Modeling the EOS. Christian Fuchs 1 & Hermann Wolter 2. 1 University of Tübingen/Germany. 2 University of München/Germany

Similar documents
Nucelon self-energy in nuclear matter and how to probe ot with RIBs

Strangeness Production as a Probe for the Nuclear Equation of State

T. GAITANOS, H.H. WOLTER Sektion Physik der Universität München Am Coulombwall 1, D Garching, Germany

arxiv:nucl-th/ v2 12 Jan 2005

Spin-Orbit Interactions in Nuclei and Hypernuclei

Symmetry Energy within the Brueckner-Hartree-Fock approximation

Density dependence of the symmetry energy and the nuclear equation of state : A dynamical and statistical model perspective

Nuclear Structure for the Crust of Neutron Stars

ASY-EOS experiment at GSI: constraining the symmetry energy with neutron and proton elliptic flows

Constraining the Equation of State of Asymmetric Nuclear Matter with Collective Flow Measurements

Static and covariant meson-exchange interactions in nuclear matter

Correlations derived from modern nucleon-nucleon potentials

arxiv: v1 [nucl-th] 12 Nov 2007

The isospin dependence of the nuclear force and its impact on the many-body system

Nuclear Landscape not fully known

The Density Dependence of the Symmetry Energy in Heavy Ion Collisions

Transport Theory for Energetic Nuclear Reactions

Probing the equation of state with pions

Constraints on Neutron Star Properties from KaoS Heavy-Ion Data

Heavy-ion reactions and the Nuclear Equation of State

Dirac-Brueckner mean fields and an effective* density-dependent DiracHartree-Fock interaction in nuclear. matter

The TheSymmetry Energy

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

The National Superconducting Cyclotron State University

The crust-core transition and the stellar matter equation of state

Quantitative understanding nuclear structure and scattering processes, based on underlying NN interactions.

Bao-An Li. Collaborators: Bao-Jun Cai, Lie-Wen Chen, Chang Xu, Jun Xu, Zhi-Gang Xiao and Gao-Chan Yong

Clusters in Dense Matter and the Equation of State

Equation-of-State of Nuclear Matter with Light Clusters

Symmetry energy of dilute warm nuclear matter

arxiv:nucl-th/ v1 6 Dec 2003

Chapter 6. Isospin dependence of the Microscopic Optical potential for Neutron rich isotopes of Ni, Sn and Zr.

Probing dense baryonic matter with kaons: The nuclear equation-of-state In medium properties of strange mesons

Fermi-Liquid Theory for Strong Interactions

Principalities Charged-π Yields, Theory & Expt Incompressibility Conclusions. Pions in pbuu. Pawel Danielewicz

A survey of the relativistic mean field approach

arxiv:nucl-th/ v1 15 Dec 2004

Equation of state for the dense matter of neutron stars and supernovae

Investigation of hadronic matter properties with heavy ion collisions Particle production and flow from SIS to FAIR. Yvonne Leifels GSI

NN-Correlations in the spin symmetry energy of neutron matter

Parity-Violating Asymmetry for 208 Pb

A new approach to detect hypernuclei and isotopes in the QMD phase space distribution at relativistic energies

Relativistic ab initio calculation in finite nuclear systems and its promotion to nuclear density functional

Theodoros Gaitanos ECT*,

Symmetry energy within the BHF approach

Sloppy Nuclear Energy Density Functionals: effective model optimisation. T. Nikšić and D. Vretenar

The Nuclear Equation-of-State and the Symmetry Energy

IAS and Skin Constraints. Symmetry Energy

Nuclear symmetry energy deduced from dipole excitations: comparison with other constraints

The Nuclear Equation of State: a Tool to Constrain In-Medium Hadronic Interactions

arxiv:nucl-th/ v1 25 Apr 2005

Stochastic Mean Field (SMF) description TRANSPORT Maria Colonna INFN - Laboratori Nazionali del Sud (Catania)

International workshop Strangeness Nuclear Physics 2017 March, 12th-14th, 2017, Osaka Electro-Communication University, Japan. quark mean field theory

Probing the EoS of Asymmetric Matter

BOLOGNA SECTION. Paolo Finelli University of Bologna

arxiv:nucl-th/ v1 17 Sep 2003

Pion production in heavy-ion collision by the AMD+JAM approach

Compact star crust: relativistic versus Skyrme nuclear models

Pairing in Nuclear and Neutron Matter Screening effects

Impact of the in-medium conservation of energy on the π /π + multiplicity ratio

Nuclear equation of state for supernovae and neutron stars

Relativistic point-coupling models for finite nuclei

b - stable matter of protoneutron star

The National Superconducting Cyclotron State University

arxiv: v2 [nucl-th] 31 Oct 2013

Strangeness in Neutron Stars

Equation of state for supernovae and neutron stars

MICROSCOPIC OPTICAL POTENTIAL FROM NN CHIRAL POTENTIALS. Carlotta Giusti Università and INFN, Pavia. Matteo Vorabbi (TRIUMF) Paolo Finelli (Bologna)

arxiv:nucl-th/ v1 10 Mar 2004

Photoabsorption and Photoproduction on Nuclei in the Resonance Region

Few-particle correlations in nuclear systems

Localized form of Fock terms in nuclear covariant density functional theory

Neutron Skins with α-clusters

Simplifying the Nuclear Many-Body Problem with Low-Momentum Interactions

Some new developments in relativistic point-coupling models

Symmetry Energy. in Structure and in Central and Direct Reactions

Neutrino Mean Free Path in Neutron Stars

Nuclear radii of unstable nuclei -neutron/proton skins and halos-

Nuclear matter inspired Energy density functional for finite nuc

Toward consistent relativistic description of pairing in infinite matter and finite nuclei

The Nuclear Symmetry Energy in Heavy Ion Collisions

Extracting symmetry energy information with transport models

Hyperons and Resonances in Nuclei and Neutron Stars. H. Lenske Institut für Theoretische Physik, JLU Giessen and GSI Darmstadt

Nuclear equation of state with realistic nuclear forces

Summary and Outlook. W. Lynch NSCL and Department of Physics and Astronomy Michigan State University

Cyclotron Institute and Physics Department. Texas A&M University, College Station, Texas Abstract

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire

Nuclear Forces - Lecture 1 - R. Machleidt University of Idaho

Strangeness in Nucleus

E. Fermi: Notes on Thermodynamics and Statistics (1953))

Comprehensive treatment of correlations at different. energy scales in nuclei using Green s functions

Nuclear Matter Fourth-Order Symmetry Energy

Self-consistent study of spin-isospin resonances and its application in astrophysics

Isospin asymmetry in stable and exotic nuclei

Interplay of kaon condensation and hyperons in dense matter EOS

Constraining the Symmetry Energy Around Twice Saturation Density Using Elliptic Flow

PAIRING PROPERTIES OF SYMMETRIC NUCLEAR MATTER IN RELATIVISTIC MEAN FIELD THEORY

Nuclear Symmetry Energy Constrained by Cluster Radioactivity. Chang Xu ( 许昌 ) Department of Physics, Nanjing University

Descriptions of triaxial band structures in 133 La

Transcription:

Modeling the EOS Christian Fuchs 1 & Hermann Wolter 2 1 University of Tübingen/Germany 2 University of München/Germany Christian Fuchs - Uni Tübingen p.1/20

Outline Christian Fuchs - Uni Tübingen p.2/20

Outline Overview models Christian Fuchs - Uni Tübingen p.2/20

Outline Overview models Symmetric nm Christian Fuchs - Uni Tübingen p.2/20

Outline Overview models Symmetric nm Isospin dependence Christian Fuchs - Uni Tübingen p.2/20

Outline Overview models Symmetric nm Isospin dependence Constraints from HICs Christian Fuchs - Uni Tübingen p.2/20

Overview models Ab inito approaches Brueckner: BHF (Catania,..), DBHF (T übingen,..), variational appr. (Urbana) realistic NN-interaction, no parameters Effective field theory Density functionals (Furnstahl, Serot,...), ChPT (Weise) peturbativ, scale arguments (m π /M, k F /M), few parameters (< 2) Empirical density functionals Skyrme, Relativistic Mean Field many parameters (6-10), high precison fits to finite nuclei Christian Fuchs - Uni Tübingen p.3/20

Saturation of Nuclear Matter DBHF: realistic NN force, no parameter E B [MeV] 20 10 0 10 20 V K=? 0 1 2 ρ/ρ 0 correlated uncorrelated wave r E/A [MeV] 5 10 15 20 Tuebingen (Bonn) BM (Bonn) Bonn A, ps Reid CD Bonn Bonn AV 18 25 1.2 1.4 1.6 1.8 2.0 k F [fm 1 ] see e.g. nucl-th/0309003 Coester line = relativistic! Christian Fuchs - Uni Tübingen p.4/20

Hadronic many-body theory Relativistic Brueckner: N+OBEP ( V = σ, ω, π, ρ, η, δ) = 2-N correlations in hole-line expansion = self-consistent sum of ladder diagrams Dyson-Equation: G = G0 + G0ΣG = + Σ Bethe-Salpeter-Equation: T = V + i V GGQT T T = + Self Energy (Hartree-Fock): Σ(ρ, k) = qɛf < q T (q, k) q >= ΣS γ0σ0 + γ kσv = T T Σ Christian Fuchs - Uni Tübingen p.5/20

Saturation mechanism Non-relativistic: tensor force essential 2nd order 1 π exchange: large and attractive Pauli-blocking = saturation Relativistic: tensor force quenched Banerjee & Tjon NPA 708 (2002) 303 cancellation of large scalar and vector fields difference of vector and scalar density = saturation principally similar to RMF theory C.F., Lect. Notes Phys. 641 (2004) 119 Christian Fuchs - Uni Tübingen p.6/20

BHF versus DBHF BHF: 3-body forces necessary (Zuo et al., NPA 706 (2002) 418) E/A [MeV] -5-10 -15-20 variational Tuebingen (Bonn) BM (Bonn) Reid CD-Bonn Bonn AV 18 AV 18 +3-BF AV 18 +δv AV 18 +δv+3-bf E/A [MeV] 100 50 0 DBHF Bonn A DBHF Bonn B BHF AV 18 BHF AV 18 +3-BF Skyrme hard (K=380) Skyrme soft (K=200) ChPT var AV 18 +δv var AV 18 +δv+3-bf -25 1,2 1,4 1,6 1,8 2,0 k F [fm -1 ] -50 0 1 2 3 4 ρ/ρ 0 All microscopic EOS are soft! Christian Fuchs - Uni Tübingen p.7/20

Example for EFT: ChPT ChPT: pion dynamics + cut-off = expansion in k F : = soft EOS fine tunig to finite nuclei: = hard EOS E/A (MeV) 30.0 20.0 10.0 0.0 10.0 chiral pion exchange case 2 case 3 20.0 0.0 0.1 0.2 0.3 0.4 0.5 ρ (fm 3 ) ChPT: Finelli et al. NPA 735 (2004) 449 Σ v [MeV] Σ s [MeV] 800 600 400 200 0-200 -400-600 -800 DB CHPT + point-couplings ρ NM 0.8 1.0 1.2 1.4 1.6 1.8 2.0 k F [fm -1 ] DBHF: Gross-Boelting, C.F., Faessler, NPA 648 (1999) 105 Christian Fuchs - Uni Tübingen p.8/20

Neutron matter EOS 100 E b [MeV] 50 DBHF var AV 18 +3-BF NL3 DDRH Typel ChPT neutron matter 0 0 0,1 0,2 0,3 0,4 n B [ fm -3 ] nuclear matter DBHF EOS is soft (K=230 MeV); but asy-stiff Christian Fuchs - Uni Tübingen p.9/20

Symmetry energy from Skyrme Baran, Di Toro et al. nucl-th/0412060 Christian Fuchs - Uni Tübingen p.10/20

Symmetry energy [ ] 2 E b (n B, β) E sym (n B ) = 1 2 β 2 β=0 E b (n B, β = 1) E b (n B, β = 0) β = Y n Y p 100 model E sym [MeV] Skyrme <30 Skyrme (SkLy) 32 RMF 32-36 DBHF (Bonn A) 34.4 Lenske (Bonn C) 28 E sym [MeV] 75 50 25 DBHF Pandaripande AV 18 +3-BF a 4 =30 a 4 =32 a 4 =34 a 4 =36 a 4 =38 ChPT p 0 =3.5 MeV/fm 3 (ρ=0.166) ChPT (Finelli et al.) 34 0 0,1 0,2 0,3 0,4 0,5 n B [ fm -3 ] RMF: Vretenar et al., PRC 68 ( 03) 024310 Christian Fuchs - Uni Tübingen p.11/20

Neutron-proton mass splitting Comparison of different approaches = careful! Many different defnitions of effective masses are used! Non-relativistic mass: [ m NR = M + 1 k d dk U s.p. ] 1 Dirac mass: m D = M + Σ S Relativistic: U s.p. m D E Σ S + Σ 0 Christian Fuchs - Uni Tübingen p.12/20

Neutron-proton mass splitting BHF: m NR,n > m NR,p RMF: m D,n < m D,p ; m NR,n < m NR,p (ρ + δ) Baran, Di Toro et al. nucl-th/0412060 DBHF with Σ extracted by fit method: m D,n > m D,p Alonso & Sammarunca, nucl-th/0301032 DBHF with projection method: m D,n < m D,p de Jong & Lenske, PRC 58 ( 98) 890, van Dalen, C.F., Faessler, NPA 744 ( 04) 227 non-rel. mass in DBHF: m NR,n > m NR,p Christian Fuchs - Uni Tübingen p.13/20

Neutron-proton mass splitting 1100 nonrelativistic mass Dirac mass Neutron effective mass [MeV c -2 ] 1000 900 800 700 600 Neutron Fermi momentum 500 0 1 2 3 Momentum k [fm -1 ] β = 0.0 β = 0.4 β = 0.6 β = 1.0 n B = 0.166 fm -3 0 1 2 3 4 Momentum k [fm -1 ] DBHF: van Dalen, C.F., Faessler in preparation Christian Fuchs - Uni Tübingen p.14/20

Constraints from HICs: Kaons (M K+ /A) Au+Au / (M K+ /A) C+C 7 6 5 4 3 2 E/A [MeV] 60 40 20 0 20 hard soft 0 1 2 3 ρ/ρ 0 E thr Symmetric part of EOS: Subthreshold K + production Far subthreshold: highly sensitive to collective effects 1 0.5 1.0 1.5 E lab [GeV/c] soft EOS, with pot hard EOS, with pot Kaos, Sturm et al., PRL 86 (2001) Christian Fuchs - Uni Tübingen p.15/20

Constraints from HICs: Kaons (M K+ /A) Au+Au / (M K+ /A) C+C 7 6 5 4 3 2 E/A [MeV] 1 0.5 1.0 1.5 E lab [GeV/c] 60 40 20 20 soft EOS, with pot hard EOS, with pot Kaos, Sturm et al., PRL 86 (2001) 0 hard soft 0 1 2 3 ρ/ρ 0 E thr Symmetric part of EOS: Subthreshold K + production Far subthreshold: highly sensitive to collective effects KaoS data = soft EOS! C.F. et al., PRL 86 (2001) 1974 Christian Fuchs - Uni Tübingen p.15/20

Constraints from HICs: Flow K=210 MeV (m /m = 0.7/0.65) and K=380 MeV (ruled out) Danielewicz, NPA 673 (2000) 375 Christian Fuchs - Uni Tübingen p.16/20

Constraints from HICs: Flow K=210 MeV (m /m = 0.7/0.65) and K=380 MeV (ruled out) Danielewicz, NPA 673 (2000) 375 Christian Fuchs - Uni Tübingen p.16/20

Constraints from HICs: Flow directed flow = momentum dependence Christian Fuchs - Uni Tübingen p.17/20

Constraints from HICs: Flow directed flow = momentum dependence elliptic flow = density dependence Danielewicz, NPA 673 (2000) 375 Christian Fuchs - Uni Tübingen p.17/20

Constraints from HICs: Flow directed flow = momentum dependence elliptic flow = density dependence 0,05 elliptic flow 0,00-0,05-0,10 EOS/E895 FOPI DB-CNM DB-LDA 0 1 10 E beam [AGeV] C.F., Gaitanos, NPA 714 (2003) 643 Danielewicz, NPA 673 (2000) 375 Gaitanos, C.F., Wolter, EPJA 12 (2001) 421; NPA 650 Christian (1999) Fuchs 97- Uni Tübingen p.17/20

Constraints from HICs Isospin dependence: HICs with equal mass isotopes = isospin diffusion: GSI (FOPI), MSU data BUU: Chen, Ko, B-A Li, nucl-th/0407032, E sym = 31.6(ρ/ρ 0 ) γ Christian Fuchs - Uni Tübingen p.18/20

Preliminary Summary Christian Fuchs - Uni Tübingen p.19/20

Preliminary Summary EOS from ab inito calculations are soft for symmetric nm Christian Fuchs - Uni Tübingen p.19/20

Preliminary Summary EOS from ab inito calculations are soft for symmetric nm EOS from ab inito calculations are asi-stiff Christian Fuchs - Uni Tübingen p.19/20

Preliminary Summary EOS from ab inito calculations are soft for symmetric nm EOS from ab inito calculations are asi-stiff Consistent with information from hics Christian Fuchs - Uni Tübingen p.19/20