registers 4.3. Readable values (energies and other measurements) These registers holds the electrical values generated by the counter. The number of available readable values depends on the counter type. Register Designation Counter types Length address DRB-5-3P- MOD NA DRM-125- DRB-80- NA 1P-MOD (bytes) 3P-MOD 4119 Active Energy 1st phase T1, imp (kwh) x x x 8 4123 Active Energy 2nd phase T1, imp (kwh) x x 8 4127 Active Energy 3rd phase T1, imp (kwh) x x 8 4131 Active Energy Σ T1, imp (kwh) x x 8 4135 Active Energy 1st phase T2, imp (kwh) x x x 8 4139 Active Energy 2nd phase T2, imp (kwh) x x 8 4143 Active Energy 3rd phase T2, imp (kwh) x x 8 4147 Active Energy Σ T2, imp (kwh) x x 8 4151 Active Power 1st phase (kw) x x x 4 4153 Active Power 2nd phase (kw) x x 4 4155 Active Power 3rd phase (kw) x x 4 4157 Active Power Σ (kw) x x 8 4161 Active Energy 1st phase T1, exp (kwh) x x x 8 4165 Active Energy 2nd phase T1, exp (kwh) x x 8 4169 Active Energy 3rd phase T1, exp (kwh) x x 8 4173 Active Energy Σ T1, exp (kwh) x x 8 4177 Active Energy 1st phase T2, exp (kwh) x x x 8 4181 Active Energy 2nd phase T2, exp (kwh) x x 8 4185 Active Energy 3rd phase T2, exp (kwh) x x 8 4189 Active Energy Σ T2, exp (kwh) x x 8 4193 Reactive Energy 1st phase T1, imp (kvarh) x x x 8 4197 Reactive Energy 2nd phase T1, imp (kvarh) x x 8 4201 Reactive Energy 3rd phase T1, imp (kvarh) x x 8 4205 Reactive Energy Σ T1, imp (kvarh) x x 8 4209 Reactive Energy 1st phase T2, imp (kvarh) x x x 8 4213 Reactive Energy 2nd phase T2, imp (kvarh) x x 8 4217 Reactive Energy 3rd phase T2, imp (kvarh) x x 8 4221 Reactive Energy Σ T2, imp (kvarh) x x 8 4225 Reactive Energy 1st phase T1, exp (kvarh) x x x 8 4229 Reactive Energy 2nd phase T1, exp (kvarh) x x 8 4233 Reactive Energy 3rd phase T1, exp (kvarh) x x 8 4237 Reactive Energy Σ T1, exp (kvarh) x x 8 4241 Reactive Energy 1st phase T2, exp (kvarh) x x x 8 4245 Reactive Energy 2nd phase T2, exp (kvarh) x x 8 4249 Reactive Energy 3rd phase T2, exp (kvarh) x x 8 4253 Reactive Energy Σ T2, exp (kvarh) x x 8 4257 Reactive Power 1st phase (kvar) x x x 4 4259 Reactive Power 2nd phase (kvar) x x 4 Page 7

4261 Reactive Power 3rd phase (kvar) x x 4 4263 Reactive Power Σ (kvar) x x 8 4267 L1-N voltage (V) x x x 4 4269 L2-N voltage (V) x x 4 4271 L3-N voltage (V) x x 4 4273 L1-L2 voltage (V) x x 4 4275 L2-L3 voltage (V) x x 4 4277 L3-L1 voltage (V) x x 4 4279 phase1 current (A) x x x 4 4281 phase2 current (A) x x 4 4283 phase3 current (A) x x 4 4285 apparent power phase1 (kva) x x x 4 4287 apparent power phase2 (kva) x x 4 4289 apparent power phase3 (kva) x x 4 4291 apparent power total (kva) x x 8 4295 power factor cos phi phase1 x x x 4 4297 power factor cos phi phase2 x x 4 4299 power factor cos phi phase3 x x 4 4301 power factor cos phi total x x 4 4303 frequency (Hz) x x x 4 4305 THD % (V L1) x 4 4307 THD % (V L1) x 4 4309 THD % (V L1) x 4 4311 THD % (V L1) x 4 4313 THD % (V L1) x 4 4315 THD % (V L1) x 4 Notes T1/T2 indicates the running Tariff (1 or 2) The symbol Σ indicates a total amount value (for example: the Reactive Power Σ (kvar) value is the total Reactive Power on the three phases. It is of course significant in a three phase counter only. imp/exp (imported/exported) indicates whether the energy is generated (exported) or consumed (imported). Length in bytes of the measured value. Note that, since a Modbus register is 2 bytes long, several values use more registers (4 bytes: 2 registers; 8 bytes: 4 registers). Tip! Remember that, if you select a Floating point format (register 4117 set = 0), all the values are coded as 32 bit floating point values. (IEEE ANSI 754) When you buy an counter with inbuilt Modbus, you can choose between Big Endian format and Little Endian format (BE/LE). BE the floating point values are transmitted in big-endian format LE the floating point values are transmitted in little-endian format If you want to switch to an integer representation, you have write 1 into the value of the configuration register 4117 (see the paragraph 4.3). 4.4.1. Values stored as Integer values While the notation using floating point 32 bit values is unambiguous, when you switch to the integer notation something must be explained in order to allow the correct interpretation of original value. 4 bytes long values The integer value stored in these registers (2) must be divided by a factor of 10000 to rebuild the original value. Example: Active Power 1 st phase Integer value: 122447 Original value: 122447/10000=12,2447 (kw) 8 bytes long values The rebuilding of the original value is slightly more complicated. The value stored in the first 4 bytes must be multiplied by a factor of 10^9 (1000000000). Then it must be added to the value stored in the following 4 bytes. Finally, the result must be divided by 10000. Example: Active Power total Integer value (most significat 4 bytes): 12344 Page 8

Integer value (less significant 4 bytes): 765532 Original value: (12344*1000000000+765532)/10000=1234400076,5532 (kw) 5. References For any further information concerning the Modbus protocol implementation, you can consult the following documents and references: Modbus application protocol specifications V 1.1b, at http://www.modbus-ida.org Modbus over serial line Specification and implementation guide V. 1.02, at http://www.modbus.org Page 9

All of the above information, including drawings, illustrations and graphic designs, reflects our present understanding and is to the best of our knowledge and belief correct and reliable. Users, however, should independently evaluate the suitability of each product for the desired application. Under no circumstances does this constitute an assurance of any particular quality or performance. Such an assurance is only provided in the context of our product specifications or explicit contractual arrangements. Our liability for these products is set forth in our standard terms and conditions of sale. TE connectivity (logo), TE (logo) and TE Connectivity are trademarks of the TE Connectivity Ltd. family of companies. CROMPTON is a trademark of Crompton Parkinson Ltd. and is used by TE Connectivity Ltd. under licence. Other logos, product and company names mentioned herein may be trademarks of their respective owners Tyco Electronics UK Ltd. a TE Connectivity Ltd. company Freebournes Road, Witham, CM8 3AH Tel: +44 (0) 1376 509509, Fax: +44 (0) 1376 509511 www.crompton-instruments.com www.energy.te.com Page 10