Graphs: Paths, trees and flows

Similar documents
Jonathan Turner Exam 2-10/28/03

Combinatorial Optimization

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01

CSE 421 Algorithms. Warmup. Dijkstra s Algorithm. Single Source Shortest Path Problem. Construct Shortest Path Tree from s

1 Finite Automata and Regular Expressions

Shortest Paths. CSE 421 Algorithms. Bottleneck Shortest Path. Negative Cost Edge Preview. Compute the bottleneck shortest paths

Library Support. Netlist Conditioning. Observe Point Assessment. Vector Generation/Simulation. Vector Compression. Vector Writing

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics)

RUTH. land_of_israel: the *country *which God gave to his people in the *Old_Testament. [*map # 2]

Labeling Problem & Graph-Based Solution

Design and Analysis of Algorithms (Autumn 2017)

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

CSC 373: Algorithm Design and Analysis Lecture 9

Graduate Algorithms CS F-18 Flow Networks

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall

Jonathan Turner Exam 2-12/4/03

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

QUESTIONS BEGIN HERE!

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

EE Control Systems LECTURE 11

Solutions to assignment 3

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Image Modeling & Segmentation

Final Exam : Solutions

Eager st-ordering. Universität Konstanz. Ulrik Brandes. Konstanzer Schriften in Mathematik und Informatik Nr. 171, April 2002 ISSN

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

COMP108 Algorithmic Foundations

Global Solutions of the SKT Model in Population Dynamics

Midterm. Answer Key. 1. Give a short explanation of the following terms.

1 Introduction to Modulo 7 Arithmetic

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

Planar Upward Drawings

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times.

3+<6,&6([DP. September 29, SID (last 5 digits): --

Eager st-ordering. 1 Introduction. Ulrik Brandes

Overview. Splay trees. Balanced binary search trees. Inge Li Gørtz. Self-adjusting BST (Sleator-Tarjan 1983).

CRABTREE ROHRBAUGH & ASSOCIATES - ARCHITECTS

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

Distributed Algorithms for Secure Multipath Routing in Attack-Resistant Networks

Life Science Journal 2014;11(9) An Investigation of the longitudinal fluctuations of viscoelastic cores

Maximum Flow. Flow Graph

Relation between Fourier Series and Transform

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

Math 266, Practice Midterm Exam 2

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

NEWBERRY FOREST MGT UNIT Stand Level Information Compartment: 10 Entry Year: 2001

Applications of these ideas. CS514: Intermediate Course in Operating Systems. Problem: Pictorial version. 2PC is a good match! Issues?

Revisiting what you have learned in Advanced Mathematical Analysis

The Procedure Abstraction Part II: Symbol Tables and Activation Records

T HE 1017TH MEETING OF THE BRODIE CLUB The 1017th Meeting of the Brodie Club was held at 7:30 pm on January 15, 2008 in the R amsay Wright Laboratorie

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee.

10/30/12. Today. CS/ENGRD 2110 Object- Oriented Programming and Data Structures Fall 2012 Doug James. DFS algorithm. Reachability Algorithms

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017

1. Be a nurse for 2. Practice a Hazard hunt 4. ABCs of life do. 7. Build a pasta sk

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

Derivation of the differential equation of motion

2. The Laplace Transform

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

Factors Success op Ten Critical T the exactly what wonder may you referenced, being questions different the all With success critical ten top the of l

EE1000 Project 4 Digital Volt Meter

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

1. Accident preve. 3. First aid kit ess 4. ABCs of life do. 6. Practice a Build a pasta sk

Shortest Path With Negative Weights

Binomials and Pascal s Triangle

Overview. Splay trees. Balanced binary search trees. Inge Li Gørtz. Self-adjusting BST (Sleator-Tarjan 1983).

Seven-Segment Display Driver

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

A-1 WILDCARD BEER TASTING ROOM 3 DRAWING INDEX & STATE CODES 4 PROJECT DATA SOLANO AVE KAINS AVE. 5 AERIAL VIEW 6 PROJECT TEAM TENANT IMPROVEMENTS

Advanced Queueing Theory. M/G/1 Queueing Systems

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

A Tutorial of The Context Tree Weighting Method: Basic Properties

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

where: u: input y: output x: state vector A, B, C, D are const matrices

Stable Matching for Spectrum Market with Guaranteed Minimum Requirement

CS 103 BFS Alorithm. Mark Redekopp

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

LINEAR 2 nd ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

Right Angle Trigonometry

How to Order. Description. Metric thread (M5) Rc NPT G

Chapter Introduction. 2. Linear Combinations [4.1]

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

Silv. Criteria Met? Condition

Instructions for Section 1

Present state Next state Q + M N

The Laplace Transform

ENJOY ALL OF YOUR SWEET MOMENTS NATURALLY

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

From thriving city cycle paths to calm and tranquil car-free routes, the UK offers some of the most stunning and varied bike rides around.

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Transcription:

in in grph rph: Ph, r n flow ph-fir rh fin vri rhl from nohr givn vrx. Th ph r no h hor on. rph r = hor in = = Jori orll n Jori Pi prmn of ompur in = in wn wo no: lngh of h hor ph wn hm rh-fir rh rph p., UP rh-fir rh imilr o wv propgion rph p., UP rph p., UP

rh-fir rh lgorihm vii vri lyr y lyr:,,,,. On h vri lyr hv n vii, r viiing vri lyr +. lgorihm wih wo iv lyr: Vri lyr (urrnly ing vii). Vri lyr + (o vii nx). nrl ruur: quu. rph p., UP lgorihm rph p., UP lgorihm funion (, ) // Inpu: rph (V, ), our vrx. // Oupu: or h vrx u, i[u] i // h in from o u. for ll u V: i[u]= i[] = Q = {} // Quu onining ju whil no Q.mpy(): u = Q.pop_fron() for ll u, v : if i[v] = : i[v] = i[u] + Q.puh_k(v) rph p., UP 7 Runim O( V + ): h vrx i vii on, h g i vii on (for ir grph) or wi (for unir grph). rph p., UP

in on g Ruing hp://.wikipi.org/wiki/ijkr-lgorihmu rph p., UP Trking runnr km km Inffiin: mny yl wihou ny inring progr. How ou rl numr? rph p., UP Th runnr lgorihm h ginning, w hv on runnr for h g u v wiing u for h rrivl of h fir runnr. Whn h fir runnr rriv u, ll runnr wiing u r running long hir g u v. ll runnr run onn p: uni / uni W ju n o nno h fir rrivl im vry vrx. km km km km km nno h im of h fir rrivl h no. rph p., UP lgorihm: h xp rrivl im o. No xp rrivl im for h r of vri (). Rp unil hr r no mor runnr: l h rli xp rrivl im vrx no vii y (vrx u, im T). nno finl in u o T. or h ougoing u v: If v h no n vii y n h xp rrivl im for h runnr u v i mllr hn h xp rrivl im v y ny ohr iv runnr, r running long u v n op h ohr runnr going o v. Ohrwi, o no r running. rph p., UP

xmpl xmpl = = = = on Quu on Quu : : : : : : : : : : : : : : rph p., UP xmpl on Quu on Quu : : : : : : : : : : : : : : rph p., UP xmpl = = = = on Quu on Quu : : : : : : : : : : : : : : rph p., UP on Quu on Quu : : : : : : : : : : : : : : rph p., UP

hor-ph r xmpl ijkr lgorihm for hor ph funion horph(, l, ) // Inpu: rph (V, ), our vrx, // poiiv g lngh {l : } // Oupu: i[u] h h in from, // prv[u] h h pror in h r for ll u V: i[u] = prv[u] = nil W n o: kp li of iv runnr n hir xp rrivl im. l h rli runnr rriving vrx. up h iv runnr n hir rrivl im. rph p., UP 7 ijkr lgorihm: omplxiy Q = mkquu(v) whil no Q.mpy(): u = Q.lmin() for ll u, v : if i[v] > i[u] + l(u, v): i[v] = i[u] + l u, v prv[v] = u Q.rky(v) V im im Th klon of ijkr lgorihm i on, whih i O( V + ) W n o oun for h o of: mkquu: inr V vri o li. lmin: fin h vrx wih min i in h li ( V im) rky: up i for vrx ( im) L u onir wo implmnion for h li: vor n inry hp i[] = Q = mkquu(v) // uing i ky whil no Q.mpy(): u = Q.lmin() for ll u, v : if i[v] > i[u] + l(u, v): i[v] = i[u] + l u, v prv[v] = u Q.rky(v) rph p., UP ijkr lgorihm: omplxiy Implmnion lmin inr/ rky ijkr omplxiy Vor O( V ) O() O( V ) inry hp O(log V ) O(log V ) O(( V + ) log V ) inry hp: Th lmn r or in ompl (ln) inry r. Inrion: pl lmn h oom n l i ul up wpping h loion wih h prn ( mo log V lvl). lmin: Rmov lmn from h roo, k h l no in h r, pl i h roo n l i if own ( mo log V lvl). rky: r h ky in h r n l i ul up (m inrion). ruur migh rquir o known h loion of h vrx in h hp (l of poinr). rph p., UP rph p., UP

rph wih ngiv g ijkr lgorihm o no work: - ijkr woul y h h hor ph h lngh=. ijkr i on f up h im n g (u, v) i r: i v = min i v, i u + l u, v Prolm: non-promiing up r no on. oluion: l u no or up h rly. rph wih ngiv g Th hor ph from o n hv mo V g: If h qun of up inlu, u, u, u, u, u,, u k,, in h orr, h hor in from o will ompu orrly (up r lwy f). No h h qun of up o no n o onuiv. oluion: up ll g V im! omplxiy: O( V ). u u u u k rph p., UP llmn-or lgorihm rph p., UP llmn-or: xmpl funion horph(, l, ) // Inpu: rph (V, ), our vrx, // g lngh {l : }, no ngiv yl. // Oupu: i[u] h h in from, // prv[u] h h pror in h r for ll u V: i[u] = prv[u] = nil i[] = rp V im: for ll u, v : if i[v] > i[u] + l(u, v): i[v] = i[u] + l(u, v) prv[v] = u - - - - No Irion 7 7 7 7 7 7 rph p., UP rph p., UP

Ngiv yl hor ph in Wh i h hor in wn n? - - - llmn-or o no work i um h h hor ph will no hv mor hn V g. ngiv yl prou in y nlly pplying roun o h yl. How o ngiv yl? pply llmn-or (up g V im) Prform n xr roun n hk whhr om in r. propry: In ny ph of, h vri ppr in inring opologil orr. ny qun of up h prrv h opologil orr will ompu in orrly. Only on roun viiing h g in opologil orr i uffiin: O( V + ). How o lul h long ph? Ng h g lngh. ompu h hor ph. rph p., UP hor ph lgorihm rph p., UP Minimum pnning Tr funion ghorph(, l, ) // Inpu: (V, ), our vrx, // g lngh {l : }. // Oupu: i[u] h h in from, // prv[u] h h pror in h r for ll u V: i[u] = prv[u] = nil i[] = Linriz for ll u V in linriz orr: for ll u, v : if i[v] > i[u] + l(u, v): i[v] = i[u] + l(u, v) prv[v] = u No r ompur g r link Wigh r minnn o ol: pik u of g uh h h no r onn h minnn o i minimum Th oluion i no uniqu. in nohr on! Propry: n opiml oluion nno onin yl. rph p., UP 7 rph p., UP

Propri of r r i n unir grph h i onn n yli. Propry: r on n no h n g. r from n mpy grph. on g im mking ur h i onn wo ionn omponn. Propry: ny onn, unir grph = (V, ) wih = V i r. I i uffiin o prov h i yli. If no, w n lwy rmov g from yl unil h grph om yli. Propry: ny unir grph i r iff hr i uniqu ph wn ny pir of no. If hr woul wo ph wn wo no, h union of h ph woul onin yl. Minimum pnning Tr ivn un unir grph = (V, ) wih g wigh w, fin r T = (V, ), wih, h minimiz wigh T = w. Krukl lgorihm: rply h nx ligh g h o no prou yl. rph p., UP Th u propry rph p., UP Th u propry: xmpl V MT T uppo g X r pr of n MT of = V,. Pik ny u of no for whih X o no ro wn n V, n l h ligh g ro hi priion. Thn X {} i pr of om MT. Proof (kh): L T n MT n um i no in T. If w o T, yl will r wih nohr g ro h u (, V ). W n now rmov n oin nohr r T wih wigh T wigh(t). in T i n MT, hn h wigh mu qul. MT T V rph p., UP rph p., UP

Minimum pnning Tr Prim lgorihm ny hm lik hi work (u of h propri of r): X = rp V im: pik V for whih X h no g wn n V l h minimum-wigh g wn n V X = X {} Prim lgorihm: X lwy form ur n i h of X no: V funion Prim(, w) // Inpu: onn unir rph V, // wih g wigh w. // Oupu: n MT fin y h vor prv. for ll u V: o(u)= prv(u)= nil pik ny iniil no u o(u ) = // H prioriy quu uing o ky ( V ) H = mkquu(v) whil H i no mpy: v = lmin(h) for h v, z, z H: if o(z)> w(v, z): o(z)= w v, z prv(z) = v rky(h,z) rph p., UP Prim lgorihm { } /nil /nil /nil /nil /nil /nil / / / /nil /nil, / / /nil /,, / /nil /,,, / /,,,, rph p., UP / omplxiy: h m ijkr lgorihm, O(( V + ) log V ) rph p., UP funion Krukl(, w) Krukl lgorihm Informl lgorihm: or g y wigh. Vii g in ning orr of wigh n hm long hy o no r yl. How o w know whhr nw g will r yl? // Inpu: onn unir rph V, // wih g wigh w. // Oupu: n MT fin y h g in X. X = or h g in y wigh for ll u, v, in ning orr of wigh: if (X h no ph onning u n v): X = X { u, v } rph p., UP

ijoin Krukl lgorihm ruur o or ollion of ijoin. Oprion: mk(x): r inglon onining ju x. fin(x): rurn h inifir of h onining x. union(x, y): mrg h onining x n y. Krukl lgorihm u ijoin n ll mk: V im fin: im union: V im funion Krukl(, w) // Inpu: onn unir rph V, // wih g wigh w. // Oupu: n MT fin y h g in X. for ll u V: mk(u) X = or h g in y wigh for ll u, v, in ning orr of wigh: if (fin(u) fin(v)): X = X { u, v } union(u,v) rph p., UP 7 ijoin rph p., UP ijoin Th no r orgniz of r. h r rprn. H H h no h wo riu: prn (π): nor in h r rnk: high of h ur Th roo lmn i h rprniv for h : i prn poinr i ilf (lf-loop). Th ffiiny of h oprion pn on h high of h r. funion mk(x): π x = x rnk x = funion fin(x): whil x π x : x = π x rurn x funion union(x, y): r x = fin(x) r y = fin(y) if r x = r y : rurn if rnk(r x ) > rnk(r y ): π(r y ) = r x l: π(r x ) = r y if rnk(r x ) = rnk(r y ): rnk(r y ) = rnk(r y ) + funion mk(x): π x = x rnk x = funion fin(x): whil x π x : x = π x rurn x rph p., UP rph p., UP

ijoin fr mk(),,mk(): fr union(,), union(,), union(,): fr union(,), union(,): fr union(,): ijoin : ph omprion omplxiy of Krukl lgorihm: O( log V ). oring g: O log O( log V ). in + union ( im): O( log V ). How ou if h g r lry or or oring n on in linr im (wigh r mll)? Ph omprion: Propry: ny roo no of rnk k h l k no in i r. Propry: If hr r n lmn ovrll, hr n mo nτ k no of rnk k. Thrfor, ll r hv high log n. rph p., UP ijoin : ph omprion rph p., UP Mx-flow/min-u prolm funion fin(x): if x π x : π(x)= fin(π x ) rurn π(x) How muh wr n you pump from our o rg? fin(i) I H H J OpnVlv, y J HYUN L I J K moriz o of fin: O() I K Krukl o: O( ) (if oring h linr o) H J rph p., UP K Wh i h fw numr of grn u h n o u o h no wr will l o flow from h hyrn o h uk? Mx-flow/Min-u lgorihm. rillin.org. hp://rillin.org/wiki/mx-flow-min-u-lgorihm/ rph p., UP

kwr Mx-flow/min-u prolm: ppliion Nwork h rry, wr, oil, lriiy, r,. How o mximiz ug? How o minimiz o? How o mximiz rliiliy? Mulipl ppliion omin: ompur nwork Img proing ompuionl iology irlin huling mining iriu ompuing Mol: ir grph = V,. Two pil no, V. pii > on h g. Mx-flow prolm ol: ign flow f o h g of h nwork ifying: f for ll (g piy no x) or ll no u (xp n ), h flow nring h no i qul o h flow xiing h no: w,u f wu = u,z f uz. iz of flow: ol quniy n from o (qul o h quniy lving ): iz f =,u f u rph p., UP ugmning ph low ivn flow, n ugmning ph rprn fil iionl flow from o. rph p., UP ugmning ph low ugmning ph n hv forwr n kwr g. ugmning ph Nw flow ugmning ph Nw flow rph p., UP 7 rph p., UP

ugmning ph ivn flow f, n ugmning ph i ir ph from o, whih oni of g from, u no nrily in h m irion. h of h g ifi xly on of h following wo oniion: i in h m irion in (forwr) n f <. Th iffrn f i ll h lk of h g. i in h oppoi irion (kwr) n f >. I rprn h f h om flow n orrow from h urrn flow. rph p., UP Riul grph rph p., UP low rph Riul grph kwr forwr or-ulkron lgorihm: xmpl rph p., UP Riul low or-ulkron lgorihm: xmpl rph p., UP

or-ulkron lgorihm or-ulkron lgorihm: omplxiy funion or-ulkron(,,) // Inpu: ir rph V, wih g pii. // n n h our n rg of h flow. // Oupu: flow f h mximiz h iz of h flow. // or h u, v, f(v, u) rprn i flow. for ll u, v : f u, v = u, v // orwr g f v, u = // kwr g whil hr xi ph p = in h riul grph: f p = min{f u, v : u, v p} for ll u, v p: f u, v = f u, v f(p) f v, u = f v, u + f(p) ining ph in h riul grph rquir O( ) im (uing or ). How mny irion (ugmning ph) r rquir? Th wor i rlly : O( ), wih ing h lrg piy of n g (if only ingrl vlu r u). y ling h ph wih fw g (uing ) h mximum numr of irion i O( V ). y rfully ling f ugmning ph (uing om vrin of ijkr lgorihm), h numr of irion n ru. or-ulkron lgorihm i O( V ) if i u o l h ph wih fw g. rph p., UP Mx-flow prolm rph p., UP Min-u lgorihm u: n (, )-u priion h no ino wo ijoin group, L n R, uh h L n R. or ny flow f n ny (, )-u (L, R): iz f piy L, R. Th mx-flow min-u horm: L R rph ining u wih minimum piy: Riul grph Th iz of h mximum flow qul h piy of h mll (, )-u. Th ugmning-ph horm: flow i mximum iff i mi no ugmning ph.. olv h mx-flow prolm wih or-ulkron.. ompu L h of no rhl from in h riul grph.. fin R = V L.. Th u (L, R) i min-u. rph p., UP rph p., UP

ipri mhing ipri mhing OY lix rn rl vi IRL i r riin un lix rn rl vi i r riin un Thr i n g wn oy n girl if hy lik h ohr. n w pik oupl o h vryon h xly on prnr h h/h lik? mhing: if w pik (lix, i) n (rn, riin), hn w nno fin oupl for r, un, rl n vi. prf mhing woul : (lix, r), (rn, un), (rl, i) n (vi, riin). Ru o mx-flow prolm wih =. Quion: n w lwy gurn n ingr-vlu flow? Propry: if ll g pii r ingr, hn h opiml flow foun y or-ulkron lgorihm i ingrl. I i y o h h flow of h ugmning ph foun h irion i ingrl. rph p., UP 7 rph p., UP ijkr (. in [PV]) H XRI Run ijkr lgorihm ring no : rw l howing h inrmi in vlu of ll h no h irion how h finl hor-ph r rph p., UP rph p., UP

llmn-or (. in [PV]) Nw ro (. in [PV]) Run llmn-or lgorihm ring no : rw l howing h inrmi in vlu of ll h no h irion how h finl hor-ph r 7 - - - - I H - Thr i nwork of ro = (V, ) onning of ii V. h ro in h n oi lngh l. Thr i propol o on nw ro o hi nwork, n hr i li of pir of ii wn whih h nw ro n uil. h uh ponil ro h n oi lngh. ignr for h puli work prmn you r k o rmin h ro who iion o h xiing nwork woul rul in h mximum r in h riving in wn wo fix ii n in h nwork. iv n ffiin lgorihm for olving hi prolm. rph p., UP Minimum pnning Tr rph p., UP low nwork J K H 7 I 7 lul h hor ph r from no uing ijkr lgorihm. lul h MT uing Prim lgorihm. Ini h qun of g o h r n h voluion of h in l. lul h MT uing Krukl lgorihm. Ini h qun of g o h r n h voluion of h ijoin. In of i wn wo g, ry o l h on h i no in Prim r. in h mximum flow from o T. iv qun of ugmning ph h l o h mximum flow. rw h riul grph fr fining h mximum flow. in minimum u wn n T. T [from PV] rph p., UP rph p., UP

loo rnfuion g-ijoin ph nhuii lrion of unny y prominn norhrn univriy h rul in h rrivl h univriy' mil lini of un in n of mrgny rmn. h of h un rquir rnfuion of on uni of whol loo. Th lini h uppli of 7 uni of whol loo. Th numr of uni of loo vill in h of h four mjor loo group n h iriuion of pin mong h group i ummriz low. loo yp O upply mn Typ pin n only riv yp or O; yp pin n riv only yp or O; yp O pin n riv only yp O; n yp pin n riv ny of h four yp. iv mxflow formulion h rmin iriuion h ifi h mn of mximum numr of pin. ivn igrph = (V, ) n vri, V, ri n lgorihm h fin h mximum numr of g-ijoin ph from o. No: wo ph r g-ijoin if hy o no hr ny g. n w hv nough loo uni for ll h un? our: gwik n Wyn, lgorihm, h iion,. rph p., UP rph p., UP