Yes, we can! Advanced quantum methods for the largest magnetic molecules

Similar documents
Extreme magnetocaloric properties of Gd 10 Fe 10 sawtooth spin rings: a case study using the finite-temperature Lanczos method

Modeling of isotropic and anisotropic magnetic molecules

Trends, questions and methods in molecular magnetism

Simulations of magnetic molecules

Frustration-induced exotic properties of magnetic molecules and low-dimensional antiferromagnets

Frustration-induced exotic properties of magnetic molecules and low-dimensional antiferromagnets

The Osnabrück k-rule for odd antiferromagnetic rings

The end is (not) in sight: exact diagonalization, Lanczos, and DMRG

Magnetism in zero dimensions physics of magnetic molecules

Modern aspects in magnetic structure and dynamics

Frustration effects in magnetic molecules

A short introduction into molecular magnetism (With special emphasis on frustrated antiferromagnetic molecules)

Enhanced magnetocaloric effect in strongly frustrated magnetic molecules

Trends in molecular magnetism: a personal perspective

Frustration effects in magnetic molecules. Department of Physics University of Osnabrück Germany

Frustration effects in magnetic molecules

Frustration-induced exotic properties of magnetic molecules

What do magnetic molecules teach us about magnetism?

Frustration effects in magnetic molecules. Fachbereich Physik - Universität Osnabrück

Rapidly changing magnetic field uncovers low-lying energy spectrum of the molecular magnet {Mo 72 Fe 30 }

Magnetic Molecules are tomorrows bits synthetic?

Exploring Magnetic Molecules with Classical Spin Dynamics Methods

arxiv: v1 [cond-mat.str-el] 22 Jun 2007

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms

Quantum Lattice Models & Introduction to Exact Diagonalization

Multiple nearest-neighbor exchange model for the frustrated magnetic molecules {Mo 72 Fe 30 } and {Mo 72 Cr 30 }

Quantum impurities in a bosonic bath

Quantum Theory of Molecular Magnetism

Numerical renormalization group calculations for Kondo-type models of spin clusters on a nonmagnetic metallic substrate

arxiv: v1 [cond-mat.str-el] 2 Dec 2009

8 Quantum Theory of Molecular Magnetism

arxiv: v2 [physics.atm-clus] 9 May 2008

arxiv:cond-mat/ Oct 2001

arxiv:cond-mat/ v1 [cond-mat.str-el] 29 Mar 2005

Nearly-quantumless magnetic cooling. using molecules. Marco Evangelisti

Efekt Kondo i kwantowe zjawiska krytyczne w układach nanoskopowcyh. Ireneusz Weymann Wydział Fizyki, Uniwersytet im. Adama Mickiewicza w Poznaniu

Calculating the energy spectra of magnetic molecules: application of real- and spin-space symmetries

The density matrix renormalization group and tensor network methods

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Coupled Cluster Method for Quantum Spin Systems

Electronic correlations in models and materials. Jan Kuneš

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Introduction to tensor network state -- concept and algorithm. Z. Y. Xie ( 谢志远 ) ITP, Beijing

Advanced Computation for Complex Materials

Skyrmions à la carte

Beyond the Giant Spin Approximation: The view from EPR

Analysis of the ultrafast dynamics of the silver trimer upon photodetachment

w2dynamics : operation and applications

Anisotropic Magnetic Structures in Iron-Based Superconductors


Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

Efficient time evolution of one-dimensional quantum systems

WORLD SCIENTIFIC (2014)

Linked-Cluster Expansions for Quantum Many-Body Systems

Many-body correlations in a Cu-phthalocyanine STM single molecule junction

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden

Magnetism. Eric Bousquet. University of Liège. Abinit School, Lyon, France 16/05/2014

Coupled Cluster Theories of Quantum Magnetism

Time-dependent DMRG:

Luigi Paolasini

Numerical simulations of spin dynamics

Mean-field theory. Alessandro Vindigni. ETH October 29, Laboratorium für Festkörperphysik, ETH Zürich

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach

Electron Correlation

arxiv:quant-ph/ v2 23 Mar 2001

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

Magnetic anisotropy in frustrated clusters and monolayers: Cr on triangular Au(111) surface

Heterometallic Strategy to Achieve Large Magnetocaloric Effect. in Polymeric 3d Complexes

Classical Monte Carlo Simulations

Representation theory & the Hubbard model

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION

Numerical Methods in Many-body Physics

Renormalization of Tensor Network States

Temperature-dependence of magnetism of free Fe clusters

Spin electric coupling and coherent quantum control of molecular nanomagnets

Quantum numbers for relative ground states of antiferromagnetic Heisenberg spin rings

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Theory of carbon-based magnetism

Ion-mobility mass spectrometry of polyoxometalate Keplerate clusters and their supramolecular assemblies

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

(r) 2.0 E N 1.0

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model

Simulations of Quantum Dimer Models

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below

Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets

Effect of next-nearest-neighbour interaction on d x 2 y2-wave superconducting phase in 2D t-j model

Spatially anisotropic triangular antiferromagnet in magnetic field

A typical medium approach to Anderson localization in correlated systems.

Effects of geometrical frustration on ferromagnetism in the Hubbard model on the Shastry-Sutherland lattice

Scale invariance on the lattice

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

Scaling Theory. Roger Herrigel Advisor: Helmut Katzgraber

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010

Stochastic series expansion (SSE) and ground-state projection

STM spectra of graphene

From electronic structure to magnetism

Quantum order-by-disorder in Kitaev model on a triangular lattice

Transcription:

Yes, we can! Advanced quantum methods for the largest magnetic molecules ürgen Schnack Department of Physics University of Bielefeld Germany http://obelix.physik.uni-bielefeld.de/ schnack/ French Irish International Workshop on Magnetism and Electronic Structure 19-20 May 2014, University College Dublin unilogo-m-rot.jpg

? Problem The usual problem unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 1/37

? Problem You have got a molecule! Congratulations! unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 2/37

? Problem You have got an idea about the modeling! H = 2 N ij s (i) s (j) + g µ B B i<j i Heisenberg Zeeman s z (i) unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 3/37

? Matrix In the end it s always a big matrix! ( ) 27.8 3.46 0.18 3.46 2.35 1.7 0.18 1.7 5.64... Fe III 10: N = 10, s = 5/2 Dimension=60,466,176. Maybe too big? unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 4/37

? Thank God, we have computers Thank God, we have computers Espresso-doped multi-core 128 cores, 384 GB RAM... but that s not enough! unilogo-m-rot.jpg u rgen Schnack, Advanced quantum methods 5/37

? Contents for you today Contents for you today 3 42 4711 42 0 3.14 4711 3.14 8 17 007 13 1.8 15 081 1. Finite-Temperature Lanczos Method 2. Numerical Renormalization Group calculations We are the sledgehammer team of matrix diagonalization. Please send inquiries to jschnack@uni-bielefeld.de! unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 6/37

? FTLM Finite-Temperature Lanczos Method (Good for dimensions up to 10 10.) unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 7/37

? Lanczos Lanczos a Krylov space method You do know exact diagonalization. What about diagonalization in reduced basis sets?! Full matrix = small matrix! But which set to choose??? Idea: generate the basis set with the operator you want to diagonalize: { φ, H φ, H 2 φ, H 3 φ,... } Hamiltonian creates its own relevant states! But which starting vector to choose??? Cornelius Lanczos (1893-1974) Idea: almost any will do! (1) C. Lanczos,. Res. Nat. Bur. Stand. 45, 255 (1950). unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 8/37

? FTLM Finite-temperature Lanczos Method I Z(T, B) = ν } ν exp { βh ν n } ν exp { βh ν ν n(ν) exp { βɛ n } n(ν) ν Z(T, B) dim(h) R R ν=1 N L n=1 exp { βɛ n } n(ν) ν 2 n(ν) n-th Lanczos eigenvector starting from ν Partition function replaced by a small sum: R = 1... 100, N L 100.. aklič and P. Prelovšek, Phys. Rev. B 49, 5065 (1994). unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 9/37

? FTLM How good is finite-temperature Lanczos? Works very well: compare frustrated cuboctahedron. N = 12, s = 3/2: Considered < 100, 000 states instead of 16,777,216. Exact results: R. Schnalle and. Schnack, Int. Rev. Phys. Chem. 29, 403-452 (2010). FTLM:. Schnack and O. Wendland, Eur. Phys.. B 78, 535-541 (2010). unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 10/37

? Icosidodecahedron Icosidodecahedron s = 1/2 Exp. data: A. M. Todea, A. Merca, H. Bögge, T. Glaser, L. Engelhardt, R. Prozorov, M. Luban, A. Müller, Chem. Commun., 3351 (2009). unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 11/37

? Icosidodecahedron Icosidodecahedron s = 1/2 The true spectrum will be much denser. This is miraculously compensated for by the weights. (Exact at low T, coarse grained at high T.) Z(T, B) dim(h) R R ν=1 N L n=1 exp { βɛ n } n(ν, Γ) ν, Γ 2 unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 12/37

? Gd 4 M 8 Gd 4 M 8 Susceptibility T. N. Hooper,. Schnack, St. Piligkos, M. Evangelisti, E. K. Brechin, Angew. Chem. Int. Ed. 51 (2012) 4633-4636. unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 13/37

? FTLM Recent developments 12 s = 7/2, dimension = 68,719,476,736 Goal: magnetic properties of anisotropic systems; Oliver Hanebaum: single-ion anisotropy; Christian Heesing: Dzyaloshinskii-Moriya & anisotropic exchange. unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 14/37

? Hamiltonian with single-ion anisotropy Hamiltonian with single-ion anisotropy H ( B) = 2 i<j ij s i s j + i ( ) 2 N d i ei s i + µb B g i s i i [ H, S ] 2 0, [ H, S ] z 0; MAGPACK does not work! You have to diagonalize H ( B) for every field (direction and strength)! Orientational average for powder samples. unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 15/37

? FTLM Glaser-type molecules: Mn III 6 Cr III S 6 θ s = 2, s = 3/2 dim(h) = 62, 500 non-collinear easy axes Hours compared to days, notebook compared to supercomputer! O. Hanebaum,. Schnack, submitted; arxiv:1405.3068. unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 16/37

? FTLM A fictitious Mn III 12 M z vs B z s = 2 dim(h) = 244, 140, 625 collinear easy axes A few days compared to impossible! O. Hanebaum,. Schnack, submitted; arxiv:1405.3068. unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 17/37

? FTLM A fictitious Mn III 12 M x vs B x No other method can deliver these curves! O. Hanebaum,. Schnack, submitted; arxiv:1405.3068. unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 18/37

? Problem The advanced problem unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 19/37

? NRG You deposite a molecule I Molecule with nice properties deposited on metal substrate; Exchange coupled to metal spins; Kondo screening may... unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 20/37

? NRG You deposite a molecule II Kondo screening may improve or worsen the magnetic properties; How does the exchange coupling to the metal influence the magnetic properties? How to calculate such things? unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 21/37

? NRG Numerical Renormalization Group calculations (Good for deposited molecules.) unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 22/37

? NRG Numerical Renormalization Group (Wilson) 1.5 (a) (b) A M [g µ B ] 1 0.5 Free dimer =1.0meV Free trimer =1.0meV Trimer A =0.10eV =1.0meV Trimer A =0.15eV =1.0meV Trimer A =0.17eV =1.0meV Trimer A =0.20eV =1.0meV Trimer A =0.50eV =1.0meV Trimer A =1.00eV =1.0meV A 0 0 1 2 3 4 5 6 7 8 B [10-3 W/(g µ B ) 8.64 T] Magnetic properties of deposited spin systems; Martin Höck (until 07/2013): anisotropic single spins (PRB 87, 184408 (2013)); Henning-Timm Langwald: deposited Heisenberg systems. unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 23/37

? NRG NRG minimal model H = H electrons + H coupling + H impurity H electrons = i j, σ t ijd iσ d jσ + g e µ B BS z H coupling = 2 A S s 0; H impurity = Hamiltonian of your molecule! s 0 spin density at contact; A NRG construction of a small (!) effective model in order to evaluate properties of the deposited cluster, the impurity (3). (1) K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975) (2) M. Höck,. Schnack, Phys. Rev. B 87, 184408 (2013) (3) Impurity is a technical term in this context and not an insult to chemists. unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 24/37

? NRG NRG in a cartoon A A t1 t2 t3 t4 0 1 2 3 Metallic surface is replaced by semi-infinite Hubbard chain; Parameters of the chain: hopping matrix elements and on-site energies; Stepwise enlargement of the chain (t 1 > t 2 > t 3... ); Truncation of basis set when necessary. unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 25/37

? NRG Physical example A X. Chen et al., Phys. Rev. Lett. 101, 197208 (2008). unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 26/37

? NRG Increasing coupling to the substrate A H.-T. Langwald and. Schnack, submitted; arxiv:1312.0864. unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 27/37

? NRG Increasing coupling to the substrate A H.-T. Langwald and. Schnack, submitted; arxiv:1312.0864. unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 28/37

? NRG Increasing coupling to the substrate A H.-T. Langwald and. Schnack, submitted; arxiv:1312.0864. unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 29/37

? NRG Increasing coupling to the substrate A H.-T. Langwald and. Schnack, submitted; arxiv:1312.0864. unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 30/37

? NRG Increasing coupling to the substrate A H.-T. Langwald and. Schnack, submitted; arxiv:1312.0864. unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 31/37

? NRG Increasing coupling to the substrate A H.-T. Langwald and. Schnack, submitted; arxiv:1312.0864. unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 32/37

? NRG Weak vs. strong coupling A=0 weak coupling limit: unperturbed trimer A 0.1W no impact of the substrate A >> strong coupling limit: effective dimer A 0.5W partial screening; effective remainder Inbetween: no simple characterization unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 33/37

? Summary Summary Exact diagonalization is great but limited. Finite-Temperature Lanczos is a good approximate method for Hilbert space dimensions smaller than 1010. Magnetic molecules change their properties on metallic surfaces. Question: appropriate model? NRG deals with molecules that are exchange-coupled to the substrate. unilogo-m-rot.jpg u rgen Schnack, Advanced quantum methods 34/37

? Collaboration Many thanks to my collaborators worldwide M. Czopnik, T. Glaser, O. Hanebaum, Chr. Heesing, N.B. Ivanov, F. Kaiser, H.-T. Langwald, A. Müller, Chr. Schröder (Bielefeld) K. Bärwinkel, H.-. Schmidt, M. Neumann (Osnabrück) M. Luban (Ames Lab, USA); P. Kögerler (Aachen, ülich, Ames); R.E.P. Winpenny, E..L. McInnes (Man U, UK); L. Cronin, M. Murrie (Glasgow, UK); E. Brechin (Edinburgh, UK); H. Nojiri (Sendai, apan); A. Postnikov (Metz, France); M. Evangelisti (Zaragoza), A. Tennant (Oak Ridge, USA). Richter,. Schulenburg (Magdeburg); A. Honecker (Göttingen); U. Kortz (Bremen); B. Lake (HMI Berlin); B. Büchner, V. Kataev, H.-H. Klauß (Dresden); P. Chaudhuri (Mühlheim);. Wosnitza (Dresden-Rossendorf);. van Slageren (Stuttgart); R. Klingeler (Heidelberg); O. Waldmann (Freiburg) unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 35/37

? The end Thank you very much for your attention. The end. unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 36/37

? Information Molecular Magnetism Web www.molmag.de Highlights. Tutorials. Who is who. Conferences. unilogo-m-rot.jpg ürgen Schnack, Advanced quantum methods 37/37