Tim Rawle. Herschel Lensing Survey (HLS) ESA Research Fellow ESAC, Madrid

Similar documents
Exploring star formation in cluster galaxies. the Herschel Space Observatory. Tim Rawle. Steward Observatory, University of Arizona

The far-infrared/submillimeter properties of galaxies located behind the Bullet cluster *,**

Massively Star-Forming Dusty Galaxies. Len Cowie JCMT Users Meeting

Towards a Complete Census of Extreme Starbursts in the Early Universe

Dominik A. Riechers Cornell University

A prelude to SKA. High-resolution mapping of the ujy radio population. Ian Smail ICC, Durham University Tom Muxlow, JBCA, University of Manchester

LoCuSS: A Legacy Survey of Galaxy Clusters at z=0.2

Extragalactic Surveys: Prospects from Herschel-PACS

Far-infrared Herschel SPIRE spectroscopy reveals physical conditions of ionised gas in high-redshift lensed starbursts

Lensing & Herschel unveils extreme starformation at z 2

The Herschel Multi-tiered Extragalactic Survey (HerMES) The Evolution of the FIR/SMM Luminosity Function and of the Cosmic SFRD

HIGH REDSHIFT OBJECTS. Alain Omont (IAP)

Exploring the Depths of the Universe

Exploiting Cosmic Telescopes with RAVEN

Understanding Submillimetre Galaxies: Lessons from Low Redshifts

In class presentations!

erschel ATLAS Steve Eales and the H-ATLAS and HerMES teams

SOFIA/HAWC+ Detection of a Gravitationally Lensed Starburst Galaxy at z = 1.03

arxiv: v2 [astro-ph.co] 4 Mar 2013

Distant galaxies: a future 25-m submm telescope

Molecules at High Redshift (CO in Spitzer and Herschel-selected High-z Samples) David T. Frayer (NRAO), H-ATLAS, GOODS-H, FIDEL, and Zpectrometer

The Unbearable Lightness of Chemistry

David T. Frayer (NRAO-GB), A. Harris, A. Baker, M. Negrello, R. Ivison, I. Smail, M. Swinbank, D. Windemuth, S. Stierwalt, H-ATLAS and GOALS Teams

Galaxies 626. Lecture 10 The history of star formation from far infrared and radio observations

Galaxy Evolution at High Redshift: The Future Remains Obscure. Mark Dickinson (NOAO)

Occupy Dark Matter: Accessing the 99% of dusty galaxies that lie beneath the confusion noise floor. Marco Viero - Caltech

The ALMA z=4 Survey (AR4S)

SUPPLEMENTARY INFORMATION

A mid and far-ir view of the star formation activity in galaxy systems and their surroundings

ALMA Synergy with ATHENA

BAT AGN prefer circumnuclear star formation

The Cosmic History of Star Formation. James Dunlop Institute for Astronomy, University of Edinburgh

Studying Galaxy Evolution with FIRI. A Far-InfraRed Interferometer for ESA. Dimitra Rigopoulou Oxford/RAL-STFC

arxiv: v2 [astro-ph.ga] 2 May 2016

The sizes of z ~ 6-8 lensed galaxies from the Hubble Frontier Fields data of Abell 2744

A Measurement of the Velocity Sub-Structure in MACS J using the Kinetic Sunyaev-Zel dovich Effect

Caitlin Casey, Jacqueline Hodge, Mark Lacy

The gas and dust properties of NGC 891 with Herschel

Luminous Quasars and AGN Surveys with ELTs

Chris Pearson: RAL Space. Chris Pearson: April

arxiv: v1 [astro-ph] 17 Dec 2008

The Excited and Exciting ISM in Galaxies: PDRs, XDRs and Shocks as Probes and Triggers

High Redshift Universe

Overview of JWST GTO Programmes

WHAT CAN WE LEARN ABOUT SUBMILLIMETER GALAXIES FROM INTERFEROMETRIC IMAGING? Joshua D. Younger Harvard/CfA

A Search for High Redshift Galaxies behind Gravitationally Lensing Clusters

High-Redshift Galaxies: A brief summary

High-z star formation the Herschel view

Dusty star-forming galaxies at high redshift (part 5)

The History of Active Galaxies A.Barger, P. Capak, L. Cowie, RFM, A. Steffen, and Y. Yang

The evolution of the Galaxy Stellar Mass Function:

Dusty star-forming galaxies at high redshift (part 5)

Multiwavelength Study of Distant Galaxies. Toru Yamada (Subaru Telescope, NAOJ)

A Look Back: Galaxies at Cosmic Dawn Revealed in the First Year of the Hubble Frontier Fields Initiative

Resolved studies of gas in high-z galaxies

UV/optical spectroscopy of Submilliimeter Galaxies

Probing the Chemistry of Luminous IR Galaxies

Luminous Infrared Galaxies

Far-Infrared Spectroscopy of High Redshift Systems: from CSO to CCAT

Astronomy across the spectrum: telescopes and where we put them. Martha Haynes Exploring Early Galaxies with the CCAT June 28, 2012

Unveiling the nature of bright z ~ 7 galaxies with HST and JWST

Extragalactic SMA. Sergio Martín Ruiz. European Southern Observatory

Extragalactic Background Light and Cosmic Infrared Background

A Spectroscopically-Confirmed Double Source Plane Lens in the HSC SSP Tanaka, Wong, et al. 2016, ApJ, 826, L19

Massive molecular gas flows and AGN feedback in galaxy clusters

Wagg ea. [CII] in ALMA SV 20min, 16 ants. 334GHz. SMA 20hrs

Feeding the Beast. Chris Impey (University of Arizona)

Weak Gravitational Lensing

High-z QSO (HSC #123)

Disk Building Processes in the local Massive HI LIRG HIZOA J A prototype for disk galaxies at z=1?

Evolution of Star Formation Activity of Galaxies as seen by Herschel

Molecular Gas Properties of AGN and Starburst Galaxies at High-Redshift

Radio Nebulae around Luminous Blue Variable Stars

arxiv: v1 [astro-ph.ga] 5 Jun 2015

HIGH REDSHIFT CO LINE EMISSION: PERSPECTIVES

arxiv: v1 [astro-ph.co] 30 Aug 2012

Carbon in the ISM of z=4 dusty starburst galaxies

Disentangling a group of lensed submm galaxies at z 2.9

Molecular Gas and the Host Galaxies of Infrared-Excess Quasi-Stellar Objects

The First Galaxies: Evolution drivers via luminosity functions and spectroscopy through a magnifying GLASS

GISMO. (Giant IR and SubMm Space Observatory) Tim Hawarden. UK Astronomy Technology Centre, Royal Observatory, Edinburgh

44 JAXA Special Publication JAXA-SP E Lutz Figure 2. The cosmic far-infrared background as seen by direct measurements and as resolved by Hersch

Multiwavelength Observations of Dust-Obscured Galaxies Revealed by Gamma-Ray Bursts

IRS Spectroscopy of z~2 Galaxies

Durham Research Online

HST/NICMOS Observations of the Near Infrared Background

SPT SMGs: High-redshift star formation under the cosmic microscope

SOFIA/GREAT observations of LMC-N 11: Does [C ii] trace regions with a large H 2 fraction?

SUPPLEMENTARY INFORMATION

Star formation history in high redshift radio galaxies

Concentra)on of dusty starbursts and AGNs at a z=3.09 proto- cluster core

Astronomy across the spectrum: telescopes and where we put them. Martha Haynes Discovering Dusty Galaxies July 7, 2016

arxiv: v1 [astro-ph.co] 27 May 2009

The skin of Orion. Molecular Astrophysics: The Herschel and ALMA era PRESS RELEASE

The Dust and Molecular Gas in Brightest Cluster Galaxies. Alastair Edge (Durham University) and many collaborators

Exploring massive galaxy evolution with deep multi-wavelength surveys

Dusty star-forming galaxies at high redshift (part 7)

ALMA! Fabian Walter MPIA

ngvla: Galaxy Assembly through Cosmic Time

HerCULES. Paul van der Werf. Leiden Observatory. Lorentz Centre February 28, 2012

Transcription:

Herschel Lensing Survey (HLS) Beyond the Confusion: Enhancing our View of High-z Star Formation via Cluster Lensing Tim Rawle ESA Research Fellow ESAC, Madrid E. Egami (PI; Arizona) B. Altieri (ESAC) L. Metcalfe (ESAC) I. Valtchanov (ESAC) A. Blain (Leicester) J. Bock (JPL/Caltech) F. Boone (Toulouse) C. Bridge (Caltech) S. Bussmann (CfA-Harvard) A. Cava (Geneva) S. Chapman (Dalhousie) B. Clement (Lyon) F. Combes (Paris) M. Dessauges (Geneva) D. Dowell (JPL/Caltech) H. Ebeling (Hawaii) A. Edge (Durham) R. Ellis (Caltech) D. Fadda (IPAC/NHSC) O. Ilbert (Marseille) R. Ivison (Edinburgh) M. Jauzac (Durham) T. Jones (UCSB) J.-P. Kneib (Geneva) D. Lutz (MPE) A. Omont (IAP) R. Pello (Toulouse) M. Pereira (Arizona) P. Pérez-González (Madrid) J. Richard (Lyon) G. Rieke (Arizona) G. Rodighiero (Padova) D. Schaerer (Geneva) P. Sklias (Geneva) I. Smail (Durham) G. Smith (Birmingham) M. Swinbank (Durham) G. Walth (Arizona) P. Van der Werf (Leiden) M. Werner (JPL/Caltech) M. Zamojski (Geneva) M. Zemcov (JPL/Caltech)

Outline Limits of Herschel blank fields at high redshift The power of cluster lensing The Herschel Lensing Survey (HLS) Overview of a few example lensed sources 75x magnified source @ z=2.8 behind the Bullet Cluster [Rex+10] A few interesting examples [Egami+prep, Walth+prep, Clement+prep] HLS0918: z=5.2 system behind A773 [Combes+12, Rawle+14, Boone+prep] Summary: Lensing with Herschel (and beyond)

High Redshift from Herschel Blank Fields 13 log 10 (L IR L sun ) 12 11 10 9 ~PACS limit ~SPIRE limit BBC03 E11 (GOODS Herschel) M13 (5MUSES/HerMES) Miscellaneous 0 1 2 3 z Elbaz+11 GOODS- Herschel At z > 1.5, blank field surveys only probe the LIRG+ regime

High Redshift from Herschel Blank Fields 13 log 10 (L IR L sun ) 12 11 10 9 ~PACS limit ~SPIRE limit BBC03 E11 (GOODS Herschel) M13 (5MUSES/HerMES) Miscellaneous 0 1 2 3 z At z > 1.5, blank field surveys only probe the LIRG+ regime You can probe deeper by exploiting gravitational lensing Elbaz+11 GOODS- Herschel

High Redshift from Herschel Blank Fields log 10 (L IR L sun ) 13 12 11 10 9 ~PACS limit ~SPIRE limit * * * * * * * * * * * S13 lenses BBC03 E11 (GOODS Herschel) M13 (5MUSES/HerMES) Miscellaneous * Saintonge+13 Wellconstrained galaxy-lensed sources 0 1 2 3 Individual foreground galaxies can be lenses z

High Redshift from Herschel Blank Fields log 10 (L IR L sun ) 13 12 11 10 9 ~PACS limit ~SPIRE limit * * z * * * * * * * * * S13 lenses BBC03 E11 (GOODS Herschel) M13 (5MUSES/HerMES) Miscellaneous 0 1 2 3 Saintonge+13 Wellconstrained galaxy-lensed sources Only ~10 are intrinsically fainter than Herschel limits Individual foreground galaxies can be lenses... BUT 1) galaxy-galaxy lenses are only discovered serendipitously in large blank-field surveys 2) the lens and background source can be hard to disentangle *

High Redshift from Herschel Blank Fields log 10 (L IR L sun ) 13 12 11 9 ~PACS limit ~SPIRE limit * * z * * * * * * * * * locating 10 lensed sources S13 lenses BBC03 * E11 (GOODS Herschel) M13 (5MUSES/HerMES) Miscellaneous 0 1 2 3 Saintonge+13 Wellconstrained galaxy-lensed sources We need a more efficient method for Only ~10 are intrinsically fainter than Herschel limits Individual foreground galaxies can be lenses... BUT 1) galaxy-galaxy lenses are only discovered serendipitously in large blank-field surveys 2) the lens and background source can be hard to disentangle

Abell 2218 (z=0.18)

Abell 383 (z=0.19)

Abell 383 (z=0.19) Cluster lensing - allows selection of a large region with increased probability of magnification - easier to constrain the lens mass via many multiply-imaged systems - often no direct line-of-sight foreground object

The Herschel Lensing Survey (HLS) PI: Eiichi Egami (Steward Observatory, Arizona) -HLS-deep + GT clusters (~370 hours) - 65 well-studied massive galaxy clusters (0.1<z<1.0) - Deep 100-500μm PACS+SPIRE imaging (~2.4, 4.7, 9.4, 10.6, 12.0 mjy)... ~5 deg 2 - Full IRAC coverage and ~75% MIPS 24μm coverage - Sample includes all 25 CLASH clusters (HST Treasury Survey with 16 UV-NIR bands) - Sample includes all 4 HST Frontier Fields (ultra-deep HST DDT program) Abell 2744 MACS0416 MACS0717 MACS1149 -HLS-snapshot (~50 hours) - 537 clusters (0.1<z<1.0) from the ROSAT, MACS, SPT and CODEX samples - Near confusion 250-500μm SPIRE imaging (~14, 19, 20 mjy)... ~10 deg 2

The power of lensing in the far-infrared Galaxies in the far-infrared (FIR) - UV photons heat dust, and are re-emitted at longer λ: FIR probes dust properties - In galaxies, dominant heat sources are young stellar populations and AGN - in the absence of AGN, FIR traces dusty star formation - Peak of dust component in SPIRE bands at z~1 5: FIR colour crudely traces redshift - Negative K-correction implies there are abundant IR-bright systems at high redshift - BUT confusion noise sets the fundamental sensitivity of current FIR surveys - Blank-field surveys only observe U/HyLIRG population at high-z Gravitational lensing - Amplifies individual fluxes, while preserving surface density - Reduces source density by spreading out other background galaxies - Increases spatial extent (source-plane reconstruction possible with lensing model) FIR surveys of massive clusters locate high-z lenses efficiently

The Herschel Lensing Survey (HLS) Selected High Redshift Publications: - Egami+10, A&A, 518, 12... A&A Special Edition Survey Paper - Rex+10, A&A, 518, 13... Bullet Cluster - Combes+12, A&A, 538, 4... - Rawle+14, 2014, ApJ, 783, 59... A773 (IRAM-30m, PdBI, SMA follow-up) - Boone+13, A&A, 559, 1... AS1063 (LABOCA-detected, Herschel drop-out) - Sklias+14, A&A, 561, 149... SFHs of HLS sources - Dessauges-Zavadsky+ (arxiv:1408.0816) CO gas content Talk: Friday 9:50 - Cluster sources: Rawle+10, Rawle+12a, Rawle+12b, Rawle+14b Poster 4.06 - SZ effect: Zemcov+10, Prokhorov+12, Sayers+13 The effect of a cluster merger induced shock on constituent galaxies

HST OPTICAL The power of Herschel Optical: NASA/STScI; Magellan/U.Arizona/Clowe et al. Bullet Cluster (z=0.296)

+Chandra X-ray The power of Herschel X-ray: NASA/CXC/CfA/ Markevitch et al. Bullet Cluster (z=0.296)

SPITZER/IRAC 3.6um The power of Herschel Bullet Cluster (z=0.296)

SPITZER/MIPS 24um The power of Herschel Bullet Cluster (z=0.296)

HERSCHEL/SPIRE 250um The power of Herschel Bullet Cluster (z=0.296)

HERSCHEL/SPIRE 350um The power of Herschel Bullet Cluster (z=0.296)

HERSCHEL/SPIRE 500um The power of Herschel Bullet Cluster (z=0.296)

Faint (LIRG; 5x10 11 L ) lensed source at z=2.8 Magnification factor of ~75x Observed Herschel flux densities: Corrected for lensing: 7.0, 24.5, 65.3, 98.6, 101.4 mjy 0.09, 0.3, 0.9, 1.3, 1.4 mjy Such a source would be impossible to observe without lensing [Rex+10]

The beginnings of the full HLS sample log 10 (L IR L sun ) 13 12 11 10 9 ~PACS limit ~SPIRE limit * * * * * * * * * * * This study (HLS lenses) S13 lenses BBC03 E11 (GOODS Herschel) M13 (5MUSES/HerMES) Miscellaneous * 0 1 2 3 z [Rawle+in prep.] From first 10 HLS deep clusters: ~8 well-constrained sources below Herschel limits Full HLS-deep: ~50 similar sources HLS (deep+snapshot): >150 (no PACS for snapshot)

Abell 521: giant arc @ z=1.04 cluster @ z=0.25 LIRG type @ 12x magnification [Rawle+in prep.]

CLJ1226: 3 clustered SMGs? cluster @ z=0.89 3 strongly-lensed systems (A,B,C) [Clement+in prep.] Triply-imaged system A @ z=2.2644 (lensed) LBT/Luci IRAM-30m/EMIR

MACS0257: Quintuply-imaged SMG @ z=4.7 20 mjy 17 mjy 11 mjy LABOCA 870 um 4 mjy SMA 880um (com+ex+vex) WFC3/F140M Magnification factor >130 for A+B+C+D LIR < 5x1011 L [Egami+in prep.] Tim Rawle Two components separated by ~650 pc Herschel Lensing Survey: Beyond the Confusion ESTEC: 11-14 November

A773 (z=0.217) 250um 350um 500um

A773 (z=0.217) 250um 350um 500um Herschel source primarily magnified by a background source @ z=0.63 Subaru optical (Combes+12) Black contour = 880μm (SMA) 2 FWHM PSF

HLS0918 @ z=5.2 [Rawle+14]

Atomic and molecular emission JVLA JVLA IRAM-30m IRAM-30m PdBI IRAM-30m PdBI IRAM-30m IRAM-30m SMA

Atomic and molecular emission JVLA JVLA IRAM-30m IRAM-30m PdBI IRAM-30m [CII] 158 μm PdBI IRAM-30m IRAM-30m SMA

Atomic and molecular emission JVLA JVLA IRAM-30m IRAM-30m PdBI IRAM-30m 12 CO ladder PdBI IRAM-30m IRAM-30m SMA

Atomic and molecular emission JVLA JVLA IRAM-30m IRAM-30m PdBI IRAM-30m H2Op(2,0,2-111) 304 μm PdBI IRAM-30m IRAM-30m SMA

[Rawle+14] Spatially resolved emission

[Rawle+14] Spatially resolved emission

[Rawle+14] Spatially resolved emission

L[CII]/LFIR [Rawle+14] Stacy+10, Cox+11, De Breuck+11, Valtchanov+11, Swinbank+12, Venemans+12, Wagg+12, Riechers+13 Malhotra+01, Sargsyan+12 HLS0918 is located in the same region as other high-z sources low-z galaxies of the same LFIR exhibit an order of magnitude lower L[CII] attributed to extended [CII] reservoirs

Physical properties of the star-forming regions [Rawle+14] adapted from De Breuck+11 Grey lines represent (solar metallicity) PDR models with varying gas density (n) and FUV field strength (G0) from Kaufman+99 Ra, Rb and B similar to local ULIRGs (Ra resembles high-z quasar hosts) VB exhibits characteristics of normal local galaxies

H2O emission H2Op(2,0,2-1,1,1) @ 304μm IRAM-30m (Combes+12) Water emission is excited by strong FIR radiation field, from intense star formation Only detected from Ra and Rb Ra emission consistent with ULIRG trend LH2O = LFIR α where α=1.1±0.1 (Omont+13) Rb has very strong water emission for given LFIR (α=2.5±0.7) Ra (LFIR,Ra 10 13 L ) excites water emission in both components Ra and Rb have ΔV=250 km/s and a source plane separation of <1kpc Ra-Rb are two neighbouring components in the nucleus of a massive galaxy

HLS0918: high resolution PdBI maps More to come in Boone+prep Non-Negative Least Squares method for PDBI image plane maps Lens model (cluster + z=0.6 galaxy) derived using LENSTOOL Source plane maps directly constrained from interferometer data using NNLS method

Summary Gravitational cluster lensing -Enormous gain in sensitivity for free -Extraordinary spatial resolution at high redshift D=3.5m D=25m

Summary Gravitational cluster lensing -Enormous gain in sensitivity for free -Extraordinary spatial resolution at high redshift x7 magnification turns Herschel into CCAT in Space D=3.5m D=25m

Summary Gravitational cluster lensing -Enormous gain in sensitivity for free -Extraordinary spatial resolution at high redshift Investigating high-z lensed sources is efficient in clusters in FIR HLS probes faint lensed galaxies (together with HST, e.g. CLASH, HFF) perfect for ALMA follow-up Next frontier (ALMA / JWST): aided by lensing magnification, resolve lensed galaxies into individual star-forming regions (HII regions, molecular clouds)