Detection of motion and heterogeneity in Earth s liquid outer core

Similar documents
Time dependence of PKP(BC) PKP(DF) times: could this be an artifact of systematic earthquake mislocations?

Supporting Online Material for

Localized temporal variation of Earth s inner-core boundary from high-quality waveform doublets

High-precision location of North Korea s 2009 nuclear test

Probing Mid-Mantle Heterogeneity Using PKP Coda Waves

Inner core rotation from event-pair analysis

Existence of finite rigidity layer at the base of the Earth s liquid outer core inferred from anomalous splitting of normal modes

Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society

Inner core attenuation anisotropy

Examination of systematic mislocation of South Sandwich Islands earthquakes using station pairs: Implications for inner core rotation

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

Constraints on density and shear velocity contrasts at the inner core boundary

Complex seismic anisotropy in the top of the Earth s inner core beneath Africa

Waveform search for the innermost inner core

One-Dimensional Modeling of Multiple Scattering in the Upper Inner Core: Depth Extent of a Scattering Region in the Eastern Hemisphere

Seismic interferometry with antipodal station pairs

Wide-scale detection of earthquake waveform doublets and further evidence for inner core super-rotation

PKP travel times at near antipodal distances: implications for inner core anisotropy and lowermost mantle structure

boundaries with additional record sections, as emphasized in Fig. S2. The observations at the

Nonparametric Methods for Detecting Structure and Dynamics of Earth s Deep Interior. The Wahba Conference June 6, 2014

Continent-sized anomalous zones with low seismic velocity at the base of Earth s mantle

A Local, Crossing-path Study of Attenuation and Anisotropy of the Inner Core

Evidence for P P asymmetrical scattering at near podal distances

Distinct layering in the hemispherical seismic velocity structure of Earth s upper inner core

Data Repository Item For: Kinematics and geometry of active detachment faulting beneath the TAG hydrothermal field on the Mid-Atlantic Ridge

Seismic Scattering in the Deep Earth

Negative repeating doublets in an aftershock sequence

Inner core rotation and its variability from nonparametric modeling

Effects of Surface Geology on Seismic Motion

Supplementary Online Material for. Seismic evidence for a chemically distinct thermochemical reservoir in Earth s deep mantle beneath Hawaii

Decoding seismograms, theoretical travel times. Simple velocity models of the Earth

Theory. Summary. Introduction

Lateral variation of the D 00 discontinuity beneath the Cocos Plate

Imaging sharp lateral velocity gradients using scattered waves on dense arrays: faults and basin edges

On the Nature of the P-Wave Velocity Gradient in the Inner Core beneath Central America

Global P, PP, and PKP wave microseisms observed from distant storms

Figures S1 S4 show the measurements taken from the synthetic vespagrams where a)

Seismogram Interpretation. Seismogram Interpretation

Robust Normal Mode Constraints on Inner Core Anisotropy From Model Space Search

LAB 6 SUPPLEMENT. G141 Earthquakes & Volcanoes

SURFACE WAVE GROUP VELOCITY MEASUREMENTS ACROSS EURASIA

Geophysical Journal International

Basic Ray Tracing. Rick Aster and Sue Bilek. October 3, 2003

28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

Seismo 6: Inner core structure and anisotropy

29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

Structural features and shear-velocity structure of the Pacific Anomaly. Lianxing Wen a. Yumei He a,b

Earth s inner core: revealing the structures behind the PKP core phase triplication

Seismic ray path variations in a 3D global velocity model

TABLE S1. CATALOG OF DETECTED EVENTS. Depth (km) M D C? 07/26/11 01:02:

Geophysical Journal International

Heterogeneity and Anisotropy of Earth s Inner Core

MYRES Seismic Constraints on Boundary Layers. Christine Thomas

SUMMARY INTRODUCTION THEORY

3D IMAGING OF THE EARTH S MANTLE: FROM SLABS TO PLUMES

SOURCE PROCESS OF THE 2003 PUERTO PLATA EARTHQUAKE USING TELESEISMIC DATA AND STRONG GROUND MOTION SIMULATION

Supporting Information for An automatically updated S-wave model of the upper mantle and the depth extent of azimuthal anisotropy

Global surface-wave tomography

A Glassy Lowermost Outer Core. (km/s) V S. Frequency (Hz) = Pa-s = 10 9 Pa-s e-03 1e-02 1e-01 1e+00.

An autocorrelation method to detect low frequency earthquakes within tremor

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

Earthquake location at teleseismic distances from 3-component records (Tutorial with exercise by hand)

Tomography of the 2011 Iwaki earthquake (M 7.0) and Fukushima

From Core to Crust: Towards an Integrated Vision of Earth's Interior July Earth's Core: Seismological Perspective

Segmentation in episodic tremor and slip all along Cascadia

TOMOGRAPHY S VELOCITY STRUCTURE BETWEEN WASHINGTON S EARTHQUAKE C022801L AND OBSERVATIONAL STATION TUC THROUGH SEISMOGRAM ANALYSIS

Seismic Activity near the Sunda and Andaman Trenches in the Sumatra Subduction Zone

Spatial clustering and repeating of seismic events observed along the 1976 Tangshan fault, north China

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

Seismic anisotropy in the lowermost mantle near the Perm Anomaly

Application of Phase Matched Filtering on Surface Waves for Regional Moment Tensor Analysis Andrea Chiang a and G. Eli Baker b

Performance of the GSN station KONO-IU,

ANEWJOINTP AND S VELOCITY MODEL OF THE MANTLE PARAMETERIZED IN CUBIC B-SPLINES

On the observation of high frequency PKiKP and its coda in Australia

Observation of shear-wave splitting from microseismicity induced by hydraulic fracturing: A non-vti story

Depth dependence of anisotropy of Earth's inner core

9 June 15. Horst Rademacher. Lect 4: Seismic Waves. Summer Session 2015

SUPPLEMENTAL INFORMATION

Some aspects of seismic tomography

Seismic Noise Correlations. - RL Weaver, U Illinois, Physics

CHAPTER 2. Seismology (continued)

Broadband converted phases from midmantle discontinuities

ENV-5004B/ENVK5005B. Figure 6. Student Registration No. ENV-5004B/ENVK5005B Version 2

Fracture induced shear wave splitting in a source area of triggered seismicity by the Tohoku-oki earthquake in northeastern Japan.

Physics of the Earth and Planetary Interiors

Observations of long period Rayleigh wave ellipticity

Constraints on the core mantle boundary topography from P4KP PcP differential travel times

Geophysical Research Letters. Supporting Information for

Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami

revised October 30, 2001 Carlos Mendoza

OCEAN/ESS 410. Lab 12. Earthquake Focal Mechanisms. You can write your answers to all be (e) on this paper.

INNER-CORE ANISOTROPY AND ROTATION

Texture of the Uppermost Inner Core from Forward and Back. Scattered Seismic Waves

28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

A Systematic Comparison of the Transverse Energy Minimization and Splitting Intensity Techniques for Measuring Shear-Wave Splitting Parameters

Physics of the Earth and Planetary Interiors

Data Repository: Seismic and Geodetic Evidence For Extensive, Long-Lived Fault Damage Zones

Dynamic Crust Practice

Wide-band coupling of Earth s normal modes due to anisotropic inner core structure

Transcription:

GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L16311, doi:10.1029/2008gl034895, 2008 Detection of motion and heterogeneity in Earth s liquid outer core Wei Dai 1 and Xiaodong Song 1 Received 5 June 2008; revised 27 June 2008; accepted 18 July 2008; published 27 August 2008. [1] The lateral variations in the fluid outer core are believed to be very small from fluid dynamics calculations. Seismological studies on the issue have been limited and controversial. A great challenge is to sort out influences from heterogeneity in the mantle or the inner core. Using high-quality earthquake waveform doublets, we found that waves passing through the fluid core over a few years are significantly more variable than those passing through the mantle only. We interpret the temporal variability as the result of the fluid motion of the heterogeneous materials in the outer core. The level of heterogeneity in the fluid outer core is constrained to be ±0.022 s (95% confidence) in seismic travel times through the core, negligible for most seismological studies. However, the estimated velocity perturbation, about 10 3 for small-scale heterogeneity (10 km) or 10 4 for large-scale heterogeneity (1000 km), borders or exceeds the high-end estimates of the lateral variations that can be supported by dynamic forces within the fluid core. The source of the heterogeneity is not clear at present. Citation: Dai, W., and X. Song (2008), Detection of motion and heterogeneity in Earth s liquid outer core, Geophys. Res. Lett., 35, L16311, doi:10.1029/2008gl034895. 1. Introduction [2] The Earth s outer core is made of iron-nickel alloy with some light elements, where thermal and chemical convection has generated and maintained the magnetic field of the Earth. Fluid dynamics calculations suggest lateral variations in the outer core are small [Stevenson, 1987], based on which seismological studies have commonly assumed that the lateral variations are negligible. Direct seismological studies on the issue have been limited and controversial. Some suggest significant lateral variations [Gudmundsson, 1989; Souriau and Poupinet, 1990; Widmer et al., 1992; Tanaka and Hamaguchi, 1993; Romanowicz and Bréger, 2000; Yu et al., 2005], but others suggest little [Souriau and Poupinet, 1991; Ishii and Dziewonski, 2005]. A great challenge is to sort out influences from heterogeneity and anisotropy in the mantle or the inner core on a given seismic observation. Here we report direct evidence for the outer core motion from high-quality earthquake waveform doublets and infer the level of heterogeneity in the fluid outer core. [3] We use a similar method that has been used for detecting the rotation of the solid inner core, i.e., comparing seismic waves for a fixed path traversing the Earth s core from repeating sources [Song and Richards, 1996; Zhang et 1 Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. al., 2005]. The basic idea was proposed 25 years ago by Dr. Paul Richards (in a proposal to the U.S. National Science Foundation). He used the analogy that stars twinkle as the atmosphere refraction index changes from moving cold and warm air. Thus, as the outer core fluid convects, the changes of the velocity (and density) of the materials crossing the fixed ray path will affect the seismic travel times. [4] We use earthquake waveform doublet as repeating sources, i.e., a pair of earthquakes occurring at essentially the same spatial position, as evidenced by their highly similar waveforms at the same station. The existence of such a waveform doublet has been known for a long time [Poupinet et al., 1984]. In recent years, teleseismic waveform doublets, i.e., those with sufficient magnitudes (around 5 and above) to be observable far away, have been discovered. They have been used to detect the inner core rotation [Li and Richards, 2003; Zhang et al., 2005] and the inner core boundary topography [Wen, 2006; Cao et al., 2007; Song and Dai, 2008]. 2. Data and Method [5] Our teleseismic doublets would not only have to be of the highest quality, as any signals from the outer core are likely to be very small, but also have sufficient data that sample the core and the mantle. We found four best doublets that satisfy our requirements (Table 1). Examples of waveform similarity are shown in Figure 1 and overlays of all the seismograms used in this study are shown in the auxiliary material. 1 The high similarity of the doublet waveforms, including later arrivals and coda waveforms, is critical for precise measurements of relative time shifts. Two doublet pairs are from the South Sandwich Islands (9303 and 9804), which were published by Zhang et al. [2005] and Song and Dai [2008], respectively. The other two pairs are new doublets from the Fiji-Tonga region. The magnitudes (m b ) of the events range from 4.7 to 5.6. The time separations between the two doublet events range from 3.5 to 11.8 years. The average cross-correlation coefficients of the doublets range from 0.95 to 0.99 over a time period of 10 s that includes P and its coda. We used the vertical component of broad-band channel (BHZ), the short-period channel (SHZ), or extremely short-period channel (EHZ). For each station, we used the same channel for the two events of the doublet. To increase the signal to noise ratio, we filter all the data using a band-pass filter from 0.6 to 3 Hz. Broad-band data are converted to WWSSN short-period instrument response before the filtering. [6] The key of our approach is to use relative measurements of all kinds (between events and between phases) to Copyright 2008 by the American Geophysical Union. 0094-8276/08/2008GL034895 1 Auxiliary materials are available in the HTML. doi:10.1029/ 2008GL034895. L16311 1of5

Table 1. Earthquake Waveform Doublets Used in This Study a Doublet ID Date Latitude (deg) Longitude (deg) Depth (km) mb Time Separation (years) C.C. b 9804 19980412 56.116 26.768 100 4.7 5.95 0.99(2) 20040323 56.190 26.998 77 4.9 9303 19931201 57.475 25.685 33 5.5 9.76 0.95(5) 20030906 57.419 25.639 33 5.6 0004 20001124 20.508 174.367 35 5.3 3.49 0.97(15) 20040522 20.522 174.254 33 5.2 9002 19901107 20.701 178.293 542 5.3 11.80 0.98(2) 20020825 20.543 178.409 554 5.4 a The earthquake locations are from the PDE catalog of USGS. b C.C. is the averaged waveform cross-correlation coefficient of the doublet calculated using a 10-s time window after the onset of P. The number in the parentheses indicates the number of stations used in the calculation. reduce errors. We formulate the relative time shift (ddt) between two phases of the same doublet as follows. ddtðp2 p1þ ¼ dtðp2þ dtðp1þ ¼ ½T2ðp2Þ T1ðp2ÞŠ ½T2ðp1Þ T1ðp1ÞŠ; where, for example, T1(p1) is the travel time of event 1 and phase p1, and dt(p1) = T2(p1)-T1(p1) is the travel-time shift of phase p1 between event 1 (the earlier event) and event 2 (the later event) of the doublet. The travel-time shifts are measured using waveform correlation in time domain. The sampling interval is first interpolated to 0.0005 s before cross-correlation. Typical cross-correlation time window is 2-3 s. The relative time shift, dtt(p2-p1) between phase p1 and phase p2, is then calculated using dt(p2)-dt(p1).the ddt formulation removes completely origin time errors. It also removes possible clock errors, unless there is a clock drift in the short duration between phases p1 and p2 for either event. [7] For each doublet, we try to get as much data as possible from the global and regional networks. We look for two types of data: a pair of seismic phases that sample the core, and phase pairs that sample the mantle only (Figure 1). (1) We use the outer-core branches of PKP (BC and AB) and define ddt(core) = ddt(ab BC). We avoid the inner core branches of PKP (DF and CD) because of the known influence from the inner core rotation and topography as mentioned above. Almost all of the BC and AB phases (at distances 146-155 ) are well separated (by 2 to 15 s in time) and easy to identify. In a few cases where they do not appear as distinct arrivals, we use predicted travel times as a guide in selecting the time windows for cross-correlation. (2) Any pair of seismic phases that sample the mantle only can be used for mantle reference phases as long as they are energetic enough. Our main reference phases are P, PcP, and pp (Figure 1). All of our first arriving P waves are energetic, impulsive, and easy to identify. Identifying later arriving PcP waves is more difficult. We use predicted relative travel times between P and PcP to guide our selection of time windows. The PcP phase arrives about 259 s after P at our smallest distance for PcP (19.6 for 9303-PMSA) and 5 s after P at our largest distance (82.5 for 9303-SJG) (see auxiliary material). Some of our PcP data appear at the coda of P at distances around 80 (9002- CMB, 9002-PFO, and 9303-SJG). In such a case, we choose the energetic cycle around the predicted time for PcP (relative to first arriving P). Our pp data are from doublet 0004 at distances of 77 80, where pp arrives at about the same time as PcP and in many cases is affected by P coda. Nevertheless, we call it pp because of the agreement in slowness and the pp phase is probably more energetic than PcP. In these cases, the associated phases are not definitive and are affected by the energy from mantle scattering. However, the distinction is not critical as long as the energy comes from the mantle and not from the core. Figure 1. (a) Ray paths of mantle and core phases and (b) examples of observed doublet waveforms. In Figure 1a, the solid dot and triangles indicate the earthquake hypocenter and observing stations, respectively. The two branches of PKP, BC and AB, turn at lower and mid outer core, respectively. The mantle phases include P (direct arrival through the mantle), PcP (reflection from the core-mantle boundary), and pp (depth phase traveling upwards from the hypocenter and reflected from the Earth s surface). In Figure 1b, the doublet consists of two shallow events in 2000 and 2004 in Tonga (Table 1). Station codes and corresponding distances are labeled. Background noise preceding the earthquake indicates the signal-to-noise level. The seismogram overlays indicate excellent waveform similarity between the two events for all the phases: P, PcP, pp, PKP(BC), and PKP(AB). Nevertheless, a tiny time shift (0.04 s) between the two events is visible in the first few cycles of the AB phase at station GRC3. 2of5

are separated in time by four years or by ten years or more (Figure 2a). Possible sources for the discrepancy include (1) measurement errors, (2) small location difference between the two earthquakes of the waveform doublet, (3) mantle heterogeneity, and (4) the temporal variations of the fluid outer core. Our analyses below suggest that (1) and (2) can be ruled out and that (3) is probably not the cause either. [10] One possibility is that the PKP data have a higher noise level. To this end, we compare the ddt values and Figure 2. (a) Observed relative time shifts (dtt values). On the left are the observed dtt values for the core (open triangles) and the mantle (solid dots) phases as a function of time separation between the two events of the doublet. On the right are all dtt(core) (triangles) and ddt(mantle) (circles) measurements. The error bar indicates the mean (diamond) ± one standard deviation of all the data. (b) Map projection of ray paths (lines) and observed dtt values (symbols) plotted at the mid-points of the ray paths. Squares and circles indicate the ddt(core) and ddt(mantle) values, respectively (negative in red and positive in blue). Ray paths for the mantle and core phases are in black and gray, respectively. Because the core phases travel steeply in the mantle, most of the arc distances are in the core except the portions of about 13 for PKP(BC) and 33 for PKP(AB) at the source and the station ends. The two horizontal dashed lines indicate the rim of the tangent cylinder that is parallel to the Earth s rotation axis and touches the inner core on its equator. Other mantle phases include Pn and PnPn for two pairs at smallest distances of our data (0004-AFI at distance 7.0 and 0004-RAR at 13.7 ). We call these relative time shifts as ddt(mantle). In all, we obtained 51 ddt(core) measurements and 26 ddt(mantle) measurements. 3. Evidence for Outer Core Motion [8] Figure 2 summarizes our observed relative time shifts for the core phases, ddt(core), and for the mantle phases, ddt(mantle). The relative time shifts for the mantle phases are very small (all within ±0.02 s), which confirms the quality of these waveform doublets and provides a measure of the precision of our relative time measurements. The relative time shifts for the core phases are also very small (within±0.04 s), although the largest time shifts (of about 0.04 s) are visible under careful examination (Figure 1). The standard deviation of the ddt(core) values is 0.0167 s. These numbers put a tight constraint on the upper limit of the temporal variability of the fluid outer core. [9] The data from the core are more scattered than those from the mantle. The standard deviation of the ddt(core) values (0.0167 s, above) is more than twice as large as the standard deviation of the ddt(mantle) values (0.0071 s). The difference in the data scatter is clear whether the two events Figure 3. (a) Examination of measurement errors and (b and c) earthquake locations as possible sources for the larger dtt(core) scatter (see text). Figure 3a shows observed ddt values as a function of signal-to-noise ratio (SNR). Open triangles and solid dots indicate core and mantle phases, respectively. The ddt(core) values are ddt(ab-bc) measurements. The ddt(mantle) values include ddt(pcp-p), ddt(pp-p), and ddt(pnpn-pn) measurements. The data with SNR >15 have been truncated to 15 for better comparison of the core and mantle data. Figures 3b and 3c show observed ddt values as a function of distance and azimuth. Red and green symbols indicate core and mantle values, respectively. Subsets of the ddt(mantle) values are indicated by different symbols as shown in the legends. 3of5

signal-to-noise (SN) ratios for the mantle and the core phases (Figure 3a). The SN ratio is defined as the peak amplitude of the phase divided by the root-mean-square (rms) amplitude of the background noise preceding the first P or PKP arrival. For each doublet recorded at each station, we obtain four SN ratios (two phases for each of the two events). We then choose the smallest value as the SN ratio corresponding to the ddt value, because the phase with the smallest SN ratio has the greatest impact on the ddt measurement error. We observe that (1) the SN ratios of the core phases are not smaller than those of the mantle phases and (2) at different SN ratios, the scatter of ddt(core) is always larger than that of ddt(mantle)(figure 3a). We thus rule out measurement errors as the source of the larger scatter for the core phases. [11] Although the waveform doublets are of the highest quality, the two events of the doublet may not be at the exactly the same spatial location. We argue that the earthquake location cannot be the cause for the larger scatter of the core data, based directly on the observations of the ddt values as functions of distance and azimuths (Figures 3b and 3c). First, at smaller distances (20 50 ), the ray parameter difference between P and PcP is much (3 5 times) greater than that at larger distances or that between PKP(BC) and (AB). Yet, the ddt(pcp-p) values do not increase at these distances (Figure 3b). Second, horizontal location difference would suggest systematic change with azimuth. Yet, there is no obvious change of the ddt(pcp-p) or ddt(ab-bc) values with azimuth (Figure 3c). Furthermore, the scatter of ddt(ab-bc) occurs at similar azimuths, around 300 and 350, which cannot be explained by horizontal difference in the earthquake location. Thirdly, the core data scatter cannot be explained by depth difference in earthquake location. The ddt(pcp-p) value is 4 times more sensitive and the ddt(pp-p) value is 57 times more sensitive than the ddt(ab-bc) value to the depth difference. Based on these observations, we rule out earthquake location difference as a viable source for the larger scatter of the core data. [12] If the locations of the two events of the doublet differ slightly, the ray paths through the mantle would also differ slightly. We argue that the influence from mantle heterogeneity is probably not the cause either. First, the paths of the same core phases from the two events of the doublet would be identical throughout the mantle (less than the location difference between the events or less than 1 km) [Zhang et al., 2005; Wen, 2006], which is much smaller than the wavelength or Fresnel zone at the dominant period of 1 Hz. Thus, it is not clear how much mantle heterogeneity would influence the time shifts. Second, compared with the core phase, the mantle phases sample more diverse regions of the Earth s interior with strong heterogeneity (from the crust and the shallow mantle to the core-mantle boundary). Thus, we would expect that the influence of mantle heterogeneity on the core phases be less than that on the mantle phases. Third, some ddt(pcp-p) measurements and all the ddt(pp- P) measurements were made at distances 75 82, where PcP or pp arrives in the coda of P. The coda wave trains may be strongly influenced by scattering energy. Mantle heterogeneity should have greater influence on the coda [Snieder et al., 2002] than first arrivals. Thus we d expect greater mantle influence on the ddt(mantle) measurements than on the ddt(core) measurements. [13] In summary, the larger scatter in dtt(core) may not be explained by (1) measurement errors, (2) slight location difference between the two events, or (3) influence from mantle heterogeneity. The most likely source is the motion in the outer core The larger scatter in the ddt(core) data is the result of the fluid motion of the heterogeneous materials in the outer core. 4. Level of Outer Core Heterogeneity [14] The evidence for outer core motion can be used to estimate the level of the heterogeneity in the outer core. The ddt(core) consists of AB and BC time shifts from the core as well as time shifts from outside the core (sources 1 to 3 above). Assuming all the contributions are independent, the variance of ddt(core): Var(ddt(core)) = Var(AB) + Var(BC) + Var(outside the core). The travel times of AB and BC through the outer core are similar, about 530 and 650 s (at the average distance of 151 ), respectively. If we assume that the variances from the core contributions Var(AB) and Var(BC) are the same and we further assume that the contribution from outside the core is similar to that from ddt(mantle), i.e. Var(outside the core) = Var(ddt(mantle)), we derive the standard deviation of the AB or BC temporal travel-time shifts to be 0.011 s. We take this value to be the level of heterogeneity in the fluid outer core, i.e., ±0.022 s (95% confidence) or about 0.004% of the total travel time of the compressional wave through the outer core. This level of heterogeneity is insignificant for most seismological studies and can indeed be safely ignored. [15] Estimates on velocity perturbation depend on the scale length l of the heterogeneity in the outer core. As the total travel-time perturbation is the sum of the perturbations over the ray path, p ffiffi the level of heterogeneity is inversely proportional to l, assuming random motion or random distribution of the heterogeneous materials. For l = 1000, 100, and 10 km, the standard deviation of the velocity perturbation is estimated to be 4 10 5,110 4, and 4 10 4, respectively. Thus the limits of the velocity perturbation are about ±10 4 for l = 1000 km and ±10 3 for l = 10 km at 95% confidence. Both positive and negative travel time perturbations occur along similar paths (Figure 2b) and over a few years (Figure 2a), suggesting small-scale heterogeneity. This favors the high-end estimate of velocity perturbation (on the order of 10 3 ). [16] The data that sample the outer core polar region inside the tangent cylinder (from Fiji-Tonga to Europe) seem to indicate greater variability than the data that sample the outside equatorial region (from South Sandwich Islands to Alaska and East Asia) (Figure 2b). The standard deviations are 0.0120 s and 0.0197 s for the equatorial and polar samples, respectively. The standard deviations for the mantle phases from the South Sandwich Islands doublets and the Fiji-Tonga doublets differ only slightly (0.0051 s and 0.0076 s, respectively). The observation may indicate greater level of heterogeneity inside the tangent cylinder of the fluid core than outside. 5. Conclusion and Discussion [17] We report direct evidence for the outer core motion from high-quality earthquake waveform doublets The 4of5

observed larger scatter in the ddt(core) data is the result of the fluid motion of the heterogeneous materials in the outer core. The level of heterogeneity in the fluid outer core is constrained to be ±0.022 s (95% confidence) in seismic travel times through the core, which is indeed negligible for most seismological studies. The velocity perturbation is about 10 3 for small-scale heterogeneity (10 km) or 10 4 for large-scale heterogeneity (1000 km). [18] Our estimate of the overall velocity perturbation (10 4 to 10 3 ) borders or exceeds the high-end estimates of the lateral variations (10 8 to 10 4 ) that can be supported by dynamic forces within the fluid core [Stevenson, 1987]. The source of the observed outer core variability is not known at present. Gravitational forcing from external mass anomalies (in the mantle or the inner core or from the coremantle boundary topography or the inner core boundary topography) can cause lateral structure inside the fluid core [Wahr and de Vries, 1989]. However, such lateral variations do not generate fluid vorticity and thus cannot be a source of the observed time variability (D. Stevenson, personal communication, 2008). [19] Acknowledgments. We are grateful to Dave Stevenson and Barbara Romanowicz for their insightful comments. We obtained the waveform data from IRIS DMC, GRSN data center, Orfeus data center, Alaska Seismic Network Data Center, SCEC Data Center, and Northern California Earthquake Data Center. We used data from GSN and some 45 global and regional seismic networks that contributed to these data centers. This work was supported by NSF-0330749. References Cao, A. M., Y. Masson, and B. Romanowicz (2007), Short wavelength topography on the inner-core boundary, Proc. Natl. Acad. Sci. U.S.A., 104(1), 31 35. Gudmundsson, O. (1989), Some problems in global tomography: Modeling the core-mantle boundary and statistical analysis of travel-time data, Ph.D. thesis, Calif. Inst. of Technol., Pasadena. Ishii, M., and A. M. Dziewonski (2005), Constraints on the outer-core tangent cylinder using normal-mode splitting measurements, Geophys. J. Int., 162, 787 792. Li, A., and P. G. Richards (2003), Using earthquake doublets to study inner core rotation and seismicity catalog precision, Geochem. Geophys. Geosyst., 4(9), 1072, doi:10.1029/2002gc000379. Poupinet, G., W. L. Ellsworth, and J. Frechet (1984), Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California, J. Geophys. Res., 89, 5719 5731. Romanowicz, B., and L. Bréger (2000), Anomalous splitting of free oscillations: A reevaluation of possible interpretations, J. Geophys. Res., 105, 21,559 21,578. Snieder, R., A. Gret, and H. Douma (2002), Coda wave interferometry for estimating nonlinear behavior in seismic velocity, Science, 295, 2253 2255. Song, X. D., and W. Dai (2008), Topography of Earth s inner core boundary from high-quality waveform doublets, Geophys. J. Int., in press. Song, X. D., and P. G. Richards (1996), Seismological evidence for differential rotation of the Earth s inner core, Nature, 382, 221 224. Souriau, A., and G. Poupinet (1990), A latitudinal pattern in the structure of the outermost liquid core, revealed by the travel times of SKKS-SKS seismic phases, Geophys. Res. Lett., 17, 2005 2007. Souriau, A., and G. Poupinet (1991), A study of the outermost liquid core using differential travel-times of the SKS-phase, SKKS-phase, and S3KS-phase, Phys. Earth Planet. Inter., 68, 183 199. Stevenson, D. J. (1987), Limits on lateral density and velocity variations in the Earth s outer core, Geophys. J. R. Astron. Soc., 88, 311 319. Tanaka, S., and H. Hamaguchi (1993), Velocities and chemical stratification in the outermost core, J. Geomagn. Geoelectr., 45, 1287 1301. Wahr, J., and D. de Vries (1989), The possibility of lateral structure inside the core and its implications for nutation and Earth tide observations, Geophys. J. Int., 99, 511 519, doi:10.1111/j.1365-246x.1989.tb02036.x. Wen, L. X. (2006), Localized temporal change of the earth s inner core boundary, Science, 314, 967 970. Widmer, R. W., G. Masters, and F. Gilbert (1992), Observably split multiplets Data analysis and interpretation in terms of large-scale aspherical structure, Geophys. J. Int., 111, 559 576. Yu, W., L. Wen, and F. Niu (2005), Seismic velocity structure in the Earth s outer core, J. Geophys. Res., 110, B02302, doi:10.1029/2003jb002928. Zhang, J., X. D. Song, Y. C. Li, P. G. Richards, X. L. Sun, and F. Waldhauser (2005), Inner core differential motion confirmed by earthquake waveform doublets, Science, 309, 1357 1360. W. Dai and X. Song, Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. (xsong@uiuc.edu) 5of5