MAE 107 Homework 8 Solutions

Similar documents
MATH 3795 Lecture 12. Numerical Solution of Nonlinear Equations.

CS 323: Numerical Analysis and Computing

Homework and Computer Problems for Math*2130 (W17).

PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435

Math 551 Homework Assignment 3 Page 1 of 6

Chapter 3: Root Finding. September 26, 2005

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places.

CS 323: Numerical Analysis and Computing

MATH 4211/6211 Optimization Basics of Optimization Problems

MATH 3795 Lecture 13. Numerical Solution of Nonlinear Equations in R N.

Math Introduction to Numerical Methods - Winter 2011 Homework 2 Assigned: Friday, January 14, Due: Thursday, January 27,

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS

Midterm Review. Igor Yanovsky (Math 151A TA)

Numerical solutions of nonlinear systems of equations

ROOT FINDING REVIEW MICHELLE FENG

Outline. Additional Nonlinear Systems. Abstract. Finding Equilibrium Points Numerically. Newton s Method

3.1: 1, 3, 5, 9, 10, 12, 14, 18

Outline. Math Numerical Analysis. Intermediate Value Theorem. Lecture Notes Zeros and Roots. Joseph M. Mahaffy,

THE SECANT METHOD. q(x) = a 0 + a 1 x. with

Math Numerical Analysis

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane.

This Week. Professor Christopher Hoffman Math 124

SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES

Numerical Analysis Fall. Roots: Open Methods

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued)

Computational Methods. Solving Equations

Scientific Computing: An Introductory Survey

Numerical Methods I Solving Nonlinear Equations

CHAPTER 3 DIFFERENTIATION

MAE 107 Homework 7 Solutions

10.7 Trigonometric Equations and Inequalities

INTRODUCTION TO COMPUTATIONAL MATHEMATICS

Lecture 4. Section 2.5 The Pinching Theorem Section 2.6 Two Basic Properties of Continuity. Jiwen He. Department of Mathematics, University of Houston

Outline. Scientific Computing: An Introductory Survey. Nonlinear Equations. Nonlinear Equations. Examples: Nonlinear Equations

Extended Introduction to Computer Science CS1001.py. Lecture 8 part A: Finding Zeroes of Real Functions: Newton Raphson Iteration

Nonlinearity Root-finding Bisection Fixed Point Iteration Newton s Method Secant Method Conclusion. Nonlinear Systems

Numerical Methods. King Saud University

MA 8019: Numerical Analysis I Solution of Nonlinear Equations

THE LIMIT PROCESS (AN INTUITIVE INTRODUCTION)

Formulas to remember

Chapter 1. Root Finding Methods. 1.1 Bisection method

Variable. Peter W. White Fall 2018 / Numerical Analysis. Department of Mathematics Tarleton State University

1 The best of all possible worlds

Section 4.1 The Power Method

Root Finding Convergence Analysis

Numerical Optimization

AP Calculus Summer Prep

3.1 Interpolation and the Lagrange Polynomial

CS 450 Numerical Analysis. Chapter 5: Nonlinear Equations

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 5. Nonlinear Equations

MA 137: Calculus I for the Life Sciences

Lösning: Tenta Numerical Analysis för D, L. FMN011,

CS412: Introduction to Numerical Methods

Chapter 2: Functions, Limits and Continuity

Solution of Algebric & Transcendental Equations

Numerical Solution of f(x) = 0

Homework 2. Matthew Jin. April 10, 2014

Justify all your answers and write down all important steps. Unsupported answers will be disregarded.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 7 Solutions Please write neatly, and in complete sentences when possible.

MATH 2053 Calculus I Review for the Final Exam

Nonlinear Equations and Continuous Optimization

INTRODUCTION TO NUMERICAL ANALYSIS

Lecture 8. Root finding II

Numerical Methods Lecture 3

10.7 Trigonometric Equations and Inequalities

Line Search Methods for Unconstrained Optimisation

Introduction to Numerical Analysis

Math 1552: Integral Calculus Final Exam Study Guide, Spring 2018

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook!

Order of convergence

University of Delaware Department of Mathematical Sciences Math 353 Engineering Mathematics III 06S C. Bacuta

f ( c ) = lim{x->c} (f(x)-f(c))/(x-c) = lim{x->c} (1/x - 1/c)/(x-c) = lim {x->c} ( (c - x)/( c x)) / (x-c) = lim {x->c} -1/( c x) = - 1 / x 2

Formulas that must be memorized:

17 Solution of Nonlinear Systems

Jim Lambers MAT 460/560 Fall Semester Practice Final Exam

Math 128A: Homework 2 Solutions

Figure 1: Graph of y = x cos(x)

1 Getting started Math4414 Matlab Tutorial We start by defining the arithmetic operations in matlab in the following tables Arithmetic Operations * mu

Geometric Series and the Ratio and Root Test

Name Date Period. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1 Question related to polynomials

3.1 Introduction. Solve non-linear real equation f(x) = 0 for real root or zero x. E.g. x x 1.5 =0, tan x x =0.

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim

10.7 Trigonometric Equations and Inequalities

If you need the source code from the sample solutions, copy and paste from the PDF should work. If you re having trouble, send me an .

COURSE Iterative methods for solving linear systems

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

x x2 2 + x3 3 x4 3. Use the divided-difference method to find a polynomial of least degree that fits the values shown: (b)

R x n. 2 R We simplify this algebraically, obtaining 2x n x n 1 x n x n

How fast can we add (or subtract) two numbers n and m?

1. Nonlinear Equations. This lecture note excerpted parts from Michael Heath and Max Gunzburger. f(x) = 0

1. Method 1: bisection. The bisection methods starts from two points a 0 and b 0 such that

Math 1B, lecture 15: Taylor Series

and lim lim 6. The Squeeze Theorem

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004

FALL 2018 MATH 4211/6211 Optimization Homework 4

Lecture 5: Inverse Trigonometric Functions

Carefully tear this page off the rest of your exam. UNIVERSITY OF TORONTO SCARBOROUGH MATA37H3 : Calculus for Mathematical Sciences II

Transcription:

MAE 107 Homework 8 Solutions 1. Newton s method to solve 3exp( x) = 2x starting at x 0 = 11. With chosen f(x), indicate x n, f(x n ), and f (x n ) at each step stopping at the first n such that f(x n ) 1 10 10. Start with f(x) of the form f(x) = 3exp( x) 2x Setting f(x) = 0, Newton s method may be implemented on f(x) to obtain the roots of the function. x 0 = 11 f(x 0 ) = 21.999949894898 f (x 0 ) = 2.000050105102 n = 1 x 1 = x 0 f(x 0) f (x 0 ) = 0.000300623083 f(x 1 ) = 2.998497020134 f (x 1 ) = 4.999098266299 n = 2 x 2 = x 1 f(x 1) f (x 1 ) = 0.600108200451 f(x 2 ) = 0.446040372018 f (x 2 ) = 3.646256772920 n = 3 x 3 = x 2 f(x 2) f (x 2 ) = 0.722436494863 f(x 3 ) = 0.011830200936 f (x 3 ) = 3.456703190661 n = 4 x 4 = x 3 f(x 3) f (x 3 ) = 0.725858889058 f(x 4 ) = 0.000008521300 f (x 4 ) = 3.451726299416 1

n = 5 x 5 = x 4 f(x 4) f (x 4 ) = 0.725861357765 f(x 5 ) = 0.000000000004 < 1 10 10 f (x 5 ) = 3.451722715534 Therefore, x 5 = 0.725861357765 is a close enough approximation to solve the initial equation within a tolerance of 1 10 10. 2. Given the equation E e sin(e) M = 0, for angle E given M [0, 2π) with e as a known parameter. Supposing e (0, 0.25) and initial E 0 = M with understanding that sin(e) 1, what is the worst case error for E 0? Given the form of the equation, the left hand side will represent the error, meaning any value that the left hand side yields which is not zero is an error term. Taking the absolute value, the error can be expressed as e 0 = E 0 e sin(e 0 ) M e 0 = e sin(e 0 ), E 0 = M e 0 e (1) e 0 e < 0.25 e max 0 = 0.25 Where e is a known parameter in (0, 0.25). Errors for Newton s method for solution of f(e) 0 satisfy the relation e k+1 ˆKe 2 k where ˆK = max ζ,η f (ζ) 2f (η) Obtain a tight bound for ˆK for this problem then use that to obtain a bound for the errors in the second step and in the third step of some Newton s method iteration. How many steps would be required to obtain an estiamte with an error no greater than 10 7? Based on that, how many trigonometric function evaluations would be necessary in that Newton s method iteration? 2

f(e) = E e sin(e) M f (E) = 1 e cos(e) f (E) = e sin(e) ˆK = max f (ζ) ζ,η 2f (η) = max ζ f (ζ) 2 max η f (η) = e, e (0, 0.25) 2 1 e ˆK 0.25 2 1 0.25 0.25 2 (0.75) 1 6 So, with a ˆK 1 6, a bound of the error at the first step can be approximated which can be used to bound the error at the second step and so on. Using the maximum error with the initial e 1 ˆK e 2 0 1 6 0.252 e 1 0.0104 e 2 ˆK e 2 1 1 6 0.01042 e 2 = 1.8084 10 5 e 3 ˆK e 2 2 1 6 (1.8084 10 5 ) 2 e 3 5.4508 10 11 < 10 7 So, the third step will yield an approximation which will have an associated error less than 10 7. So, at n = 3, a total of 6 trigonometric evaluations would be required, because for each step f(x n ) and f (x n ) will both be computed with a sin evaluation for f(x n ) and a cos evaluation forf (x n ). Two evaluations at step 0 to obtain an approximation for x 1, two more evaluations at step 1 to obtain an approximation for x 2, and two final evaluations at step 2 to obtain an approximation for x 3 which is known to satisfy the error criterion. A simple MATLAB script given by MAE107 2018 HW 8 P 2.m might be used to assist in this analysis. 1 %% 2 % MAE107 Homework 8 Problem 2 3 % O b j e c t i v e : Determine the number o f s t e p s r e q u i r e d to s a t i s f y some 4 % guaranteed e r r o r f o r Newton s Method 5 % 3

6 % Input V a r i a b l e s : None 7 % 8 % Output V a r i a b l e s : None 9 % 10 % Functions Called : None 11 % 12 %% 13 % Define bounded K hat and e0 terms 14 K hat = 1 / 6 ; 15 e0 = 0. 2 5 ; 16 % Define e p s i l o n value 17 eps = 1E 7; 18 % Print i n i t i a l e r r o r 19 f p r i n t f ( e 0 = %.12 f \n, e0 ) ; 20 % Begin i t e r a t i o n count 21 n = 1 ; 22 % Perform while loop to determine e r r o r bound per s t e p 23 while e0 > eps 24 % Determine new e r r o r 25 en = K hat e0 ˆ 2 ; 26 % Print e r r o r at s t e p 27 f p r i n t f ( e %i = %.12 f \n, [ n en ] ) ; 28 % Update v a l u e s 29 e0 = en ; 30 n = n+1; 31 end 32 % Take away the e x t r a count on n 33 n = n 1; The console output is the following: e 0 = 0.250000000000 e 1 = 0.010416666667 e 2 = 0.000018084491 e 3 = 0.000000000055 3. For this problem, three scripts will be utilized, MAE107 2018 HW 8 P 3.m, secant method.m, and noideatwo.m. 1 f u n c t i o n [ x, y ] = secant method ( x0, x1, f, eps, nmax) 2 % O b j e c t i v e : Perform s e c a n t method i t e r a t i o n f o r some f u n c t i o n 3 % d e f i n e d by the handle f u n t i l some e p s i l o n i s s a t i s f i e d 4 % or some maximum number o f i t e r a t i o n s i s reached. 5 % 6 % Input V a r i a b l e s : x0 and x1 : I n i t i a l v a l u e s f o r r o o t e s t i m a t i o n 7 % f : Function handle f o r e v a l u a t i o n o f p o i n t s 8 % eps : Error c r i t e r i o n value 9 % nmax : Maximum number o f i t e r a t i o n s b e f o r e stop 10 % 11 % Output V a r i a b l e s : x : Output v e c t o r o f approximate r o o t p o i n t s 12 % y : Output v e c t o r o f point e v a l u a t i o n s, f ( x ) 13 % 14 % Functions Called : f : Function f o r which r o o t i s estimated by 15 % s e c a n t method 4

16 % 17 % Default i t e r a t i o n count / e r r o r t o l e r a n c e 18 i f nargin < 5 19 nmax = 1 0 0 ; 20 i f nargin < 4 21 eps = 1e 6; 22 end 23 end 24 25 % P r e a l l o c a t i o n 26 x = z e r o s ( 1, nmax) ; 27 y = z e r o s ( 1, nmax) ; 28 % I n i t i a l i z a t i o n 29 x ( 1 ) = x0 ; 30 x ( 2 ) = x1 ; 31 y ( 1 ) = f ( x0 ) ; 32 y ( 2 ) = f ( x1 ) ; 33 % Secant Method Loop 34 i = 3 ; 35 e r r o r = abs ( y ( 2 ) ) ; 36 while e r r o r > eps && i < nmax % Two c o n d i t i o n a l a r g s f o r eps and nmax 37 % Find c u r r e n t x 38 x ( i ) = x ( i 1) y ( i 1) ( x ( i 1) x ( i 2) ) /( y ( i 1) y ( i 2) ) ; 39 % Evaluate c u r r e n t y 40 y ( i ) = f ( x ( i ) ) ; 41 e r r o r = abs ( y ( i ) ) ; 42 i = i + 1 ; 43 end 44 % Truncate v e c t o r s o f e x t r a z e r o s 45 x = x ( 1 : i 1) ; 46 y = y ( 1 : i 1) ; 47 end 1 f u n c t i o n [ f ] = noideatwo ( x ) 2 % O b j e c t i v e : Function d e s c r i p t i o n f o r problem 3 o f homework 8 3 % 4 % Input V a r i a b l e s : x : Point o f e v a l u a t i o n 5 % 6 % Output V a r i a b l e s : y : Function e v a l u a t i o n 7 % 8 % Functions Called : None 9 c1 = x ; 10 f o r i 1 = 1 : 3 11 c1 = cos ( c1 )+x+3; 12 end 13 f=c1 ; 14 end 1 %% 2 % MAE107 Homework 8 Problem 3 S c r i p t 3 % 4 % O b j e c t i v e : Use s e c a n t method to approximate the r o o t o f some 5 % f u n c t i o n d e f i n e d by noideatwo.m 6 % 7 % Input V a r i a b l e s : None 8 % 9 % Output V a r i a b l e s : None 5

10 % 11 % Functions Called : noideatwo.m: Given f u n c t i o n d e s c r i p t i o n f o r r o o t 12 % approximation 13 % secant method.m: G e n e r a l i z e d Secant Method S c r i p t 14 % 15 %% 16 %%%%%%%%%%%%%%% 17 c l e a r a l l ; 18 c l o s e a l l ; 19 % Define I n i t i a l x v a l u e s 20 x0 = 1 ; 21 x1 = 3 ; 22 % Define noideatwo f u n c t i o n handle 23 f = @noideatwo ; 24 % Define Epsilon 25 eps = 1E 10; 26 % Define some maximum number o f i t e r a t i o n s i n c a s e i t can t s a t i s f y e p s i l o n 27 nmax = 1 0 0 ; 28 [ x, y ] = secant method ( x0, x1, f, eps, nmax) ; 29 e r r o r = abs ( y ( end ) ) ; 30 % Print r e s u l t s 31 f o r i = 1 : l e n g t h ( x ) 32 k=i 1; 33 f p r i n t f ( x %i = %.12 f and, [ k x ( i ) ] ) ; % Print x e s t i m a t e s 34 f p r i n t f ( f ( x %i ) = %.12 f \n, [ k y ( i ) ] ) ; % Print f ( x ) e v a l u a t i o n s 35 end The console output is the following: x 0 = 1.000000000000 and f(x 0) = 3.226954896959 x 1 = 3.000000000000 and f(x 1) = 6.999949409171 x 2 = -0.710553718811 and f(x 2) = 2.562842137030 x 3 = -2.853743603352 and f(x 3) = 0.818271971383 x 4 = -3.858983889129 and f(x 4) = -0.237908847635 x 5 = -3.632549595229 and f(x 5) = 0.205981439315 x 6 = -3.737623445996 and f(x 6) = 0.006201768577 x 7 = -3.740885257889 and f(x 7) = -0.000201644322 x 8 = -3.740782543000 and f(x 8) = 0.000000158645 x 9 = -3.740782623748 and f(x 9) = 0.000000000004 4. Consider attempting to solve tan(3x) = 2x + 1 2 via the fixed point method. A form under which the method is guaranteed to converge would be x = 1 3 atan(2x + 1 2 ). This can be proven by taking the first derivative and bounding its absolute value under 1. 6

x = g(x) g(x) = 1 3 atan(2x + 1 2 ) g 8 (x) = 48x 2 + 24x + 15 g (x) < 1, x R The form of g(x) is continuously differentiable, so a γ to define the convergence rate could be directly computed. max x R g (x) = γ < 1 x = 1 ( 4, g 1 ) = 2 4 3 γ = 2 3 This result shows that the fixed point α is unique, the iteration x n+1 = g(x n ) converges to α for any guess x 0 R, and the error estimate becomes α x n γn 1 γ x 1 x 0 ( ) 2 n α x n 3 x 1 x 0 3 Finally, the following limit also holds α x n+1 lim n inf α x n = g (α) Then, there is one other form to consider, so let x = 1 2 tan(3x) 1 4 which will not guarantee convergence. be the alternative form x = h(x) h(x) = 1 2 tan(3x) 1 4 g (x) = 3 2 sec2 (3x) g (x) > 1, x R 7

So, for any interval [a, b] which exists such that h(x) [a, b], there is no constant γ which would guarantee h (x) γ < 1. Therefore, h(x) does not satisfy the fixed-point theorem for the convergence of sequence x n+1 = h(x n ) to some unique fixed point α [a, b]. 5. For this problem, two scripts will be used, MAE107 2018 HW 8 P 5.m and fp method.m. For analysis, a maximum of 100 iterations will be allowed for either form, and a satisfactory epsilon will be given by ɛ = 1 10 7. 1 f u n c t i o n [ x, n ] = fp method ( x0, f, nmax, eps ) 2 % O b j e c t i v e : Use f i x e d point method to obtain a convergence point 3 % based on the i t e r a t i o n x n = f ( x n 1) 4 % 5 % Input V a r i a b l e s : x0 : I n i t i a l point o f i t e r a t i o n 6 % f : Function handle f o r f i x e d point i t e r a t i o n 7 % nmax : Maximum number o f i t e r a t i o n s 8 % eps : Error c r i t e r i o n 9 % 10 % Output V a r i a b l e s : x : Fixed point convergence value 11 % n : I t e r a t i o n s t e p f o r convergence 12 % 13 % Functions Called : f : Right hand s i d e f u n c t i o n f o r f i x e d point 14 % i t e r a t i o n 15 %% 16 % Set d e f a u l t v a l u e s i f input arguments not f u l l 17 i f nargin < 4 18 eps = 1e 10; 19 i f nargin < 3 20 nmax = 1 0 0 ; 21 end 22 end 23 % I n i t i a l i z e v a l u e s f o r loop 24 n = 1 ; 25 x = f ( x0 ) ; 26 e = abs ( x x0 ) ; 27 % Begin loop with e x i t c o n d i t i o n s given by eps and nmax 28 while max( e ) > eps && n < nmax 29 % Obtain new point 30 x = f ( x0 ) ; 31 % Determine new e r r o r 32 e = abs ( x x0 ) ; 33 % Update v a l u e s f o r next s t e p 34 x0 = x ; 35 n = n+1; 36 end 1 %% 2 % MAE 107 Homework 8 Problem 5 3 % 4 % O b j e c t i v e : Use Fixed Point method to f i n d convergene point with 5 % two d i f f e r e n t forms o f equation 6 % 7 % Input V a r i a b l e s : None 8 % 9 % Output V a r i a b l e s : None 10 % 11 % Functions C a l l e d : None ( See Anonymous Functions Defined i n Code ) 8

12 % 13 %% 14 % Define i n i t i a l guess v e c t o r 15 x0 = [ 0 ; 2; 1 0 0 0 ] ; 16 % Convenient to d e f i n e two anonymous f u n c t i o n s f o r e a s i e r argument p a s s i n g 17 g = @( x ) (1/3) atan (2 x+(1/2) ) ; % Form 1 : Expect convergence 18 h = @( x ) (1/2) tan (3 x ) (1/4) ; % Form 2 : Do not expect convergence 19 % Define two p o t e n t i a l t h r e s h o l d s f o r h a l t i n g f i x e d point i t e r a t i o n 20 eps = 1e 7; % Absolute e r r o r between two i t e r a t i o n s 21 nmax = 1 0 0 ; % Maximum Number o f I t e r a t i o n s 22 % P r e a l l o c a t e v e c t o r s f o r l o o p i n g over x0 v e c t o r 23 x gvec = z e r o s ( l e n g t h ( x0 ), 1 ) ; % Point o f convergence f o r form g 24 x hvec = z e r o s ( l e n g t h ( x0 ), 1 ) ; % Point o f convergence f o r form h 25 n g = z e r o s ( l e n g t h ( x0 ), 1 ) ; % Number o f i t e r a t i o n s f o r form g 26 n h = z e r o s ( l e n g t h ( x0 ), 1 ) ; % Number o f i t e r a t i o n s f o r form h 27 f o r i = 1 : l e n g t h ( x0 ) 28 % Fixed Point I t e r a t i o n f o r form g 29 [ x gvec ( i ), n g ( i ) ] = fp method ( x0 ( i ), g, nmax, eps ) ; 30 % Print R e s u l t s 31 f p r i n t f ( %i i t e r a t i o n s f o r g to attempt, n g ( i ) ) ; 32 f p r i n t f ( convergence to %.8 f, x gvec ( i ) ) ; 33 f p r i n t f ( using i n i t i a l guess %.0 f \n, x0 ( i ) ) ; 34 % Fixed Point I t e r a t i o n f o r form h 35 [ x hvec ( i ), n h ( i ) ] = fp method ( x0 ( i ), h, nmax, eps ) ; 36 % Print R e s u l t s 37 f p r i n t f ( %i i t e r a t i o n s f o r h to attempt, n h ( i ) ) ; 38 f p r i n t f ( convergence to %.8 f, x hvec ( i ) ) ; 39 f p r i n t f ( using i n i t i a l guess %.0 f \n, x0 ( i ) ) ; 40 end The console output is the following: 16 iterations for g to attempt convergence to 0.26754692 using initial guess 0 100 iterations for h to attempt convergence to -0.90734305 using initial guess 0 18 iterations for g to attempt convergence to 0.26754690 using initial guess -2 100 iterations for h to attempt convergence to -4.63273138 using initial guess -2 16 iterations for g to attempt convergence to 0.26754696 using initial guess 1000 100 iterations for h to attempt convergence to -4.24220727 using initial guess 1000 f(x) x 0 n α ɛ n max g(x) 0 16 0.26754692 1 10 7 100 g(x) -2 18 0.26754690 1 10 7 100 g(x) 1000 16 0.26754696 1 10 7 100 h(x) 0 100-0.90734305 1 10 7 100 h(x) -2 100-4.63273138 1 10 7 100 h(x) 1000 100-4.24220727 1 10 7 100 So, it would appear that g(x) converged reasonably well for all initial guesses, however h(x) required the maximum number of iterations and showed no consistency in converging to some fixed point α. 9

6. For this problem, two scripts will be used, MAE107 2018 HW 8 P 6.m and fp method.m. First, x 7 is determined using a two equation, two unknown fixed point iteration. Then, ˆKk is determined for each step in k [1, 2,...6] and is used to estimate what x 15 x 14 will be. This estimate is then compared to the actual value of x 15 x 14. 1 f u n c t i o n [ x, n ] = fp method ( x0, f, nmax, eps ) 2 % O b j e c t i v e : Use f i x e d point method to obtain a convergence point 3 % based on the i t e r a t i o n x n = f ( x n 1) 4 % 5 % Input V a r i a b l e s : x0 : I n i t i a l point o f i t e r a t i o n 6 % f : Function handle f o r f i x e d point i t e r a t i o n 7 % nmax : Maximum number o f i t e r a t i o n s 8 % eps : Error c r i t e r i o n 9 % 10 % Output V a r i a b l e s : x : Fixed point convergence value 11 % n : I t e r a t i o n s t e p f o r convergence 12 % 13 % Functions Called : f : Right hand s i d e f u n c t i o n f o r f i x e d point 14 % i t e r a t i o n 15 %% 16 % Set d e f a u l t v a l u e s i f input arguments not f u l l 17 i f nargin < 4 18 eps = 1e 10; 19 i f nargin < 3 20 nmax = 1 0 0 ; 21 end 22 end 23 % I n i t i a l i z e v a l u e s f o r loop 24 n = 1 ; 25 x = f ( x0 ) ; 26 e = abs ( x x0 ) ; 27 % Begin loop with e x i t c o n d i t i o n s given by eps and nmax 28 while max( e ) > eps && n < nmax 29 % Obtain new point 30 x = f ( x0 ) ; 31 % Determine new e r r o r 32 e = abs ( x x0 ) ; 33 % Update v a l u e s f o r next s t e p 34 x0 = x ; 35 n = n+1; 36 end 1 %% 2 % MAE 107 Homework 8 Problem 6 3 % 4 % O b j e c t i v e : Determine s o l u t i o n to a s e t o f e q u a t i o n s using f i x e d 5 % point method then use the e s t i m a t e o f K hat to e s t i m a t e 6 % the Euclidean norm o f the d i f f e r e n c e in the v e c t o r s 7 % between the 14 th and the 15 th i t e r a t i o n s 8 % 9 % Input V a r i a b l e s : None 10 % 11 % Ouput V a r i a b l e s : None 12 % 13 % Functions Called : fpmethod.m: G e n e r a l i z e d Fixed Point method to allow f o r 14 % n e q u a t i o n s and n uknowns 10

15 % 16 % ( See l o c a l f u n c t i o n s d e f i n e d below main loop 17 % 18 %% 19 c l e a r a l l ; 20 c l o s e a l l ; 21 % Define I n i t i a l Conditions 22 x0 = [ 0 ; 0 ] ; 23 % Define Function Handle 24 h = @f p6 ; 25 % Define Epsilon Error C r i t e r i o n 26 eps = 1e 10; 27 % Define Step Number f o r determining K hat v e c t o r 28 n = 7 ; 29 % P r e a l l o c a t e v e c t o r s / i n i t i a l i z e 30 xk = z e r o s ( l e n g t h ( x0 ), n+1) ; 31 xk ( :, 1 ) = x0 ; 32 K t i l d e k = z e r o s (n 1,1) ; 33 num = z e r o s ( 2, n 1) ; 34 euc num = z e r o s (n 1,1) ; 35 den= z e r o s ( 2, n 1) ; 36 euc den = z e r o s (n 1,1) ; 37 % Begin Loop f o r b u i l d i n g v e c t o r o f xk going to s t e p 15 38 f o r i = 1 : 1 5 39 xk ( :, i +1) = fp method ( xk ( :, i ), h, 1, eps ) ; 40 end 41 % Print e s t i m a t e f o r x 7 42 f p r i n t f ( x 7 = \n%.12 f \n%.12 f \n\n, xk ( :, 8 ) ) ; 43 % Begin Loop f o r Determining K hat using the f i r s t 7 i t e r a t i o n s 44 f o r k = 2 : n 45 num ( :, k 1) = xk ( :, k+1) xk ( :, k ) ; % Numerator term 46 euc num ( k 1) = euc norm (num ( :, k 1) ) ; %Euclidean norm o f numerator 47 den ( :, k 1) = xk ( :, k ) xk ( :, k 1) ; % Denominator term 48 euc den ( k 1) = euc norm ( den ( :, k 1) ) ; % Euclidean norm o f denominator 49 K t i l d e k ( k 1) = euc num ( k 1)/ euc den ( k 1) ; % K hat k e v a l u a t i o n 50 f p r i n t f ( K t i l d e %i = %.12 f \n, [ k 1 K t i l d e k ( k 1) ] ) ; % Print r e s u l t s 51 end 52 % Estimate the Euclidean norm d i f f e r e n c e at s t e p 15 53 % Since f u n c t i o n i s assumed L i p s c h i t z continuous, i t i s assumed t h e r e 54 % e x i s t s some cosntant L < 1 such that x n+1 x n <= L x n x n 1. 55 % From K hat k, a l o w e r bound approximation f o r L can be taken by the 56 % maximum value o f K hat k 57 % 58 L = max( K t i l d e k ) ; 59 L = K t i l d e k ( 5 ) ; 60 % Print what our L i p s c h i t z constant approximation w i l l be 61 f p r i n t f ( \ nwill use L = %.12 f to e s t i m a t e x 15 x 14 \ n,l) ; 62 % 63 % Now compute x 15 x 14 = Lˆ8 x 7 x 6 64 e u c n o r m 1 5 e s t = Lˆ(15 n ) euc num (n 1) ; 65 % Obtain the a c t u a l Euclidean norm d i f f e r e n c e at s t e p 15 66 euc norm 15 = euc norm ( xk ( :, 1 6 ) xk ( :, 1 5 ) ) ; 67 % Print r e s u l t s 68 f p r i n t f ( The estimated value o f x 15 x 14 = %.16 f \n, e u c n o r m 1 5 e s t ) ; 69 f p r i n t f ( The a c t u a l value o f x 15 x 14 = %.16 f \n, euc norm 15 ) ; 70 %% 11

71 % n v a r i a b l e n equation f u n c t i o n 72 f u n c t i o n [ f ] = f p 6 ( x ) 73 % O b j e c t i v e : Set o f e q u a t i o n s d e f i n e d in problem 6 d e s c r i p t i o n f o r 74 % f i x e d point i t e r a t i o n 75 % 76 % Input V a r i a b l e s : x : Vector o f v a l u e s f o r e v a l u a t i o n 77 % 78 % Output V a r i a b l e s : f : Vector o f f u n c t i o n e v a l u a t i o n s 79 % 80 % Functions Called : None 81 % 82 f = z e r o s ( l e n g t h ( x ), 1 ) ; 83 i f l e n g t h ( f ) = 2 84 e r r o r ( Function e x p e c t s an input v e c t o r o f l e n g t h 2, but i t ) ; 85 e r r o r ( r e c e i v e d a v e c t o r o f some other l e n g t h ) ; 86 end 87 f ( 1 ) = 0. 5 atan ( x ( 1 )+x ( 2 ) ) + 7 ; 88 f ( 2 ) = s i n ( x ( 1 ) x ( 2 ) ) /(2 exp(1+x ( 2 ) ˆ2) ) ; 89 end 90 91 % Euclidean Norm Function 92 f u n c t i o n [ norm ] = euc norm ( x ) 93 % O b j e c t i v e : Obtain the Euclidean norm o f an input v e c t o r 94 % 95 % Input V a r i a b l e s : x : Input v e c t o r 96 % 97 % Output V a r i a b l e s : norm : Euclidean norm value o f input v e c t o r 98 % 99 % Functions Called : None 100 % 101 % Define a sum o f square v a l u e s 102 sq sum = 0 ; 103 % Begin loop to sum the square v a l u e s 104 f o r i = 1 : l e n g t h ( x ) 105 sq sum = sq sum + x ( i ) ˆ 2 ; 106 end 107 % Take the square r o o t o f the sum 108 norm = s q r t ( sq sum ) ; 109 end The console output is the following: x 7 = 7.722386213080 0.170571452848 K tilde 1 = 0.103513976346 K tilde 2 = 0.075668473046 K tilde 3 = 0.094047320638 K tilde 4 = 0.117114172018 K tilde 5 = 0.114505016479 K tilde 6 = 0.114812878200 Will use L = 0.117114172018 to estimate x 15-x 14 12

The estimated value of x 15-x 14 = 0.0000000000002810 The actual value of x 15-x 14 = 0.0000000000002392 There are, of course, multiple ways to utilize K k to obtain an estimate x 15 x 14. For example, one could use the final value obtained from the K k values. Using K 6 will yield an estimate that is around 0.0000000000002397. This ends up being a bit closer to the actual result than using the maximum K k value, because using the maximum will provide a more conservative estimate. Using K 5 will yield a result that is around 0.0000000000002346 which is now slightly below the actual result. Any estimate between 0.0000000000002346 and 0.0000000000002810 would be a reasonable approximation in this case. 7. Lagrange interpolation for second-order polynomial through (x 0, y 0 ) = (1, 4), (x 1, y 1 ) = (3, 2), and (x 2, y 2 ) = (7, 8). Reduce solution to form y = c 0 + c 1 x + c 2 x 2. P (x) = 2 Pj 2 (x) j=0 Pj 2 (x) = y j L 2 j(x) 2 L 2 x x k j(x) = x j x k k=0,k j P (x) = P 2 0 (x) + P 2 1 (x) + P 2 2 (x) P (x) = y 0 L 2 0(x) + y 1 L 2 1(x) + y 2 L 2 2(x) [( ) ( )] [( ) ( x x1 x x2 x x0 x x2 P (x) = y 0 + y 1 x 0 x 1 x 0 x 2 x 1 x 0 x 1 x 2 [( ) ( )] [( ) ( )] x 3 x 7 x 1 x 7 P (x) = 4 + 2 8 1 3 1 7 3 1 3 7 ( 1 P (x) = 4 12 x2 5 6 x + 21 ) ( + 2 1 12 8 x2 + x 7 ) 8 8 P (x) = 1 3 x2 10 3 x + 7 1 4 x2 + 2x 7 4 1 3 x2 + 4 3 x 1 P (x) = 1 4 x2 + 17 4 )] [( x x0 + y 2 x 2 x 0 ) ( )] x 3 [( x 1 7 1 ( 1 24 x2 1 6 x + 1 8 7 3 ) ) ( )] x x1 x 2 x 1 Where c 0 = 17 4, c 1 = 0, and c 2 = 1 4. 13