Phonon wavefunctions and electron phonon interactions in semiconductors

Similar documents
Anharmonic energy in periodic systems

Electron-phonon calculations for metals, insulators, and superconductors

ab initio Lattice Vibrations: Calculating the Thermal Expansion Coeffcient Felix Hanke & Martin Fuchs June 30, 2009 This afternoon s plan

Phonons In The Elk Code

QMC dissociation energy of the water dimer: Time step errors and backflow calculations

High Temperature High Pressure Properties of Silica From Quantum Monte Carlo

Binding energy of 2D materials using Quantum Monte Carlo

Zero point motion effect on the electronic properties of diamond, trans-polyacetylene and polyethylene

297 K 297 K 83 K PRB 36, 4821 (1987) C. Tarrio, PRB 40, 7852 (1989)

Complementary approaches to high T- high p crystal structure stability and melting!

André Schleife Department of Materials Science and Engineering

Temperature and zero-point motion effects on the electronic band structure

Density Functional Theory for Electrons in Materials

Temperature dependence and zero-point renormalization of the electronic structure of solids

Ab initio phonon calculations in mixed systems

Pseudopotentials: design, testing, typical errors

The electronic structure of materials 1

Electronic and Vibrational Properties of Monolayer Hexagonal Indium Chalcogenides

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering

Exploring deep Earth minerals with accurate theory

Multi-Scale Modeling from First Principles

Introduction to density functional perturbation theory for lattice dynamics

Born-Oppenheimer Approximation

5.61 Physical Chemistry Exam III 11/29/12. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry Physical Chemistry.

Supporting Information for Interfacial Effects on. the Band Edges of Functionalized Si Surfaces in. Liquid Water

Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems

Etudes ab initio des effets de la température sur le spectre optique des semi-conducteurs

First Principles Investigation into the Atom in Jellium Model System. Andrew Ian Duff

Defects in materials. Manish Jain. July 8, Department of Physics Indian Institute of Science Bangalore 1/46

Noncollinear spins in QMC: spiral Spin Density Waves in the HEG

Quantum Monte Carlo Benchmarks Density Functionals: Si Defects

Time-dependent density functional theory

Coulomb finite-size effects in quasi-two-dimensional systems

Electronic Structure Methodology 1

Introduction to Computational Chemistry

Ab Initio Calculations for Large Dielectric Matrices of Confined Systems Serdar Ö güt Department of Physics, University of Illinois at Chicago, 845 We

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

TUTORIAL 8: PHONONS, LATTICE EXPANSION, AND BAND-GAP RENORMALIZATION

Density Functional Theory for Superconductors

QMC dissociation energies of three-electron hemibonded radical cation dimers... and water clusters

Density functional theory and beyond: Computational materials science for real materials Los Angeles, July 21 August 1, 2014

Metal-insulator transitions

TUTORIAL 6: PHONONS, LATTICE EXPANSION, AND BAND-GAP RENORMALIZATION

Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations

Phonon Dispersion, Interatomic Force Constants Thermodynamic Quantities

Introduction to density-functional theory. Emmanuel Fromager

Key concepts in Density Functional Theory (II)

Phonon calculations with SCAN

MODULE 2: QUANTUM MECHANICS. Principles and Theory

The electronic structure of materials 2 - DFT

Key concepts in Density Functional Theory (II) Silvana Botti

Quantum Mechanical Simulations

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 22 Dec 2004

Ab initio Electronic Structure

Key concepts in Density Functional Theory

The Schrödinger equation for many-electron systems

Quantum Monte Carlo methods

The Overhauser Instability

Density Functional Theory (DFT)

Superfluidity in bosonic systems

Dept of Mechanical Engineering MIT Nanoengineering group

Introduction to Density Functional Theory

Basics of density-functional theory and fast guide to actual calculations Matthias Scheffler

Linear response time-dependent density functional theory

Vibrational Spectroscopy

Lecture 15 From molecules to solids

Hands-on Workshop: First-principles simulations of molecules and materials: Berlin, July 13 - July 23, 2015

First-principles modeling: The evolution of the field from Walter Kohn s seminal work to today s computer-aided materials design

The GW Approximation. Manish Jain 1. July 8, Department of Physics Indian Institute of Science Bangalore 1/36

Ab initio Berechungen für Datenbanken

Establishing Quantum Monte Carlo and Hybrid Density Functional Theory as Benchmarking Tools for Complex Solids

A tight-binding molecular dynamics study of phonon anharmonic effects in diamond and graphite

Solid State Physics II Lattice Dynamics and Heat Capacity

Ket space as a vector space over the complex numbers

Combining quasiparticle energy calculations with exact-exchange density-functional theory

Phonons (Classical theory)

Modified Becke-Johnson (mbj) exchange potential

Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2.

Exchange-Correlation Functional

The Nature of the Interlayer Interaction in Bulk. and Few-Layer Phosphorus

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch

Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign

Structural Calculations phase stability, surfaces, interfaces etc

Nonlocal exchange correlation in screened-exchange density functional methods

Strong Correlation Effects in Fullerene Molecules and Solids

Multiple Exciton Generation in Si and Ge Nanoparticles with High Pressure Core Structures

Key concepts in Density Functional Theory (I) Silvana Botti

Simulation Methods II

Recent advances in development of single-point orbital-free kinetic energy functionals

CE 530 Molecular Simulation

QMC in the Apuan Alps IV Vallico Sotto, 28th July 2008

The electron-phonon coupling in ABINIT

Time-dependent density functional theory

Ab Initio modelling of structural and electronic. Matt Probert University of York

Density-functional theory of superconductivity

Lecture 11 - Phonons II - Thermal Prop. Continued

High pressure core structures of Si nanoparticles for solar energy conversion

Computational methods: Coupled Electron Ion Monte Carlo Path Integral Monte Carlo Examples: Electron gas Hydrogen

Pseudopotentials for hybrid density functionals and SCAN

Finite-Temperature Hartree-Fock Exchange and Exchange- Correlation Free Energy Functionals. Travis Sjostrom. IPAM 2012 Workshop IV

Transcription:

Phonon wavefunctions and electron phonon interactions in semiconductors Bartomeu Monserrat bm418@cam.ac.uk University of Cambridge Quantum Monte Carlo in the Apuan Alps VII QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 1

Outline Introduction Motivation Theoretical background Born Oppenheimer and harmonic approximations Vibrational self consistent field Phonon expectation values Results Diamond Lithium Hydride Conclusions QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 2

Table of Contents Introduction Motivation Theoretical background Born Oppenheimer and harmonic approximations Vibrational self consistent field Phonon expectation values Results Diamond Lithium Hydride Conclusions QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 3

Motivation Atomic motion plays an essential role: Total energy (ZPM, high temperatures,... ) Thermal expansion (phonon pressure) Structural phase transitions (unstable phonons) Superconductivity (electron phonon interactions)... Anharmonicity is important for: High temperatures Light elements QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 4

Example: diamond band gap renormalisation Diamond direct band gap: Experiment: 7.1 ev 1 DFT: 5.6 ev QMC: 7.2 ev 2 GW: 7.7 ev 3 Differences.1 ev ε nk (ev) 28 24 2 16 12 8 4-4 -8-12 Γ X L W Γ 1 S. Logothetidis, J. Petalas, H. M. Polatoglou, and D. Fuchs, Phys. Rev. B 46, 4483 (1992) 2 M. D. Towler, R. Q. Hood, and R. J. Needs, Phys. Rev. B 62, 233 (2) 3 F. Giustino, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 15, 26551 (21) QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 5

Example: diamond band gap renormalisation Diamond direct band gap: Experiment: 7.1 ev 1 DFT: 5.6 ev QMC: 7.2 ev 2 GW: 7.7 ev 3 Differences.1 ev Electron phonon interaction: renormalisation of.6 ev ε nk (ev) 28 24 2 16 12 8 4-4 -8-12 Γ X L q W Γ k k + q k 1 S. Logothetidis, J. Petalas, H. M. Polatoglou, and D. Fuchs, Phys. Rev. B 46, 4483 (1992) 2 M. D. Towler, R. Q. Hood, and R. J. Needs, Phys. Rev. B 62, 233 (2) 3 F. Giustino, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 15, 26551 (21) QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 6

Table of Contents Introduction Motivation Theoretical background Born Oppenheimer and harmonic approximations Vibrational self consistent field Phonon expectation values Results Diamond Lithium Hydride Conclusions QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 7

Born Oppenheimer approximation Trial wavefunction: Ψ m ({r i }, {r α }) = ψ m ({r i }; {r α })Φ({r α }) Equations of motion: Ĥ e ψ m ({r i }; {r α }) = ɛ m ({r α })ψ m ({r i }; {r α }) Ĥ n Φ({r α }) = EΦ({r α }) Hamiltonians: Ĥ e = 1 2 i + 1 1 2 2 r i i i r j j i i + 1 Z α Z β 2 r α r β Ĥ n = 1 2 α α β α 1 m α 2 α + ɛ m ({r α }) α Z α r i r α QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 8

Harmonic approximation Vibrational Hamiltonian in {r α } (or {u α }): Ĥ n = 1 1 2 α + u α D αβ u β 2 m α α αβ Normal mode analysis: {r α } {q i } Vibrational Hamiltonian in {q i }: Ĥ n = ( 1 2 i 2 q 2 i + 1 2 ω2 i q 2 i ) QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 9

Vibrational self consistent field equations Phonon Schrödinger equation: ( 3N ) 1 2 + V ({q i }) Φ({q i }) = EΦ({q i }) 2 i=1 q 2 i Ground state ansatz: Φ({q i }) = i φ i(q i ) Self consistent equations: ( 1 2 ) 2 qi 2 + V i (q i ) φ i (q i ) = ɛ i φ i (q i ) 3N V i (q i ) = φ j (q j ) V ({q 3N k}) φ j (q j ) j i j i QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 1

Approximating the Born Oppenheimer energy surface (I) V ({q i }) = V () + 3N V i (q i ) + 3N 3N i=1 i=1 j>i V ij (q i, q j ) + Static lattice DFT total energy DFT total energy along frozen independent phonon DFT total energy along frozen coupled phonons QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 11

Approximating the Born Oppenheimer energy surface (II) V ({q i }) = V () + 3N V i (q i ) + 3N 3N i=1 i=1 j>i V ij (q i, q j ) + Energy (ev) 1.8.6.4.2 Diamond Anharmonic Harmonic -4-2 2 4 q (a.u.) QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 12

Approximating the Born Oppenheimer energy surface (III) V ({q i }) = V () + 3N V i (q i ) + 3N 3N i=1 i=1 j>i V ij (q i, q j ) + 2 1.6 LiH Anharmonic Harmonic Energy (ev) 1.2.8.4-6 -4-2 2 4 6 q (a.u.) QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 13

Methodology 1. Supercell with N atoms 3N normal modes 2. Solve for harmonic U har and anharmonic U anh energies 3. Calculate anharmonic correction U anh = U anh U har 4. Supercell size convergence for U anh 5. Add converged U anh to accurate harmonic energy QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 14

Phonon expectation values Ground state (T = K) Â({q i}) Φ = Φ({q i }) Â({q i}) Φ({q i }) = dq 1 dq 3N Φ ({q i })Â({q i})φ({q i }) Finite temperature (T > K) Â({q i}) Φ,β = 1 Φ s ({q i Z }) Â({q i}) Φ s ({q i }) e βes s Â({q i }) can be electronic band structure, stress tensor,... QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 15

Table of Contents Introduction Motivation Theoretical background Born Oppenheimer and harmonic approximations Vibrational self consistent field Phonon expectation values Results Diamond Lithium Hydride Conclusions QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 16

Diamond potential and phonon wavefunction 1 Anharmonic Harmonic.2 Anharmonic Harmonic Energy (ev).8.6.4.2 φ(q).15.1.5-4 -2 2 4 q (a.u.) -4-2 2 4 q (a.u.) QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 17

Diamond anharmonic ZPE (I) SC size U har (ev) U anh (ev) U anh (ev) Unit cell.251.249.2 2 2 2.275.263.12 3 3 3.282.31 +.28 4 4 4.284.329 +.45 5 5 5.286 Accurate.368 xc-functional: LDA QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 18

Diamond anharmonic ZPE (II) 5 4 U anh (mev) 3 2 1-1 xc-functional: LDA -2 6 48 162 384 Number of normal modes QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 19

Diamond Γ point el ph renormalisation -.6 E Γ (ev) -.8-1 -1.2 Harmonic Anharmonic AHPT 1 MBPT 2 PI MD (1 K) 3 6 48 162 384 Number of normal modes 1 F. Giustino, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 15, 26551 (21) 2 E. Cannuccia and A. Marini, Europ. Phys. J. B (212), accepted 3 R. Ramírez, C. P. Herrero, and E. R. Hernández, Phys. Rev. B 73, 24522 (26) QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 2

LiH potential and phonon wavefunction 2 1.6 Anharmonic Harmonic.2.15 Anharmonic Harmonic Energy (ev) 1.2.8 φ(q).1.4.5-6 -4-2 2 4 6 q (a.u.) -6-4 -2 2 4 6 q (a.u.) QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 21

LiH anharmonic ZPE (I) E xc H Li U har (ev) U anh (ev) U anh (ev) LDA 1 6.1455.1544 +.89 1 7.1431.159 +.78 2 6.1131.1191 +.6 2 7.114.1144 +.4 PBE 1 6.1316.14 +.84 1 7.1294.1374 +.8 2 6.124.174 +.5 2 7.999.147 +.48 Supercell size: 48 modes LDA lattice parameter: 3.665 bohr stiffer phonons PBE lattice parameter: 3.78 bohr softer phonons QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 22

LiH anharmonic ZPE (I) E xc H Li U har (ev) U anh (ev) U anh (ev) LDA 1 6.1455.1544 +.89 1 7.1431.159 +.78 2 6.1131.1191 +.6 2 7.114.1144 +.4 PBE 1 6.1316.14 +.84 1 7.1294.1374 +.8 2 6.124.174 +.5 2 7.999.147 +.48 Supercell size: 48 modes LDA lattice parameter: 3.665 bohr stiffer phonons PBE lattice parameter: 3.78 bohr softer phonons QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 23

LiH anharmonic ZPE (I) E xc H Li U har (ev) U anh (ev) U anh (ev) LDA 1 6.1455.1544 +.89 1 7.1431.159 +.78 2 6.1131.1191 +.6 2 7.114.1144 +.4 PBE 1 6.1316.14 +.84 1 7.1294.1374 +.8 2 6.124.174 +.5 2 7.999.147 +.48 Supercell size: 48 modes LDA lattice parameter: 3.665 bohr stiffer phonons PBE lattice parameter: 3.78 bohr softer phonons QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 24

LiH anharmonic ZPE (I) E xc H Li U har (ev) U anh (ev) U anh (ev) LDA 1 6.1455.1544 +.89 1 7.1431.159 +.78 2 6.1131.1191 +.6 2 7.114.1144 +.4 PBE 1 6.1316.14 +.84 1 7.1294.1374 +.8 2 6.124.174 +.5 2 7.999.147 +.48 Supercell size: 48 modes LDA lattice parameter: 3.665 bohr stiffer phonons PBE lattice parameter: 3.78 bohr softer phonons QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 25

LiH anharmonic ZPE (II) H Li U har (ev) U anh (ev) U anh (ev) 1 6.1365.1891 +.526 1 7.1342.1848 +.56 2 6.162.1466 +.44 2 7.137.1422 +.385 Supercell size: 162 modes xc functional: PBE QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 26

LiH anharmonic ZPE (III) 6 5 U anh (mev) 4 3 2 1 H 7 Li 1 H 6 Li 1 xc-functional: PBE 2 H 7 Li 2 H 6 Li 6 48 162 384 Number of normal modes QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 27

LiH constant volume heat capacity 5 4 c V (1-4 ev/k) 3 2 1 H 7 Li 1 H 6 Li 2 H 7 Li 1 SC size: 162 modes xc-functional: PBE 2 H 6 Li 6k B 2 4 6 8 1 Temperature (K) QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 28

El ph renormalised LiH band structure (I) 6 4 ε nk (ev) 2-2 -4 Γ X L W Γ QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 29

El ph renormalised LiH band structure (II) 16 12 ε nk (ev) 8 4-4 Γ X L W Γ QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 3

LiH el ph band gap renormalisations Supercell size: 162 modes xc functional: PBE H Li E X (ev) E X (ev) 1 7 3.321 +.354 2 7 3.289 +.319 Static lattice 2.9967 QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 31

Table of Contents Introduction Motivation Theoretical background Born Oppenheimer and harmonic approximations Vibrational self consistent field Phonon expectation values Results Diamond Lithium Hydride Conclusions QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 32

Conclusions Summary: VSCF for phonon wavefunctions of bulk materials. Phonon expectation values for electronic band structure. Preliminary tests on diamond and LiH. Future work: Other expectation values: stress tensor, atomic positions,... Ice, solid hydrogen,... QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 33

Acknowledgements Prof Richard J. Needs Dr Neil D. Drummond TCM group EPSRC QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 34

Table of Contents Additional Material QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 35

Additional Material: diamond phonon dispersion.16.12 ω nq (ev).8.4 Γ X L W Γ QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 36

Additional Material: LiH phonon dispersion.12 1 H 7 Li 2 H 7 Li ω nq (ev).8.4 Γ X L W Γ QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 37

Additional Material: Diamond coupling term Coupled optical phonons at the Γ point q 2 (a.u.) 4 3 2 1-1 -2-3 q 2 (a.u.) 3 4 2.5 3 2 2 1 1.5-1 1-2 -3.5 Energy (ev) 3 2.5 2 1.5 1.5 Energy (ev) -4-4 -3-2 -1 1 2 3 4 q 1 (a.u.) -4-4 -3-2 -1 1 2 3 4 q 1 (a.u.) QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 38

Additional Material: LiH coupling term Coupled optical phonons at the Γ point q 2 (a.u.) 6 4 2-2 -4-6 -6-4 -2 2 4 6 q 1 (a.u.) 3.5 6 3 4 2.5 2 q 2 (a.u.) 2 1.5 Energy (ev) -2 1-4.5-6 -6-4 -2 2 4 6 q 1 (a.u.) 3.5 3 2.5 2 1.5 1.5 Energy (ev) QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 39

Additional Material: Allen Heine perturbation theory (I) Expansion of el ph interaction to second order in u α : V el ph ({u α }) Ĥ1 + Ĥ2 Ĥ 1 = u α α V el ph ({u α }) α Ĥ 2 = 1 u α u β α β V el ph ({u α }) 2 αβ Second order perturbation theory: ɛ nk ({u α }) ɛ nk + nk Ĥ1 + Ĥ2 nk + n k Ĥ1 nk 2 ɛ n k nk ɛ n k QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 4

Additional Material: Allen Heine perturbation theory (II) Thermal average within harmonic approximation (reciprocal space): 1 2m α Nω νq (2n νq + 1) n νq = 1 e βωνq + 1 (1) QMC in the Apuan Alps VII Bartomeu Monserrat bm418@cam.ac.uk 41