From Structural Analysis to FEM. Dhiman Basu

Similar documents
From Structural Analysis to Finite Element Method

8-node quadrilateral element. Numerical integration

The Hyperelastic material is examined in this section.

Static/Dynamic Deformation with Finite Element Method. Graphics & Media Lab Seoul National University

PREDICTION OF STRESS CONCENTRATION FACTORS IN UNLAPPED SQUARE HOLLOW "K" JOINTS BY THE FINITE ELEMENT METHOD

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS

Stress-Based Finite Element Methods for Dynamics Analysis of Euler-Bernoulli Beams with Various Boundary Conditions

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University

Variational Approach in FEM Part II

AS 5850 Finite Element Analysis

FINITE ELEMENT METHOD II Autumn 2015

Grand Canonical Ensemble

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

6 Finite element methods for the Euler Bernoulli beam problem

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

Outlier-tolerant parameter estimation

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

A Note on Estimability in Linear Models

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d)

Three-Node Euler-Bernoulli Beam Element Based on Positional FEM

Chapter Eight. Review and Summary. Two methods in solid mechanics ---- vectorial methods and energy methods or variational methods

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

1- Summary of Kinetic Theory of Gases

1 Isoparametric Concept

MECH321 Dynamics of Engineering System Week 4 (Chapter 6)

Direct Approach for Discrete Systems One-Dimensional Elements

Journal of Chemical and Pharmaceutical Research, 2014, 6(5): Research Article

14. MODELING OF THIN-WALLED SHELLS AND PLATES. INTRODUCTION TO THE THEORY OF SHELL FINITE ELEMENT MODELS

APPLICATION OF GALERKIN FINITE ELEMENT METHOD IN THE SOLUTION OF 3D DIFFUSION IN SOLIDS

Chapter 5. Introduction. Introduction. Introduction. Finite Element Modelling. Finite Element Modelling

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q

Phy213: General Physics III 4/10/2008 Chapter 22 Worksheet 1. d = 0.1 m

Finite Element Modelling of truss/cable structures

A C 1 Beam Element Based on Overhauser Interpolation

Polytropic Process. A polytropic process is a quasiequilibrium process described by

Journal of Chemical and Pharmaceutical Research, 2014, 6(7): Research Article

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

SME 3033 FINITE ELEMENT METHOD. Bending of Prismatic Beams (Initial notes designed by Dr. Nazri Kamsah)

APPENDIX F A DISPLACEMENT-BASED BEAM ELEMENT WITH SHEAR DEFORMATIONS. Never use a Cubic Function Approximation for a Non-Prismatic Beam

7 Finite element methods for the Euler Bernoulli beam problem

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design

The Fourier Transform

Potential energy of a structure. Vforce. joints j

Linear Algebra Provides a Basis for Elasticity without Stress or Strain

EXTENDED MULTISCALE FINITE ELEMENT METHOD FOR GEOMETRICALLY NONLINEAR ANALYSIS OF THIN COMPOSITE PLATES ON BENDING PROBLEMS

167 T componnt oftforc on atom B can b drvd as: F B =, E =,K (, ) (.2) wr w av usd 2 = ( ) =2 (.3) T scond drvatv: 2 E = K (, ) = K (1, ) + 3 (.4).2.2

FEFF and Related Codes

OTHER TPOICS OF INTEREST (Convection BC, Axisymmetric problems, 3D FEM)

Finite element discretization of Laplace and Poisson equations

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari

EE 570: Location and Navigation: Theory & Practice

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP

Jones vector & matrices

DEFINITION OF PROPERTIES FOR OPAQUE SURFACES

Basic Electrical Engineering for Welding [ ] --- Introduction ---

Anglo-Chinese Junior College H2 Mathematics JC 2 PRELIM PAPER 1 Solutions

Professor Terje Haukaas University of British Columbia, Vancouver The Q4 Element

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation

Phys 774: Nonlinear Spectroscopy: SHG and Raman Scattering

Shape sensing of aerospace structures by coupling of isogeometric analysis and inverse finite element method

VSMN30 FINITA ELEMENTMETODEN - DUGGA

Gradebook & Midterm & Office Hours

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

10/23/2003 PHY Lecture 14R 1

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

4D SIMPLICIAL QUANTUM GRAVITY

Stretching and bending deformations due to normal and shear tractions of doubly curved shells using third-order shear and normal deformable theory

Principle of virtual work

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

MA 262, Spring 2018, Final exam Version 01 (Green)

3.4 Properties of the Stress Tensor

In this section is given an overview of the common elasticity models.

P A = (P P + P )A = P (I P T (P P ))A = P (A P T (P P )A) Hence if we let E = P T (P P A), We have that

Α complete processing methodology for 3D monitoring using GNSS receivers

1 Matrix representations of canonical matrices

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Discrete Shells Simulation

Finite Element Models for Steady Flows of Viscous Incompressible Fluids

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Dynamic Modeling and Vibration Control for Spacecraft s Solar Array Jian-Ping JIANG 1,a, *, Rui XU 2,b

ECE Spring Prof. David R. Jackson ECE Dept. Notes 25

Quadratic speedup for unstructured search - Grover s Al-

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Physics 256: Lecture 2. Physics

Numerical solutions of fuzzy partial differential equations and its applications in computational mechanics. Andrzej Pownuk1

An Overview of Markov Random Field and Application to Texture Segmentation

Supplemental document

Review - Probabilistic Classification

u 3 = u 3 (x 1, x 2, x 3 )

Indeterminate pin-jointed frames (trusses)

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):.

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Section 8.3 Polar Form of Complex Numbers

Transcription:

From Structural Analyss to FEM Dhman Basu

Acknowldgmnt Followng txt books wr consultd whl prparng ths lctur nots: Znkwcz, OC O.C. andtaylor Taylor, R.L. (000). Th FntElmnt Mthod, Vol. : Th Bass, Ffth dton, Buttrworth Hnmann. Yang, T.Y. (986). Fnt Elmnt Structural Analyss, Prntc Hall Inc. Jan A K (009) Advancd Structural Analyss Nm Chand Jan, A.K. (009). Advancd Structural Analyss, Nm Chand & Bros.

Structural Modlng Ln lmnt Rfnd Ln Elmnt Dtald Fnt Elmnt Introducton Ln lmnt

Ln lmnt Rfnd ln lmnt FEM: Dscrtzaton ovr ntr volum n gnral Analyss Convntonal Structural Analyss Ln lmnt Rfnd ln lmnt FEM Volum dscrtzaton

Organzaton ConvntonalStructural Analyss Rvst to Convntonal Analyss Brf fconcptual Rvw of FEM Structural Analyss Smltud btwn both Analyss

Elmnt Equlbrum 6 6 L L L L Y 6 6 v 4 M EI L L θ = Y L 6 6 v M L L L L θ 6 6 4 L L { q } K { a } = EA EA 0 0 0 0 L L EI 6EI EI 6EI X 0 0 3 3 L L L L u Y 6EI 4EI 6EI EI v 0 0 M L L L L θ = X EA EA 0 0 0 0 u Y L L v M EI 6EI EI 6EI 0 0 θ 3 3 L L L L 6EI EI 6EI 4EI 0 0 L L L L K (, j ) Forc along j th dof whn unt dsplacmnt s appld th dof 3 3 whl all othrs ar rstrant

Local and Global Coordnat Systms Local coordnat Non orthogonally algnd lmnt axs Global l coordnat Coordnat transformaton by rotaton

Orthogonal Transformaton ' x cosθ snθ 0 x y = sn cos 0 y = ' θ 0 0 θ T [ λ] = [ λ] ' { } [ ]{ } ' θ θ δ λ δ

Elmnt Equlbrum n Global l Coordnat Transformaton of dsplacmnt and forc vctors u X cosφ snφ 0 0 0 0 u X v sn cos 0 0 0 0 v Y φ φ Y θ M u X = v 0 0 0 sn cos 0 v Y φ φ Y θ M 0 0 0 0 0 θ M L 0 0 0 0 0 θ { } M a T G = { a } 0 0 0 cosφ snφ 0 u X L G { q } T { q } Transformaton of Equlbrum Equaton = T { q L } = K L { a L } T { q G } = K L T { a G } { q G } = T K L T { a G } { } { } and G G G G T L q = K a K = T K T Sz of th problm rmans sam

Drct Stffnss Mthod Stp : Elmnt Equlbrum n Local Coordnat L L L { q } K { a } = 6 6 6 6 ngatv of th fxd nd forcs du to span loadng Stp : Elmnt Equlbrum n Global Coordnat G G G { q } K { a } = 6 6 6 6 K T T T = T K T, q = T q, a = T a { } { } { } { } G L G L G L 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 Stp 3: Elmnt Equlbrum n Expandd Global Coordnat Exp { q G } Exp K G Exp G { a } = 3N 3N 3N 3N Assumng a plan fram of N nods

Stp 4: Assmbl n Elmnt Equlbrum n Expandd Global Coordnat M M ( ) Exp G Exp G Exp G { q } = ( K { a } ) = = 3 N 3 N 3 N 3 N { q G} { q * G G } K { a } + = 3N 3N 3N 3N 3N Accountng for drctly appld nodal concntratd forcs Stp 5: Effct of Rstrants { q} = [ K] { a} S S S S Stp 6: Soluton for Dsplacmnt G { a } = [ K ] { q } { a } S S S S 3 N

Stp 7: Soluton for Elmnt Rspons L G { a } T { a } = 6 6 6 6 L L L L { F } = K { a } { q } = 6 6 6 6 6 Dsplacmnt n Local coordnat Mmbr nd forcs n Local coordnat Stp 8: Calculaton of Racton Forcs q r Krr K rs ar = 0 = q = K a q K K a s sr ss s r rs s

Numrcal Exampl EA=8000 kn/m and EI= 0000 knm

Soluton vctor: { 0.00356, 0.0075, 0.0058, 0.0078} T.

Mmbr nd forcs but n global coordnat

Rvst to Stffnss Matrx 4 v 0 4 = x Equlbrum of a bam lmnt (constant EI) n th unloadd rgon ( ) v x = α + α x+ α x + α x Assumd soluton 3 3 4 v v= v and = θ at x= 0 x Boundary condtons v v= v and = θ at x= L x v 0 0 0 α 3 α L 0 0 0 v θ 0 0 0 α = 3 α 0 L 0 0 θ 3 v L L L = 3 α = α 3 α3 L 3L L 3L L v θ 0 L 3L α4 α4 L L θ Soluton for coffcnts { } [ H ]{ a}

( ) ( ) θ ( ) ( ) θ ( ) vx= vf x + f x + v f x + f x Dsplacmnt profl ( ) f x ( ) 3 4 3 x x = 3 + L L x x f( x) = x + L L f x 3 f 4 ( x ) 4 3 x x = 3 L L x x = x + L L Spcfc cas v =.0, θ = 0, v = 0, θ = 0, ( ) ( ) v x = f x Dsplacmnt profl assocatd wth frst column of stffnss matrx

Applcaton of Castglano s Thorm P U = a U L EI v = x 0 dx Assumng only flxural dformaton Y EI dx EI v f x f x v f x f x f x dx L L U v v '' '' '' '' '' = = = + + 3 + 4 v x v 0 x 0 ( ) θ ( ) ( ) θ ( ) ( ) L L L L '' '' '' '' '' '' '' '' 3 4 0 0 0 0 = v EI f ( x ) f ( x ) dx+ θ EI f ( x ) f ( x ) dx+ v EI f ( x ) f ( x ) dx+ θ EI f ( x ) f ( x ) dx = K v + K θ + K v + K θ 3 4 L '' j j 0 '' K = EI f ( x) f ( x) dx For xampl, Frst quaton of qulbrum n local coordnat j th lmnt of stffnss matrx 3 '' 3 '' L L x x x x 6 x EI K = EI 3 3 + + dx= EI + dx= 3 3 L L L L L L L 0 0

Applcaton of Raylgh Rtz Mthod 3 '' ( ) ( ) v x = α + α x+ α x + α x v x = α + 6α x 3 4 3 4 L EI U = + x dx= EI L+ L + L 3 ( α3 6α4 ) ( α3 6α3α4 6α4 ) 0 Stran nrgy 0 0 0 0 α 0 0 0 0 α T U = 3 4 0 0 4EIL 6EIL = α 3 3 0 0 6EIL EIL α 4 U kj = α α T { α α α α } { α } k { α } Quadratc form j Extrnal work don Y T T U = a H k { } ([ ] H a [ ]){ } M T W = { v } θ v θ = { a } [ K ]{ a } Y M T K = H k H [ ] [ ] [ ]

3 T 3 L 0 0 0 0 0 0 0 L 0 0 0 3 3 0 L 0 0 0 0 0 0 0 L 0 0 = 3 3 L 3L L 3L L 0 0 4EIL 6EIL L 3 L L 3 L L 3 L L 0 0 6EIL EIL L L 6 6 L L L L 6 6 4 EI = L L Sam as bfor L 6 6 L L L L 6 6 4 L L [ K ]

FEM: A Prlmnary Rvst Dsplacmnt functon Nodal dsplacmnt { } T a = u u x y Dsplacmnt at any pont { x (, ) y (, )} u= u x y u x y a ˆ u u = Nkak N N j... a = j = Na k.. T Shap functons (, ) N x y j j j = j = δ = 0 j An xampl of a plan strss problm u uˆ = Na In gnral

Stran Dsplacmnt Rlaton { ε} { ˆ ε} = [ S]{ u} { ε} { ˆ ε} = [ S]{ u} = [ S][ N]{ a } = [ B]{ a } [ B ] = [ S ][ N ] For plan strss problm { ε} u x 0 x x ε xx u u y x = εyy = = 0 y y uy ε xy u x u y + y x y x Consttutv Rlaton { σ } = [ D]{ ε ε } + { σ } 0 0 { } [ D ] For plan strss problm σ xx ν 0 E σ = σ and 0 yy = ν ν τ xy 0 0 ( ν)

Extrnal Loadng Dstrbutd body forc Dstrbutd surfac loadng Concntratd load drctly actng on th nods Elmnt Equlbrum (Usng Vrtual Work Prncpl) { δ a } Vrtual dsplacmnt at nodal ponts of an lmnt { δu} [ N]{ δa } and { δε} [ B]{ δa } = = At any pont wthn th lmnt EquatngExtrnal Extrnal and Intrnalworks (wthout th concntratdnodalnodal loads) V T T T { δε } { σ } { δ u} { b} dv { δ u} { t } da = 0 A { q } K { a } = = T K [ B] [ D][ B] dv Elmnt V Equlbrum n T T T T { q } = [ B] [ D]{ ε0} dv [ B] { σ0} dv [ N ] {} b dv [ N ] { t } + + da Local V V V A coordnat

Ovrall Analyss Nodal Dsplacmnt Vctor Concptually, rmanng stps followd n drct stffnss mthod wll lad to th soluton for nodal dsplacmnt vctor of th whol structur Strss at Any Pont { σ } = [ D ][ B ]{ a } [ D ]{ ε } + { σ } 0 0

FEM: Wthout Assmblng Elmnt Equlbrum Vrtual work prncpl could hav bn appld drctly on th whol structur Govrnng quaton of qulbrum could b drvd bypassng xplctly lmnt qulbrum Concptually, smlar to formaton of stffnss matrx of th ntr structur

FEM: From th Mnmzaton of Potntal Enrgy Rplac vrtual quanttsby varaton of ral quantts * δw δ { a} T { q } { u} T { b} dv { u} T { t } = + + da V T { } { } V A Du to xtrnal load δu = δ ε σ dv Du to stran nrgy ( ) ( ) 0 δw = δu δ U + W = δ Π = Statonarty of total potntal nrgy T Π Π Π =.. = 0 Formulaton of qulbrum quatons a a a

Exampl: FEM formulaton of Stffnss of a Bam Elmnt Strss Stran Rlaton Rlt n gnralzd form Momnt Curvatur t Rlaton Rlt σ ε dv ε κ = dx d v σ M = EI dx M κ D EI dv dx { a } = v = { v θ} T T Nodal dsplacmnt vctor at a typcal nod th ( ), ( ), j 3( ), 4( ) Shap functons drvd at two nd nods N = f x f x N = f x f x

Formulaton of Stffnss '' '' '' '' B = f ( x), f( x), B j f3 ( x), f4( x) = '' '' '' '' [ B ] = B ( ) ( ) ( ) ( ) B j = f x f x f3 x f4 x = = = T T '' '' [ ] [ ][ ] [ ] ( )[ ] ( ) ( ) K B D BdV B EI Bdx EI f x f j xdx V L L Sam as drvd whn rvstng drct stffnss mthod

Rmarks FEM whn appld to bam lmnt ld to xactly sam rsults Ths s not tru n gnral

Thank You