Knowing when you'll be done

Similar documents
FLC Ch 9. Ex 2 Graph each function. Label at least 3 points and include any pertinent information (e.g. asymptotes). a) (# 14) b) (# 18) c) (# 24)

Math M111: Lecture Notes For Chapter 10

Assignment #5. 1 Keynesian Cross. Econ 302: Intermediate Macroeconomics. December 2, 2009

9.7 Common Logarithms, Natural Logarithms, and Change of Base

MATH 1113 Exam 2 Review. Spring 2018

Example. Determine the inverse of the given function (if it exists). f(x) = 3

4.1 Exponential Functions. For Formula 1, the value of n is based on the frequency of compounding. Common frequencies include:

Name: 1. 2,506 bacteria bacteria bacteria bacteria. Answer: $ 5. Solve the equation

Sec. 4.2 Logarithmic Functions

MATH 1113 Exam 2 Review

C. HECKMAN TEST 1A SOLUTIONS 170

Summer MA Lesson 20 Section 2.7 (part 2), Section 4.1

Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals

Write each expression as a sum or difference of logarithms. All variables are positive. 4) log ( ) 843 6) Solve for x: 8 2x+3 = 467

Exponential and Logarithmic Functions

Do you know how to find the distance between two points?

Name Date Per. Ms. Williams/Mrs. Hertel

MATH 1101 Exam 3 Review. Spring 2018

nt and A = Pe rt to solve. 3) Find the accumulated value of an investment of $10,000 at 4% compounded semiannually for 5 years.

MATH 1113 Exam 2 Review. Fall 2017

Objectives. Use the number e to write and graph exponential functions representing realworld

Growth 23%

Topic 33: One-to-One Functions. Are the following functions one-to-one over their domains?

Since the logs have the same base, I can set the arguments equal and solve: x 2 30 = x x 2 x 30 = 0

Math 180 Chapter 4 Lecture Notes. Professor Miguel Ornelas

Lesson 26: Problem Set Sample Solutions

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Honors Math 2 Unit 5 Exponential Functions. *Quiz* Common Logs Solving for Exponents Review and Practice

Logarithmic and Exponential Equations and Inequalities College Costs

Chapter 7 - Exponents and Exponential Functions

Practice 6-1: Exponential Equations

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

An equation of the form y = ab x where a 0 and the base b is a positive. x-axis (equation: y = 0) set of all real numbers

f(x) = d(x) q(x) + r(x).

MATH 1101 Exam 3 Review - Gentry. Spring 2018

Do you know how to find the distance between two points?

Solving Exponential Equations (Applied Problems) Class Work

Continuously Compounded Interest. Simple Interest Growth. Simple Interest. Logarithms and Exponential Functions

Math 101 Final Exam Review Solutions. Eric Schmutz

Exponential and Logarithmic Functions. Exponential Functions. Example. Example

Exponential and Logarithmic Functions

MAC Module 9 Exponential and Logarithmic Functions II. Rev.S08

Chapter 14: Finding the Equilibrium Solution and Exploring the Nature of the Equilibration Process

Warm Up Lesson Presentation Lesson Quiz. Holt McDougal Algebra 2

Homework 2 Solution Section 2.2 and 2.3.

MATH 1101 Chapter 5 Review

Algebra 2 - Classwork April 25, Review

8-4. Negative Exponents. What Is the Value of a Power with a Negative Exponent? Lesson. Negative Exponent Property

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7

TEACHER NOTES FOR YEAR 11 GENERAL MATHEMATICS

You identified, graphed, and described several parent functions. (Lesson 1-5)

MA Lesson 14 Notes Summer 2016 Exponential Functions

Part 4: Exponential and Logarithmic Functions

CHAPTER 6. Exponential Functions

Exponential and Logarithmic Functions

Study Guide and Review - Chapter 7

Math 119 Main Points of Discussion

#2. Be able to identify what an exponential decay equation/function looks like.

Record your answers and work on the separate answer sheet provided.

4.1 Exponential Functions

Section 2.3: Logarithmic Functions Lecture 3 MTH 124

Algebra II. Slide 1 / 261. Slide 2 / 261. Slide 3 / 261. Linear, Exponential and Logarithmic Functions. Table of Contents

7-1. Exploring Exponential Models. Vocabulary. Review. Vocabulary Builder. Use Your Vocabulary. 1. Cross out the expressions that are NOT powers.

Geometric Sequences and Series

Materials: Hw #9-6 answers handout; Do Now and answers overhead; Special note-taking template; Pair Work and answers overhead; hw #9-7

10 Exponential and Logarithmic Functions

This is Solving Linear Systems, chapter 4 from the book Beginning Algebra (index.html) (v. 1.0).

Chapter 11 Logarithms

ALGEBRA 2/TRIGONMETRY TOPIC REVIEW QUARTER 2 POWERS OF I

#2 Points possible: 1. Total attempts: 2 An exponential function passes through the points (0, 3) and (3, 375). What are the

Algebra 2 & Trigonometry Honors Midterm Review 2016

? Describe the nth term of the series and the value of S n. . Step 6 Will the original square ever be entirely shaded? Explain why or why not.

Marginal Functions and Approximation

Mathematics Review Revised: January 9, 2008

Transformations of Functions and Exponential Functions January 24, / 35

Exponents and Logarithms Exam

11) 12) ) ) ) )

Evaluate the exponential function at the specified value of x. 1) y = 4x, x = 3. 2) y = 2x, x = -3. 3) y = 243x, x = ) y = 16x, x = -0.

MITOCW MITRES18_005S10_DiffEqnsGrowth_300k_512kb-mp4

Grade 6 The Number System & Mathematical Operations

Unit 1: Introduction to Variables

Addition and Subtraction of real numbers (1.3 & 1.4)

Number of People Contacted

Grade 6. The Number System & Mathematical Operations.

Exponential and logarithm functions

Math 101: Final Exam Review Sheet

Math 1 Exponential Functions Unit 2018

Two-Year Algebra 2 A Semester Exam Review

Section 2.2 Objectives

MATH 1431-Precalculus I

Lesson 6: Algebra. Chapter 2, Video 1: "Variables"

MAC Learning Objectives. Logarithmic Functions. Module 8 Logarithmic Functions

UNIVERSITY OF KWA-ZULU NATAL

Contents CONTENTS 1. 1 Straight Lines and Linear Equations 1. 2 Systems of Equations 6. 3 Applications to Business Analysis 11.

, identify what the letters P, r, n and t stand for.

Logarithms and Exponentials

MATH 081. Diagnostic Review Materials PART 2. Chapters 5 to 7 YOU WILL NOT BE GIVEN A DIAGNOSTIC TEST UNTIL THIS MATERIAL IS RETURNED.

Composition of Functions

Lesson 2 Practice Problems

Pre-AP Algebra 2 Unit 9 - Lesson 9 Using a logarithmic scale to model the distance between planets and the Sun.

Transcription:

Section 1.7: Time-to-maturity calculations Section 1.8: Ination MATH 105: Contemporary Mathematics University of Louisville September 5, 2017 Determining timeframe for account growth 2 / 19 Knowing when you'll be done We've seen how to work out most of the critical parameters of interest growth from all of the others, but there's one we haven't worked out yet. A sensible question about investments Eva has put $3000 into a savings account earning 2.5% annual interest compounding annually. How many years will it take her savings to grow to $5000? We could do this with guess-and-correct, but that'd take a lot of tedious computations! After 10 years she has $3000 1.025 10 $3840.25 not enough! After 25 years she has $3000 1.025 25 $5561.83 too much! After 20 years she has $3000 1.025 20 $4915.85 almost there! After 21 years she has $3000 1.025 21 $5038.75 just right! But this is an awful lot of computation. Can we simplify it?

Determining timeframe for account growth 3 / 19 A new algebraic question In this particular scenario, we're trying to nd the smallest value of t which satises 3000 1.025 t 5000 In practice, we could treat that as an equality, and just round to the nearest year. But how do we solve it? 1.025 t = 5000 3000 The tool we will need to get further is the logarithm. Determining timeframe for account growth 4 / 19 What is a logarithm? The common logarithm of a number is the answer to the question what power would we raise 10 to, in order to get this number? Example logarithms The logarithm of 10,000 is 4, because 10 4 = 10000. The logarithm of 1 is 0, because 10 0 = 1. The logarithm of 0.001 is 3, because 10 3 = 0.001. The logarithm of 40 is a little more than 1.6, because 10 1.6 39.81. The rst three above are moderately straightforward, but the last would need a calculator to compute log(40)! A lot of common measures are based on logarithms: the Richter earthquake scale measures the logarithm of vibration intensity, for instance.

Determining timeframe for account growth 5 / 19 But why should we use logarithms? The logarithm has several extraordinary properties, one of which we're going to use: log(x n ) = n log x so applying a logarithm to an expression with an exponent magically converts the exponent to a multiplicative term, which we can work with. So if we wanted to solve for an exponent in the equation x n = y we could take a logarithm of both sides log(x n ) = log y and then use the above cool property. Determining timeframe for account growth 6 / 19 So what about Eva? Remembering our calculation at the beginning of the lesson, we got stuck at 1.025 t = 5 3 Taking the logarithm of both sides, we get log(1.025 t ) = log 5 3 And using our clever property on the left, t log 1.025 = log 5 3 And now all we need is to divide by this logarithm to get t alone: t = log 5 3 log 1.025 20.687 which we can round up to 21 years, since compounding is annual.

Determining timeframe for account growth 7 / 19 Twice the logarithms means twice the fun Calculators typically have two dierent logarithm keys, which produce dierent answers. log is the common logarithm, which determines the right exponent to place on the number 10. Scientists and engineers use this a lot. ln is the natural logarithm, which determines the right exponent to place on the number e (yup, the same one as in compound interest!). Mathematicians prefer this to the common logarithm. You can use either of them as long as you're consistent! log(5/3) and ln(5/3) ln 1.025 log(5/3) both give the right answer before, but ln 1.025 won't. log 1.025 Also, on calculators which don't display functions onscreen, you press log after entering the number you want to take the logarithm of. Determining timeframe for account growth 8 / 19 From the specic to the general What sort of question might we want to answer generally about solving for time in interest calculations? Eva's problem, generalized If we have an account with initial principal P, subject to an annual interest rate r compounded n times per year, how long will it take the account to reach a balance of F? As always, we'll start with the standard form of our interest formula: F = P ( 1 + r ) nt n And in this particular case, we want to solve algebraically for t.

Determining timeframe for account growth 9 / 19 The most complicated slide of the day log F P n log ( 1 + r n F = P ( 1 + r n F P = ( 1 + r n ) nt log F P = log ( 1 + r n ) nt ) nt log F P = tn log ( 1 + r n ) = t So now we have a general formula for t from other features! Sometime you want to know the number of compounding periods instead, which would be m = nt = log F P log ( 1 + r n Note that it probably makes sense to round this up, since the number of compounding periods should be a whole number. ) ) Determining timeframe for account growth 10 / 19... and back to the specic A sample interest-growth question Ismail has $2500 in a savings account earning 1.8% annual interest compounding quarterly. How long will it be until his savings have grown to $3000? Here we can just calculate the total number m of quarters taken, taking our present value to be P = 2500, desired future value F = 3000, annual interest rate r = 0.018, and number of periods per year n = 4: m = log F P log ( 1 + r n ) = log 3000 2500 log(1 + 0.018 4 ) 40.607 which, since compounding happens over an integer number of quarters, means he needs 41 quarters, or, alternatively, 10.25 years.

Determining timeframe for account growth 11 / 19 Continuous interest calculations If an account continuously compounds, then the time doesn't need to be a whole number of years, months, etc. With an APR r, the calculation F = P(1 + r) t yields t = log F P log(1 + r) and with continuous compounding we don't need to round o. If you're given a continuous compounding rate (which you won't, in this class), we can solve F = Pe rt to get t = ln F P r. Determining timeframe for account growth 12 / 19 Continuous compounding, continued Watch out for loan growth! If I have a continuously compounding $1000 loan with an APR of 7.2%, how long will it take for the princial to reach $1300? Here we have an APR of 7.2%, so we can solve for the lifetime of the loan: 1300 log 1000 t = log 1.072 = 3.7736 so it would take about 3.7736 years (note that we don't round o if the interest is continuous).

Determining timeframe for account growth 13 / 19 Quick mental math: the Rule of Seventy Doubling time How long would it take an account subject to an annual interest rate of r and continuously compounding to double in value? Here we are solving for t in this equation: If we solve that, we get The Rule of Seventy 2P = Pe rt. t = ln 2 r 0.693 r To nd the doubling time of a continuously compounding account, divide 70 (or 69.3) by the nominal interest percentage. For instance, a continuously compounding account with 4% interest would double in about 70 = 17.5 years. 4 Determining timeframe for account growth 14 / 19 Putting it all together For annual compounding, t = log ( F P ) log(1+r), rounded up. For periodic compounding, m = log( F P ), rounded up, and then log(1+ n) r t = m n. For continuous-compounding given by an annual percentage rate, t = log ( F P ) log(1+apr), leaving a fractional part on your answer. For continuous compounding with a nominal annual rate continuously compounded, t = ln( F P ) r.

What is ination? Ination 15 / 19 Ination is when the apparent value of money decreases, and as a result things become more expensive. Ination is not necessarily a bad thing! Generally, it is good for borrowers, bad for lenders, and stimulates spending. Most economies are given to natural ination, both as a result of increasing supply of money and various changes in supply and demand of products. How do we measure ination? Ination 16 / 19 Since ination represents a decrease in the purchasing power of a unit of currency, we can observe ination by noting how prices change. However, tracking the price of one good, while subject to ination, may be much more aected by the properties of that good, and when it becomes scarce or in extreme demand. Typically economists measure ination by selecting a market basket of goods and tracking the price of that over time.

Those numbers in the newspaper Ination 17 / 19 In the US, one of the standard market-basket price measurements is the Consumer Price Index (CPI), calculated by the Bureau of Labor Statistics. This economic indicator gives a sense of how the cost of things have grown (and how the dollar has shrunk in value) over time. For instance, the CPI in November 1974 had a value of 51.0; by September 1986 it had a value of 110.0.Thus, over these 12 years the dollar halved in purchasing power. Ination 18 / 19 Using CPI to time-shift a quantity of money If you read a historical story in which someone gets, say, $200 in 1950, those stories will usually tell you how much that is in present-day dollars. With a CPI, we can do that ourselves. The past is a foreign country L.P. Hartley The average family income in 1960 was $6,691. How much is that in 2017 dollars, using the knowledge that the CPI in January 1960 was 29.41, and the CPI in early 2017 was 147.98? We might determine how many market baskets the average income in $6691 1960 could buy: 227.507. $29.41 This same number of market baskets, in 2017, costs 227.507 $147.98 $33666.58, so that average 1960 income corresponds to a $33,666.58 income in 2017 dollars.

CPI formulas in general Ination 19 / 19 The method used in the last slide can be generalized. To convert year A dollars to year B dollars: Value in Year B = Year B CPI Year A CPI Value in Year A Year B CPI Because of that we call the percentile growth 1 the Year A CPI ination percentage. For a single year, we can call it the ination rate. Calculating ination rates The early-2009 CPI is 131.825; the early-2010 CPI is 133.733. What was the ination rate for 2009? Here we calculate 133.733 131.825 1 1.45%.