High Resolution Spectroscopy and Astronomical Detection of Molecular Anions

Similar documents
Understanding the chemistry of AGB circumstellar envelopes through the study of IRC

The Impact of the 12 m Telescope on Millimeter Science: Setting the Stage for the Future

2- The chemistry in the. The formation of water : gas phase and grain surface formation. The present models. Observations of molecules in the ISM.

Novel astrochemical aspects of cyanoacetylene-related molecules

Status of Spectral Line Catalogs

Laboratory Astrophysics: Or, Finding an Anion in a Haystack Part I: Tutorial

Nucleosynthesis and stellar lifecycles. A. Ruzicka

atoms H. * Infrared **Optical l - linear c-cyclic

Collisional Transitions in Interstellar Asymmetric Top Molecules

Stefanie N. Milam NASA Goddard Space Flight Center Astrochemistry Laboratory

arxiv: v2 [astro-ph] 7 May 2007

Protonated Polycyclic Aromatic Hydrocarbons and the Interstellar Medium

ABSTRACT A linear triplet isomer of HC N has been detected by Fourier transform microwave spectroscopy in a

" There's life Jim...but we don't KNOW it (yet): a journey through the chemically controlled cosmos from star birth to the formation of life"

CALCULATIONS ON THE FORMATION RATES AND MECHANISMS FOR C n H ANIONS IN INTERSTELLAR AND CIRCUMSTELLAR MEDIA

The rotational spectra of the HCCCNH, NCCNH, and CH 3 CNH ions

The Next Decade in Astrochemistry: An Integrated Approach

Radio Searches for Interstellar Carbon Chains HC 4 OH and H 2 CCC

Interstellar Molecules as Probes of Prebiotic Chemistry:

Cumulenic and heterocumulenic anions: potential interstellar species?

CASSIS. A Software Package to Speed-up the Science Analysis of Spectral Data. Emmanuel Caux, CESR Toulouse, France

First studies for cold stars under the hyphotesis of TE : Russell (1934) Fujita (1939, 1940, 1941)

Absorption spectroscopy with Herschel/HIFI and IRAM-PdBI : Promises for ALMA

The Diffuse Interstellar Bands and Carbon Chains

Lecture 10: "Chemistry in Dense Molecular Clouds"

Sternentstehung - Star Formation Sommersemester 2009 Henrik Beuther

Status of the Diffuse Interstellar Band Problem

Cosmic Rays in the Interstellar Medium. Nick Indriolo University of Illinois at Urbana- Champaign

Detection of cyanopolyynes in the protostellar shock L1157-B1

Outflows and Jets: Theory and Observations

Interstellar chemistry. Liv Hornekær

Electronic Ground and Excited State Spectroscopy of C 6 H and C 6 D

Broadband Nitrile Reaction Screening. Kiera Matthews Hanifah Hendricks

B. J. McCall, J. Thorburn, L. M. Hobbs, T. Oka, and D. G. York

The Gas Grain Chemistry of Translucent Molecular Clouds

HEXOS: Analysis of the HIFI 1.2 THz Wide Spectral Survey Toward Orion KL

The Evolution of Molecular Tracers Jürgen Ott New World New Horizons, Santa Fe 8 March Molecular Gas Tracers in Galaxies. Juergen Ott (NRAO)

LECTURE NOTES. Ay/Ge 132 ATOMIC AND MOLECULAR PROCESSES IN ASTRONOMY AND PLANETARY SCIENCE. Geoffrey A. Blake. Fall term 2016 Caltech

Update Log. ITYPE Reaction types in the gas-phase model

The Physics of the Interstellar Medium

arxiv: v1 [astro-ph.ga] 2 Sep 2013

GAS PHASE CHEMICAL KINETICS : EXPERIMENTAL ADVANCES AND PROSPECTS

Physikalisches Kolloquium, Ruhr Universität Bochum,

Opportunities for Spectroscopic Analysis with ALMA (and EVLA)

20 Applications of Interstellar Chemistry

Formation, Detection and the Distribution of Complex Organic Molecules with the Atacama Large Millimeter/submillimeter Array (ALMA)

Theoretical Electronic and Rovibrational Studies for Anions of Interest to the DIBs

Methyl Formate as a probe of temperature and structure of Orion-KL

This content downloaded from on Thu, 14 Jan :09:11 UTC All use subject to JSTOR Terms and Conditions

Research lecture. Mats Larsson Stockholm University

Interstellar Molecules as Probes of Star Formation and Prebiotic Chemistry:

Astrochemistry. Lecture 7, Observational astrochemistry. Jorma Harju. Department of Physics

Astrochemical Models. Eric Herbst Departments of Chemistry and Astronomy University of Virginia

Spectral Line Surveys of Evolved Stars

Astrochemistry and Molecular Astrophysics Paola Caselli

line analysis and chemical modelling the case of NH 2 CHO

CHESS, Herschel Chemical Survey of Star Forming Regions

THE NITRILES PROJECT: MOLECULE FORMATION IN THE GALACTIC CENTER

Molecular Abundances in AGB Circumstellar Envelopes

21. Introduction to Interstellar Chemistry

Electronic Transition Spectra of Thiophenoxy and Phenoxy Radicals in Hollow cathode discharges

Lecture 26 Clouds, Clumps and Cores. Review of Molecular Clouds

Carbon Chemistry in Photodissociation Regions

Astrochemistry with SOFIA. Paola Caselli Center for Astrochemical Studies Max-Planck-Ins:tute for Extraterrestrial Physics

REPORT FROM THE WORKSHOP ON LABORATORY SPECTROSCOPY IN SUPPORT OF HERSCHEL, SOFIA, AND ALMA

Centers for Chemical Innovation. July Arianna Seabrooks, Jasmine Mays, Jasmine Drake, Anthony Speas

Sounding the diffuse ISM with Herschel/HIFI

The Unbearable Lightness of Chemistry

Spectroscopy and Molecular Emission. Fundamental Probes of Cold Gas

C+ and Methylidyne CH+ Mapping with HIFI

Radio/mm/sub-mm Observations of AGB and RSG stars. Hans Olofsson Dept. of Earth and Space Sciences, Chalmers

Laboratory Measurements and Astronomical Search of the HSO Radical

H 3+ : "A Beautiful Jewel of Nature"

Cover Page. The handle holds various files of this Leiden University dissertation

COMBINED IRAM, Herschel/HIFI and ALMA STUDIES of abundant molecules in ORION KL

Structure of the Cumulene Carbene Butatrienylidene: H 2 CCCC

Physics and Chemistry of the Diffuse Interstellar Medium

Received 2002 August 14; accepted 2002 September 16

Astrochemistry the summary

Department of Astronomy and Astrophysics and Department of Chemistry, The Enrico Fermi Institute, The University of Chicago

Modeling gas-surface processes. Theory and Experiments for adsorption energies determination of nitrile / isonitrile isomers.

THE RADIO SPECTRA OF S 3 AND S 4

Millimiter-wave spectroscopy of OSSO

Negative Ions in Space

22. Molecular Ions and Fractionation. 1. Review of Gas Phase Chemistry 2. Introduction to Molecular Ions 3. The Detection of H 3

arxiv: v1 [astro-ph.sr] 6 Jan 2015

Comparative Spectra of Oxygen-Rich vs. Carbon-Rich Circumstellar Shells: VY Canis Majoris and IRC at GHz

THE JOURNAL OF CHEMICAL PHYSICS 124,

Lecture 18 - Photon Dominated Regions

CHE 325 SPECTROSCOPY (A) CHAP 13A ASSIGN CH 2 CH CH 2 CH CHCH 3

Fourier transform millimeter-wave spectroscopy of the HCS radical in the 2 A ground electronic state

Lecture 6: Molecular Transitions (1) Astrochemistry

MOLECULES IN THE CIRCUMNUCLEAR DISK OF THE GALACTIC CENTER

Interstellar Dust and Extinction

Search for fullerene and fullerane (C 60 H m ) in deep space

arxiv: v1 [astro-ph.ga] 19 Jul 2016

Non-thermal ion desorption from nitrilebearing astrophysical ice analogues studied by electron and heavy ion bombardment

19. Interstellar Chemistry

ESO in the 2020s: Astrobiology

Lecture 19 CO Observations of Molecular Clouds

Transcription:

High Resolution Spectroscopy and Astronomical Detection of Molecular Anions Sandra Brünken, C. A. Gottlieb, H. Gupta, M. C. McCarthy, and P.Thaddeus Harvard Smithsonian Center for Astrophysics 10th Biennial HITRAN Conference June 22, 2008

Overview Introduction Identification of the first anion in space the story of C 6 H Anions in the laboratory Anions in space six anions now detected four anions detected with surprisingly high abundances Discussion and Conclusions

Motivation more than 130 molecules detected in space most identified by their rotational spectra probe and influence physical properties: e.g. cooling fractional ionization understanding of chemistry and formation processes R. Ruiterkamp (2000)

intensity Identifying molecules in space radiation source absorption cell detector = frequency background source interstellar cloud circumstellar shell radio telescope

Identifying molecules in space Astrophysical Observation High Resolution Laboratory Spectroscopy Chemical Modells of Interstellar Objects

Dense Interstellar Cloud Cores 10 K 10 4 cm -3 sites of star formation H 2 dominant Molecules seen in IR absorption and radio emission Cosmic rays create weak plasma Fractional ionization < 10-7

Molecules in space Number of Atoms 2 3 4 5 6 7 8 9 H 2 H 2 O NH 3 SiH 4 CH 3 OH CH 3 CHO HCOOCH 3 CH 3 CH 2 OH OH H 2 S H 3 O + CH 4 NH 2 CHO CH 3 NH 2 CH 2 OHCHO (CH 3 ) 2 O SO SO 2 H 2 CO CHOOH CH 3 CN CH 3 CCH CH 3 C 2 CN CH 3 CH 2 CN SO + + HN 2 H 2 CS HC CCN CH 3 NC CH 2 CHCN C 7 H H(C C) 3 CN SiO HNO HNCO CH 2 NH CH 3 SH HC 4 CN H 2 C 6 CH 3 (C C) 2 H SiS SiH 2 HNCS NH 2 CN C 5 H C 6 H HC 6 H C 8 H NO NH 2 CCCN H 2 CCO HC 2 CHO c-ch 2 OCH 2 CH 3 CO 2 H CH 3 (C C) 2 CN NS + H 3 + HCO 2 C 4 H CH 2 =CH 2 CH 2 CHOH C 6 H 2 HCl NNO CCCH c-c 3 H 2 H 2 CCCC 10 NaCl HCO c-ccch CH 2 CN HC 3 NH + CH 3 COCH 3 AlCl OCS CCCS SiC 4 HC 4 H CH 3 (C C) 2 CN AlF CCH HCCH H 2 CCC C 5 S HOCH 2 CH 2 OH PN HCS + HCNH + HCCNC C 4 H 2 CH 3 CH 2 CHO SiN c-sicc HCCN HNCCC HC 4 N NH CCO H 2 CN H 3 CO + CH 2 CNH SH CCS c-sic 3 120 11 HF C 3 CH 3 H(C C) 4 CN CN MgNC CH 2 D + 100 CO NaCN AlNC A Molecular 12 CS CH 2 Universe 80 c-c 6 H 6 C 2 MgCN SiC HOC + 60 13 CP HCN H 2 O H(C C) 5 CN CO + HNC CH + CO 2 CH NH 3 40 + CH SiCN CH OH 20 Total: 136 N 2 AlCN CN CF + SiNC KCN HCO + 1940 50 60 70 80 90 2000 Year December 2006

Molecules in space Number of Atoms 2 3 4 5 6 7 8 9 H 2 H 2 O NH 3 SiH 4 CH 3 OH CH 3 CHO HCOOCH 3 CH 3 CH 2 OH OH H 2 S H 3 O + CH 4 NH 2 CHO CH 3 NH 2 CH 2 OHCHO (CH 3 ) 2 O SO SO 2 H 2 CO CHOOH CH 3 CN CH 3 CCH CH 3 C 2 CN CH 3 CH 2 CN SO + + HN 2 H 2 CS HC CCN CH 3 NC CH 2 CHCN C 7 H H(C C) 3 CN SiO HNO HNCO CH 2 NH CH 3 SH HC 4 CN H 2 C 6 CH 3 (C C) 2 H SiS SiH 2 HNCS NH 2 CN C 5 H C 6 H HC 6 H C 8 H NO NH 2 CCCN H 2 CCO HC 2 CHO c-ch 2 OCH 2 CH 3 CO 2 H CH 3 (C C) 2 CN NS + H 3 + HCO 2 C 4 H CH 2 =CH 2 CH 2 CHOH C 6 H 2 HCl NNO CCCH c-c 3 H 2 H 2 CCCC 10 NaCl HCO c-ccch CH 2 CN HC 3 NH + CH 3 COCH 3 AlCl OCS CCCS SiC 4 HC 4 H CH 3 (C C) 2 CN AlF CCH HCCH H 2 CCC C 5 S HOCH 2 CH 2 OH PN HCS + HCNH + HCCNC C 4 H 2 CH 3 CH 2 CHO SiN c-sicc HCCN HNCCC HC 4 N NH CCO H 2 CN H 3 CO + CH 2 CNH SH CCS c-sic 3 11 HF C 3 CH 3 H(C C) 4 CN CN MgNC CH 2 D + CO NaCN AlNC 12 CS CH 2 c-c 6 H 6 C 2 MgCN SiC HOC + 13 CP HCN CO + HNC 15 positive molecular ions H(C C) 5 CN CH + CO 2 CH SiCN Total: 136 N 2 AlCN CF + SiNC KCN HCO +

Molecules in space Number of Atoms 2 3 4 5 6 7 8 9 H 2 H 2 O NH 3 SiH 4 CH 3 OH CH 3 CHO HCOOCH 3 CH 3 CH 2 OH OH H 2 S H 3 O + CH 4 NH 2 CHO CH 3 NH 2 CH 2 OHCHO (CH 3 ) 2 O SO SO 2 H 2 CO CHOOH CH 3 CN CH 3 CCH CH 3 C 2 CN CH 3 CH 2 CN SO + + HN 2 H 2 CS HC CCN CH 3 NC CH 2 CHCN C 7 H H(C C) 3 CN SiO HNO HNCO CH 2 NH CH 3 SH HC 4 CN H 2 C 6 CH 3 (C C) 2 H SiS SiH 2 HNCS NH 2 CN C 5 H C 6 H HC 6 H C 8 H NO NH 2 CCCN H 2 CCO HC 2 CHO c-ch 2 OCH 2 CH 3 CO 2 H CH 3 (C C) 2 CN NS + H 3 + HCO 2 C 4 H CH 2 =CH 2 CH 2 CHOH C 6 H 2 HCl NNO CCCH c-c 3 H 2 H 2 CCCC 10 NaCl HCO c-ccch CH 2 CN HC 3 NH + CH 3 COCH 3 AlCl OCS CCCS SiC 4 HC 4 H CH 3 (C C) 2 CN AlF CCH HCCH H 2 CCC C 5 S HOCH 2 CH 2 OH PN HCS + HCNH + HCCNC C 4 H 2 CH 3 CH 2 CHO SiN c-sicc HCCN HNCCC HC 4 N NH CCO H 2 CN H 3 CO + CH 2 CNH SH CCS c-sic 3 11 HF C 3 CH 3 H(C C) 4 CN CN MgNC CH 2 D + CO NaCN AlNC 12 CS CH 2 c-c 6 H 6 C 2 MgCN SiC HOC + 13 CP HCN H(C C) 5 CN CO + HNC CH + CO 2 CH SiCN NO negative molecular ions! Total: 136 N 2 AlCN CF + SiNC KCN HCO +

Anions in space not such a bad idea H shown to be the main source of opacity in the solar atmosphere. (Wildt, ApJ, 1939) Molecular anions long postulated to be constituents of the interstellar gas. cold, dense clouds circumstellar shells diffuse interstellar medium (Herbst, Nature, 1981; Lepp & Dalgarno, ApJ, 1988; Petrie, MNRAS, 1996; Petrie & Herbst, ApJ 1997; Millar et al., MNRAS, 2000, Tulej et al., ApJL, 1998) 1000+ anions studied by low resolution methods in the laboratory. (e.g. Rienstra-Kiracofe et al., Chem. Rev., 2002)

Anions in space lack of laboratory data But: only two anions studied by rotational spectroscopy: (Liu & Oka, JCP, 1986; Civis et al., JCP, 1998). OH and SH a few more by IR spectroscopy: NCS, NCO, NH 2, NH, HNO (Owrutsky et al., Phil Trans. R. Soc. Lond., 1987; Miller et al., JMS, 1989; Al Za al et al., Phys. Rev. A, 1987) and rotationally resolved electronic spectroscopy: C 4 H, CH 2 CN, l-c 3 H 2 (Pachkov et al., Mol. Phys., 2003; Lykke et al., JCP, 1987; Yokoyama et al., JCP, 1996) only one published (unsuccessful) search in space: (Morisawa et al., PASJ, 1995) CCH, NCS, NCO

B1377: An unidentified sequence of astronomical lines Line survey of IRC+10216 (Kawaguchi et al., PASJ, 1995) 7 lines (Nobeyama 45m) circumstellar envelope around carbon rich star extremely rich chemistry: >50 molecules TMC-1 (Taurus-Auriga Molecular Cloud) (McCarthy et al., ApJL, 2006) 2 lines (GBT 100m) cold (10 K), dense (10 4 cm -3 ) rich in carbon-chains no metal-bearing molecules TMC-1 Guélin et al. (1997) Dame et al. ApJ (2001)

B1377: An unidentified sequence of astronomical lines rotational lines are harmonic: separated in frequency by ratio of integers resolving molecular shell carrier almost certainly a closed-shell ( 1 S) linear molecule likely a rather fundamental molecule rotational constant about 1% lower than C 6 H (B=1391 MHz), an abundant radical in this source C 6 H suggested as carrier based on ab initio calculations (Aoki, Chem. Phys. L., 2000) J=17-16 15-14 10 mk But: positive ions (HCO + ) not abundant in these sources

B1377 in the laboratory Exact match to astronomical lines has now been achieved using two hydrocarbon gases 15+ lines detected over two decades of frequency Constant (MHz) Laboratory Astronomical B 1376.86298(7) 1376.86248(294) 10 6 D 32.35(1) 33.35(993)

B1377 in the laboratory and in space

Experimental setup - FTM supersonic nozzle coupled to a high-q Fabry-Perot cavity discharge nozzle Q ~ 40,000 movable mirror 1 msec FID ~100 msec cooled to 77 K FFT frequency range: 5 42 GHz resolution: 20 khz accuracy: 1-2 khz low current (~20 ma) discharge of C 4 H 2 or C 2 H 2 (0.1 %) in Ne (He, H 2 )

Experimental setup mm-wave absorption spectrometer InSb detector power supply solenoid Gunn n 2 m LN 2 LN 2 low current dc glow discharge of C 2 H 2 (85 %) + Ar (15 %) frequency coverage: 68 600 GHz frequency accuracy: 10 50 khz cell walls cooled by LN 2 to 150 K

Identification of B1377 as C 6 H composed of both C and H harmonic relation of lines requires linear geometry B constant requires chain of six carbon atoms; one more of less yields B 40% too high or low Isotopic shift observed on deuteration requires one H at end of carbon chain (4.53% vs. 4.55% for C 6 H) Neutral C 6 H ( 2 P) and C 6 H + ( 3 S) lack required symmetry carrier must be C 6 H one of the most securely identified astronomical molecules

Why hexatriyne, C 6 H? larger than most of the neutral molecules and all of the cations Four factors favor formation: radical is abundant in both IRC+10216 and TMC-1 exceptionally stable: high electron binding (3.8 ev)

Why hexatriyne, C 6 H? larger than most of the neutral molecules and all of the cations Four factors favor formation: radical is abundant in both IRC+10216 and TMC-1 exceptionally stable: high electron binding (3.8 ev) size confers stability: C 6 H apparently large enough where e attachment becomes efficient (Taylor et al., JCP, 1998)

e radiative attachment versus size Statistical Treatment: C n H + e k f [C n H ]* k d C n H + e C n H + hn k rad autodetachment vs. size total radiative attachment C 6 H density of states Herbst et al. ApJ, in press

Why hexatriyne, C 6 H? larger than most of the neutral molecules and all of the cations Four factors favor formation: radical is abundant in both IRC+10216 and TMC-1 exceptionally stable: high electron binding (3.8 ev) size confers stability: C 6 H apparently large enough where e attachment becomes efficient (Taylor et al., JCP, 1998) spectral simplification: lines of anion x10 more conspicuous than those of neutral!

Spectral compression C 6 H ( 2 P) e C 6 H ( 1 S) 10 mk IRC+10216 2 P 1/2 2 P 3/2 Dipole Moments: 2 8.2 5.6 = 2.1 hfs L-doubling

More anions discovery of C 6 H suggested specific anions to target closed-shell 1 S ground states and large dipole moments (m) large electron affinities (EA) radicals are detected in astronomical sources anions do not react with H 2 (Barckholtz et al., ApJL, 547, 2001) EA (ev) m (D) m (D) B (MHz) CCH 2 S 2.97 0.8 CCH 1 S 3.1 41,639 C 4 H 2 S 3.56 0.9 C 4 H 1 S 6.1 4,656 C 6 H 2 P 3.81 5.6 C 6 H 1 S 8.2 1,377 C 8 H 2 P 3.97 6.3 C 8 H 1 S 11.9 583 CN 2 S 3.8 1.5 CN 1 S 0.7 56,133 C 3 N 2 S 4.59 2.9 C 3 N 1 S 3.1 4,852

Ab initio calculations laboratory searches guided by high level CCSD(T) ab initio calculations (cc-pvtz or higher) (Gupta & Stanton, private communication) calculated rotational constants B 0 accurate to better than 0.1 % calculations considerably speed up laboratory searches additional information: centrifugal distortion constants quadrupole coupling constants dipole moments

Laboratory measurements six molecular anions detected in less than one year H C C CCH CN C N H C C C C C 4 H C 3 N C C C N H C C C C C C C 6 H H C C C C C C C C C 8 H detections secured by: elemental composition harmonicity close agreement with calculations isotopic shift determination of charge state

Cyanide, CN B ~ 56 GHz hyper fine structure acts as spectral fingerprint 5 transitions in 112 560 GHz range (Gottlieb et al., JCP 2007)

Cyanide, CN B ~ 56 GHz integration time ~10 min! anion / neutral ratio of 1 % in glow discharge dissociative attachment to (CN) 2 (Kühn et al., Chem. Phys. L., 1987) CN / (CN) 2 = 4 x 10-6

Ion Drift Measurements CN measurements in single pass +HV -HV - - - - - radiation with alternating polarity direct proof of the charge state of the carrier

C 3 N Petrie & Herbst (ApJ, 1997) predicted C 3 N to have abundance ~1 % of neutral C 3 N in TMC-1 discharge production: dissociative attachment to HCCCN (Graupner et al., New J. Phys., 2006) 12 transitions detected up to 380 GHz C 3 N / HC 3 N = 5 x 10-6 B ~ 4.9 GHz C 3 N / C 3 N = 2 %

Formation in the laboratory in the laboratory dissociative attachment possible [E kin (e ) ~ 3eV] e + HCCH CCH + H threshold 1.76 ev (De Bleecker et al., Phys. Rev. E, 2006) CCH + HCCH C 4 H + H 2 Questions to be addressed: plasma characteristics, influence of carrier gas, suitable precursors? wall surface chemistry, metallization of discharge cell? DC discharge vs. H + or H + 2 abstraction HC 2n H + OH C 2n H + H 2 O reduction of background lines? velocity modulation

Detection of C 8 H in TMC-1 100m Green Bank Telescope (April 2007) N T = 2.1(4) 10 10 cm -2 for T rot = 5 K C 8 H / C 8 H = 5(1) % Brünken et al., ApJL, 2007

Detection of C 3 N in IRC+10216 IRAM 30m telescope N T = 1.6 x 10 12 cm -2 T rot = 24 K C 3 N /C 3 N = 0.52 % Thaddeus et al., ApJ 2008

Anions in space C 6 H and C 8 H detected in TMC-1 C 4 H, C 6 H, C 8 H and C 3 N now been detected in IRC+10216 (Cernicharo et al. ApJL, 2007; Remijan et al., ApJL, 2007, Kawaguchi et al., PASJ, 2007, Thaddeus et al., ApJ 2008) C 8 H anion to neutral ratio 28-37%! detection of C 4 H, C 6 H in a third source: IRAS 04368+2557 in L1527 (Agundez et al. A&A, 2008; Sakai et al. ApJL, 2007, 2008) tentative detection of J = 2-1 of CN in IRC+10216 (Guelin, private communication)

Abundances of anions in space TMC-1 IRC+10216 C n H / C n H obs. calc. e obs. calc. e 8 5 5.4 28/37 a 28 6 1.6 8.9 8.6 b 30 4 < 0.004 f 0.7 0.024 c 4 C 3 N / C 3 N < 0.8 f 0.52 f 0.05 e,f all ratios in %, a Remijan et al., ApJL, 2007; Kawaguchi et al., PASJ, acc.; b Kasai et al. ApJL, 2007, c Cernicharo et al. ApJL, 2007; d Agundez et al. ApJ 2008., e Millar et al. ApJL, 2007, Herbst et al. ApJ 2008, f Thaddeus et al. ApJ 2008 formation and destruction processes not fully understood lack of laboratory data

What can we learn? radiative electron attachment most likely formation process in space: A + e (A )* A + hn k ratt dominant destruction processes: k aa A + H AH + e k neu A + B + A + B [A ] k ratt [e ] k ratt [e ] = [A] k aa [H] + k neu [B + ] k aa [H] fractional ionization fractional ionization dependent upon: Flower et al., A&A, 2007 cosmic ray ionization rate hydrogen density grain characteristics PAH and metal abundance

Conclusions accurate transition frequencies available for all six anions C 4 H, C 6 H, C 8 H and C 3 N have already been detected in space with surprisingly high abundances many other anions likely to be detected in the laboratory and in space (CH 2 CN, l-c 3 H 2, C 3 H 3, CH 3 O ) a galactic survey of molecular anions, i.e. C 6 H is timely other, better sources abundance as function of temperature, density and composition laboratory studies of reaction and formation rates of anions necessary

THANKS! Sam Palmer Filippo Tamassia Christian Endres, Frank Lewen NRAO staff for assistance with the GBT observations Eric Herbst John Stanton Peter Botschwina Stephan Schlemmer Alex Dalgarno Pepe Cernicharo Bill Klemperer Takeshi Oka John Maier Bill Doering Michel Guelin Funding agencies: NSF, NASA, Robert A. Welch Foundation, HCO