/D Ö C. 0SI5L L iu PICATINNY ARSENAL MOISTURE SORPTION LEAD BETA RESORCYLATE SALTS DOVER, NEW JERSEY JJL OCTOBER 1971 COPY NO. DANIEL R.

Similar documents
Supporting Information

j~ ~KDNBF/DE SAMPLES

urn DISTRIBUTED BY: National Technical Information Service U. S. DEPARTMENT OF COMMERCE AD-A

All materials and reagents were obtained commercially and used without further

A Third Generation Breathing MOF with Selective, Stepwise, Reversible and Hysteretic Adsorption properties

The solid-state stability of aspartame hemihydrate (APM) sweetener is important information for the food industry.

Supporting Information. for. A Sustainable Protocol for the Spontaneous Synthesis of Zinc-Glutamate. Wet Conditions

Electronic Supplementary Information. Pd(diimine)Cl 2 Embedded Heterometallic Compounds with Porous Structures as Efficient Heterogeneous Catalysts

AN EMPIRICAL SHAPED CHARGE JET BREAKUP MODEL

Having a High Mg/Al Molar Ratio

Characterization of Solid State Drugs by Calorimetry

Supporting Information

Electronic Supporting Information

Supporting Information

The solid-state stability of aspartame hemihydrate (APM) sweetener is important information for the food industry.

Effect of temperature and humidity on vegetable grade magnesium stearate

Supporting Information

Supporting Information

Immobilization of BiOX (X=Cl, Br) on activated carbon fibers as

Supporting Information

Supporting Information

Supporting Information

The precursor (TBA) 3 [H 3 V 10 O 28 ] was synthesised according to the literature procedure. 1 (TBA = n tetrabutylammonium).

Facile Synthesis and Catalytic Properties of CeO 2 with Tunable Morphologies from Thermal Transformation of Cerium Benzendicarboxylate Complexes

Rational design of light-directed dynamic spheres

Electronic Supplementary Information (ESI)

Supporting Information

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner

An unprecedented 2D 3D metal-organic polyrotaxane. framework constructed from cadmium and flexible star-like

Fabrication of COF-MOF Composite Membranes and Their Highly. Selective Separation of H 2 /CO 2

Dry-gel conversion synthesis of Cr-MIL-101 aided by grinding: High surface area high yield synthesis with minimum purification

EXPERIMENT THREE THE CANNIZARO REACTION: THE DISPROPORTIONATION OF BENZALDEHYDE

Indium Triflate-Assisted Nucleophilic Aromatic Substitution Reactions of. Nitrosobezene-Derived Cycloadducts with Alcohols

Supplementary Information for Self-assembled, monodispersed, flowerlike γ-alooh

Supplementary Information

Department of Chemistry, Tianjin University, Tianjin , P. R. China Tel:

A kinetically controlled crystallization process for identifying new co-crystal forms: Fast evaporation of solvent from solutions to dryness

Supporting Information

High-power Broadband Organic THz Generator

Electronic Supplementary Information (ESI)

Facile synthesis of polymer and carbon spheres decorated with highly dispersed metal nanoparticles

Electronic Supplementary Information (ESI)

Supplementary Information

Supplementary Information

Electronic Supplementary Information (ESI) From metal-organic framework to hierarchical high surface-area hollow octahedral carbon cages

Electronic Supplementary Information (ESI) Green synthesis of shape-defined anatase TiO 2 nanocrystals wholly exposed with {001} and {100} facets

Supplementary Information

CHEM*3440. Thermal Methods. Thermogravimetry. Instrumental Components. Chemical Instrumentation. Thermal Analysis. Topic 14

Supporting Information

One-dimensional organization of free radicals via halogen bonding. Supporting information

Supporting Information

Electronic Supplementary Information

Rare double spin canting antiferromagnetic behaviours in a. [Co 24 ] cluster

High capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework

An unexpected highly selective mononuclear zinc complex for adenosine diphosphate (ADP)

Controlling Interfacial Contact and Exposed Facets for. Enhancing Photocatalysis via 2D-2D Heterostructure

Controllable Growth of Bulk Cubic-Phase CH 3 NH 3 PbI 3 Single Crystal with Exciting Room-Temperature Stability

Supporting Information. Crystal surface mediated structure transformation of kinetic framework. composed of multi-interactive ligand TPHAP and Co(II)

Electronic Supplementary Information. Reversible, Solid State Capture of Carbon Dioxide by Hydroxylated Amidines. Myungsook Kim, and Ji-Woong Park*

Selective total encapsulation of the sulfate anion by neutral nano-jars

Supporting Information

Spontaneous racemic resolution towards control of molecular recognition nature

Supplementary Figures

Aminopropyltrimethoxysilane-Functionalized Boron Nitride. Nanotube Based Epoxy Nanocomposites with Simultaneous High

Evolved gas analysis by simultaneous thermogravimetric differential thermal analysis-fourier transformation infrared spectroscopy (TG-DTA-FTIR)

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage

An inorganic-organic hybrid supramolecular nanotube as high-performance anode for lithium ion batteries

Synthesis of nano-sized anatase TiO 2 with reactive {001} facets using lamellar protonated titanate as precursor

Enthalpy changes

Spin Transition and Structural Transformation in a

Synthesis of 12 nm iron oxide nanoparticles

Supplementary Information

Supporting Information

Dual Catalyst System provides the Shortest Pathway for l-menthol Synthesis

Novel Tri-Block Copolymer of Poly (acrylic acid)-b-poly (2,2,3,3,4,4,4- hexafluorobutyl acrylate)-b-poly (acrylic acid) Prepared via Two-Step

Preparation and Characterization of Hydrogels

Supplementary Material

Stabilizing vitamin D 3 by conformationally selective co-crystallization

Anhydrous Proton Conductivities of Squaric Acid Derivatives

Adsorption of Cd(II) ions by synthesize chitosan from fish shells

Supporting information for Template-directed proton conduction pathway in a coordination framework

Supplementary Material (ESI) for CrystEngComm. An ideal metal-organic rhombic dodecahedron for highly efficient

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

Electronic Supplementary Information

Supporting Information. MOF-derived Synthesis of mesoporous In/Ga oxides and their ultra-sensitive ethanol-sensing properties

Supporting information. Cooperatively Enhanced Ion Pair Binding with a Hybrid Receptor

Electronic supplementary information (ESI) Temperature dependent selective gas sorption of unprecedented

Supplementary Information

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

Mn 12 Single-Molecule Magnet Aggregates as Magnetic Resonance Imaging Contrast Agents

Supplementary Information

SUPPORTING INFORMATION. A New Approach for the Surface Enhanced Resonance Raman Scattering (SERRS)

Supporting Information for Polybenzimidazolium Salts: A New Class of. Anion-Conducting Polymer

Efficient Molybdenum (VI) Modified Zr-MOF Catalyst for

Catalytic Decomposition of Formaldehyde on Nanometer Manganese Dioxide

Mi] AD-A ON THE DEFLECTION OF PROJECTILES DUE TO ROTATION OF THE EARTH. G. Preston Burns

Supporting Information

Supplementary Materials

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation

DSC AND TG/DTA AS PROBLEM-SOLVING TOOLS: CHARACTERIZATION OF PHARMACEUTICAL COMPOUNDS

Transcription:

- COPY NO. JJL TECHNICAL MEMORANDUM 2022 t i, u *& MOISTURE SORPTION OF LEAD BETA RESORCYLATE SALTS BY DANIEL R. SATR1ANA OCTOBER 1971 i APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED. NATIONAL TECHNICAL INFORMATION SERVICE ipnngfibld Vn 27151 PICATINNY ARSENAL DOVER, NEW JERSEY /D Ö C r, 0SI5L L iu

wmmrm^gmmmm^ "Hi UNCLASSIFIED Sect fit^classification DOCUMENT CONTROL DATA -R&D (Security clmitihc mtton ol title, body of»betritt mnd Indexing fwoteiion muei b* awlfrf»hen the orermll report I» clmeehied) CRICINATINC ACTIVITY (Corporate author) Picatinny Arsenal, Dover, New Jersey».MC^ONTSCCURITV CLASSIFICATION Unclassified 16. GROUP 3 REPORT TITLE MOISTURE SORPTION OF LEAD BETA RESORCYLATE SALTS 4. DESCRIPTIVE NOTES (Typ* ol report end Incluelwe date a) 6- AUTHOR(S) (Firet name, middle Initial taet nam*e) Daniel R. Satriana S REPORT DATE October 1971 M. CONTRACT OR GRANT NO. J, b. PROJECT NO. DA 1M262/302A21I *-AMCMS Code 5222.11.58500 7«. TOTAL NO. OF PAGES 14 9m. ORIGINATOR'S REPORT NUMBER(S) Technical Memorandum 76. NO- OF RCFS?-<'>> X»6. OTHER REPORT NOt«) (Any Jttter numbete tttet mu.y be eaelgnvd thle report) W 10. DISTRIBUTION STATEMENT Approved for public release: distribution unlimited. II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY 13 ABSTRACT Determination by differential thermal analysis and X-ray spectroscopy, of water sorption capabilities of lead beta resorcylate is described. KH POtM 4 A "?«i REPLACES DO FORM 1*7». t JAN «4. UU I MOV SS l"t /Ö 0" >-«T «*"*" " UNCLASSIFIED Security Classification

The findings in this report are not to be construed as an official Department of the Army position. DISPOSITION Destroy this report when no longer needed Do not retain it to the originator.

*smsml K«v venoa LINK A HI I»T LINK LINK C not««ok«lead Beta Resorcylate Dibasic Lead Beta Resorcylate Monobasic Lead Beta Resorcylate Beta Resorcylic Acid cwity CUaslOcaUo«

Technical Memorandum 2022 MOISTURE SORPTION OB LEAD BETA RESORCYLATE SALTS By Daniel R. Satriana October 1971 Approved for public release: distribution unlimited. DA Project: 1M262302A211 AMCMS Code: 5222.11.58500 Propellants Division Feltman Research Laboratories Picatinny Arsenal Dover, New Jersey

The citation in this report of the trade names of commercially available products does not constitute official indorsement or approval of the use of such products.

r ACKNOWLEDGEMENTS Thanks are due to Mr. N. Gelber for the chemical determinations, Mr. J. Campisi for the X-ray diffraction data and Mr. E. Jones for the differential thermal analyses.

TABLE OF CONTENTS Page No. Abstract 1 Conclusions 1 Introduction 2 Discussion of Results 2 Experimental 3 Figures 1-5 5-9 Distribution List 10

ABSTRACT Determination by differential thermal analysis and X-ray spectroscopy, of water sorption capabilities of lead beta resorcylate is described. CONCLUSIONS Dibasic lead beta resorcylate (LBR) can be converted to a monohydrate on exposure to moisture. The hydrate has a unique crystal structure that can be distinguished from the anhydrous form by X-ray diffraction. Also, both forms are interconvertible without decomi position.

INTRODUCTION Two I.BR salts are known: the monobasic and the dibasic compounds. Their probable structural formulas are Monobasic Dibasic The method used commercially in their preparation has not been divulged. The commercial material varies between batches, containing Impure mixtures of the lead salts. Consequently, it was our objective to synthesize reproducibly pure monobasic and dibasic LBRs. As a result of this investigation, optimum conditions for the preparation of the pure salts were developed!. Infrared spectroscopy was one of the techniques used to characterize the pure LBR salts prepared in the laboratory. Spectra of the monobasic and the dibasic salts are shown in Figure 1. Better resolution of the OH and CH stretching frequencies is discernible in the spectrum of the monobasic salt, while the dibasic salt has a broad band at the same 3500-3000 cm" 1 frequency range. These findings suggested that the difference was probably due to the presence of adsorbed or combined water. In the light of this observation, moisture sorption of the lead salts was studied. DISCUSSION OF RESULTS Through the use of differential thermal analysis (DTA) it was found that the thermal characteristics of the two salts are different. It is evident from Figvre 2 that the thermogram of the monobasic salt I. Picatinny Arsenal Technical Memorandum 2021, dated October 1971,

has no endothermic transition» while the dibasic salt has two endothermic responses, one at 150 C, the other at 200 C. The endotherm appearing at 150 C. suggested either adsorbed moisture or a polymorphic transition, By employing the following special technique, it was demonstrated that the endotherm at 150 C. was probably due to water of hydratlon: a sample of the dibasic salt was heated to 17!> C. in the Differential Scanning Calorimeter (DSC), then cooled and placed in a humidity chamber for several hours. When the sample was heated again to 175*C. in the calorimeter, the endotherm reappeared. The sample was once more cooled to room temperature, and subsequently reheated to 175 C. This time the endotherm did not appear. However, when the sample was placed In the humidity chamber for several hours and again heated to 175 C, the endotherm reappeared. The results of this experiment are graphically shown in Figure 3. Confirmation of the hydrate form of the dibasic lead salt was also obtained by X-ray diffraction. X-ray diffraction patterns were taken of a sample of the dibasic salt dried at 100 C. for 24 hours, and of the same sample after being in a humidity chamber at 90% RH for 72 hours. The spectra are shown in Figure 4. The changes in the major diffraction peaks signify differences in crystal structure. Evidently, these changes were due to the formation of the hydrate. The X-ray diffraction pattern of the monobasic lead salt is also included for purposes of comparison. Thermogravimetrie analysis (TGA) was used to determine the extent of hydratlon. The thermal decomposition of a sample of the dibasic salt is shown in Figure 5. The loss in weight was stepwise, the initial step corresponding to the endotherm at 150 C. of the DTA curve (Figure 2) and the second step to the endotherm at 200 C. It is evident that the loss in weight due to ehe decomposition of the hydrate is approximately 3.5%, which corresponds closely to the theoretical value (3.4%) for the monohydrate. X-Ray Diffraction EXPERIMENTAL A Norelco wide angle difractometer utilizing CuK<x X-radiation was used to obtain X-ray diffraction patterns. Differential Analysis Tae 950 DuPont Gravimetric Analyzer and the Differential Scanning Cell for a 900 DuPont Differential Analyzer were used to measure thermal properties.

Infrared Analysis Infrared spectra were obtained by means of the KBr pellet technique with a Ferkln-Elaer, Model 621, Grating Infrared Spectrophotometer. The pellets, containing approximately 0.5% sample» were pressed to 0.7mm thickness. Laboratory Preparation of Lead Beta Resorcylates 1. Monobasic Lead Beta Resorcylate 11.16g (0.05 moles) of lead monoxide (FbO) is added to 100 ml of absolute ethyl alcohol containing 16.96g (0.11 roles) of practical grade beta resorcylic acid. The mixture Is heated at 60-70 C. for 1.5 hours with constant stirring. The product is filtered while still warm, washed twice with a small amount of warm (60 C.) absolute alcohol, and dried in the oven at 60 C. for several hours. The weight of the monobasic salt is 16.lg (theory 18.0g) or 89.5% yield based on the amount of PbO used in the reaction. Analysis: Found-Pb- 57.29%, C-23.7UZ, H-0.18%; Calculated - Pb-57.66%, C-23.40%, K-l.12%. 2. Dibasic Lead Beta Resorcylate 11.16g (0.05 moles) of lead monoxide (?b0) is added to 175 ml of 50% (by volume) of ethyl alcohol containing 23.lg (0.15 moles) of practical grade beta resorcylic acid. The mixture is stirred at ambient temperature under a current of air for five hours. The solid is filtered, washed with ice cold 50% ethyl alcohol, and dried in the oven at 100 C. to constant weight. The yield of pure dibasic lead beta resorcylate is 23.8g (theory 25.7g) or 92,5% yield based on the amount of PbO used in the reaction. Analysis: Found - Pb-40.54%, C -32.85%, H-2.10%; Calculated - Pb-40.35%, C-32.75%, H-l.96%.

is u z?0 II 9 «t >» «u t-l»4» o o m»4 V o 06 to 1 0> «OS u 1 ««A 4J 0) D ««"O J «8 4) O»J T* a o «0 H.ft «a 0 «c.o o t-t X O «H *M o O (0 0 M u U O u I 0) CO CO «as» - \ «y i i (X 4J o o 00 fa $ 9 8 iim3d) idnvuiwsnv«l 8 8 8? 8 (1N33MU) 3DNVUIWSNVM1 ' 1WWVS

I i ««>» «o u u «i m a: ««M ««o «o «3w e xi Si o 3 * es ü O O O «O 00 tu I 8 uuaq^oxa ouaipopua

V *3 4J J I 2 et w x b Ofi 01 c k V T> >»4 *- C -H TJ m «1 C» «>s u o U 0. U u 1*4 b o o»m «^ «s ^ w «M 01 o <M -H «M «O 1 «M «3 >% I 4J JQ 1 «1 Oi JC to C M i-t n c o H»««o «O 01 5 u 01 i a» y u.-* ^ «3 H-* a <-> a o a <o «% 01 J3 a u o ^ at «0» a I-H V r-i X «M u o o E o oi oo «0 A i-h 10 03 «a 3» s s i-i <N O to =*fc Oc * JS s m (J (A 0) *j SO Ps o h o» s o o 03 FH 3 3 U 00 H e 0) -H x-> <d c Ü ja e o H 35 s-* g a» IM O -1 CM D «t u *J i-t 01 C 4J o m 0) B 0) a *J hi 6 «o a G 01 «M H t-l 14-1 O -* «c w o!a 3 I uuaqioxg IV uu9q3opu^

gs ff -I M U >* 4 «U ^»- S 2 S 22 «u u»ii «Xt U *J O r-l o u f:: 1 -o «o «4 «4 <M 0 o o ecu fc fc M V ««V U 4J 41 Mil «4 ft P. a if g rf -H PH «i it u s s s»4»4 H «M «W «M *4 «H * «o «o «o *, iii I 1 I I Si _ «O *J CUT} 4J O -*4 O H X «60 \ J( illshuhi

"'....r.: ~... QJ 3... = ({) 'en... 0 ~ 10 ')f'.:.. J 30 60 70 80 0 ~~1 1i'fx 1,'K?XX I '5t.R I i ~ X SS ~ I, X lna Temperature ("C) Fig. 5 Thermogravimetric Analysis of Dibasic Lead Beta-Resorcylate 0