Molecular prototypes for spin-based CNOT and SWAP quantum logic gates

Similar documents
Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón

Experimental Quantum Computing: A technology overview

Spins Dynamics in Nanomagnets. Andrew D. Kent

Circuit QED with electrons on helium:

Spin electric coupling and coherent quantum control of molecular nanomagnets

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006

Beyond the Giant Spin Approximation: The view from EPR

Optically-controlled controlled quantum dot spins for quantum computers

Driving Qubit Transitions in J-C Hamiltonian

10.5 Circuit quantum electrodynamics

Quantum Detection Applications of NanoSQUIDs fabricated by Focussed Ion Beam

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent

Coherent oscillations in a charge qubit

!. 2) 3. '45 ( !"#!$%!&&' 9,.. : Cavity QED . / 3., /*. Ion trap 6..,%, Magnetic resonance Superconductor

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Electrical quantum engineering with superconducting circuits

Developing Quantum Logic Gates: Spin-Resonance-Transistors

Quantum physics in quantum dots

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

Lecture 2: Double quantum dots

Quantum Optics with Electrical Circuits: Circuit QED

Superconducting Flux Qubits: The state of the field

Distributing Quantum Information with Microwave Resonators in Circuit QED

Superconducting Qubits

Magnetic qubits as hardware for quantum computers

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

MOLECULAR SPINTRONICS. Eugenio Coronado

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

engineering of spatial nano- and micro-arrangements of pure and composite materials is of

Superconducting Qubits Lecture 4

Quantum Information Processing with Semiconductor Quantum Dots

Synthesizing arbitrary photon states in a superconducting resonator

Chapter 103 Spin-Polarized Scanning Tunneling Microscopy

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Techniques for inferring M at small scales

Short Course in Quantum Information Lecture 8 Physical Implementations

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

Nearly-quantumless magnetic cooling. using molecules. Marco Evangelisti

Factoring 15 with NMR spectroscopy. Josefine Enkner, Felix Helmrich

MAGNETIC QUBITS AS HARDWARE FOR QUANTUM COMPUTERS.

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Strong tunable coupling between a charge and a phase qubit

Quantum computation and quantum information

Magnetic anisotropy in frustrated clusters and monolayers: Cr on triangular Au(111) surface

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Electron spin qubits in P donors in Silicon

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Broadband ESR from 500 MHz to 40 GHz using superconducting coplanar waveguides

Controlling the Interaction of Light and Matter...

Laser Spectroscopy on Bunched Radioactive Ion Beams

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

Quantum Computation with Neutral Atoms Lectures 14-15

Superconducting devices based on coherent operation of Josephson junction arrays above 77K

Manipulating and characterizing spin qubits based on donors in silicon with electromagnetic field

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants

«Chaînes Aimants» et «Molécules Aimants» dans les Oxydes. GDR MCM2 & MEETICC Strasbourg, 5 6 octobre 2017

Quantum Coherent Properties of Spins - III

Dipole-coupling a single-electron double quantum dot to a microwave resonator

The Nobel Prize in Physics 2012

Supporting information

Quantum computation with superconducting qubits

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

The Quantum Supremacy Experiment

Superconducting quantum bits. Péter Makk

Centro Universitario de la Defensa. Academia General Militar, Zaragoza, Spain.

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields

10.5 Circuit quantum electrodynamics

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Unsolved Mysteries of the Universe: Looking for Clues in Surprising Places

Quantum Computation with Neutral Atoms

Electron spins in nonmagnetic semiconductors

Quantum computation with trapped ions

Quantum Information Processing with Liquid-State NMR

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation

Magnetic semiconductors. (Dilute) Magnetic semiconductors

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012

The exchange interaction between FM and AFM materials

Precision Penning Trap Experiments with Exotic Ions

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Electron spin coherence exceeding seconds in high-purity silicon

Quantum Computing. Separating the 'hope' from the 'hype' Suzanne Gildert (D-Wave Systems, Inc) 4th September :00am PST, Teleplace

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Exploring parasitic Material Defects with superconducting Qubits

Single qubit + CNOT gates

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Introduction to Quantum Mechanics of Superconducting Electrical Circuits

Room-Temperature Quantum Sensing in CMOS: On-Chip Detection of Electronic Spin States in Diamond Color Centers for Magnetometry

IBM quantum experience: Experimental implementations, scope, and limitations

compound Cs 2 Cu 2 Mo 3 O 12

Magnetic Resonance in Quantum

Proposed experiment for the anapole measurement in francium. Luis A. Orozco Joint Quantum Institute University of Maryland

Transcription:

Bellaterra: anuary 2011 Architecture & Design of Molecule Logic Gates and Atom Circuits Molecular prototypes for spin-based CNOT and SWAP quantum logic gates Fernando LUIS Instituto de Ciencia de Materiales de Aragón (Zaragoza, Spain)

Outline Molecular design of CNOT and SWAP quantum gates Tb 2 Integration of SMM into superconducting microdevices

Outline Molecular design of CNOT and SWAP quantum gates Tb 2 Integration of SMM into superconducting microdevices

Quantum computers Quantum processing of information Bit Qubit 1 Richard Feynman, 1982 0

Molecular qubits Unitary operations Single qubits Chemically synthesized Scalability Identical entities 1 Read-out 0 R b rf Carry magnetic moment S m=-10 - + Initialization m=+10

Molecular qubits Unitary operations Single qubits 1 Cr 7 Ni, S = 1/2 A. Ardavan et al. Phys. Rev. Lett. 98, 057201 (2007) 0 S. Bertaina et al. Nature 453 (2008) V 15, S = 1/2

CNOT (universal) quantum logic gate control target

CNOT quantum logic gate control target 1. Two qubits 2. Coupling 3. Asymmetry

D. Aguilà et al, Inorg. Chem. 49 (2010) 6784 G. Aromí, D. Aguilà, P. Gámez, F. Luis, and O. Roubeau, Chem. Soc. Rev., (2012), DOI: 10.1039/C1CS15115K Molecular design Dinuclear [Tb] 2 complex Linked to three asymmetric H 3 L ligands Two anisotropic spins in different coordinations

Definition of qubit states [LaTb] = 6, g = 3/2

T(emu K/ Oe mol Tb) Definition of qubit states [LaTb] = 6, g = 3/2 14 12 10 8 2 eff 2 2 2 g B 2 T eff 2 2 2 eff g B 1 m = 0 m = ±4 Tb D = 19 K 1 10 100 T(K) m = ±5 m = ±6 180 K! H anis DS 2 z g B H x x H y y H z z Two states

c p /R Definition of qubit states [LaTb] = 6, g = 3/2 Y 10 0 LaTb H 10-1 H = 0 0 H = 0.125 T 0 H = 0.25 T m = 0 m = ±4 Tb 10-2 Debye H 1 10 m6 T (K) g H 0 H = 0.5 T 0 H = 1 T B z z m = ±5 m = ±6 Two states m = -6 2g H cos Y B m = +6

T(emu K/ Oe mol Tb) Coupling between the Tb 3+ qubits [Tb] 2 14 12 10 [LaTb] 8 [Tb] 2 2 T eff 1 10 100 H exch T(K) ex z1 z2 AF coupling

c p /R c p /R Coupling between the Tb 3+ qubits 10 0 [LaTb] [Tb] 2 10-1 Tb nuclear spins Debye 10-2 0.1 1 10 T (K) 10 0 [Tb] 2 ex 0.016 K 10-1 = 4 ex 2 = 2.14 K 10-2 0.1 1 10 H exch T (K) ex z1 z2

T(emu K/ Oe mol Tb) Magnetic asymmetry min (13 1mHz 15 10 3 mk) 10 1/2 f μ B Hz 1MHz SQUID (dc) 15.8 mhz 1.58 Hz 158 Hz 15.8 khz 5 ex = -0.016 K = 0 0 0.01 0.1 1 10 100 T(K)

T(emu K/ Oe mol Tb) T(emuK/Oe mole Tb 2 ) Magnetic asymmetry 100 80 60 15.8 mhz 1.58 Hz 158 Hz 15.8 khz dc 0 H = 0.1 T 40 20 15 10 0 0.01 0.1 1 10 100 SQUID (dc) 15.8 mhz 1.58 Hz 158 Hz 15.8 khz T(K) 5 ex = -0.016 K = 0 0 0.01 0.1 1 10 100 T(K)

T(emu K/ Oe mol Tb) T(emuK/Oe mole Tb 2 ) Magnetic asymmetry 100 80 60 15.8 mhz 1.58 Hz 158 Hz 15.8 khz dc 0 H = 0.1 T 40 20 15 10 0 0.01 0.1 1 10 100 5 SQUID (dc) 15.8 mhz 1.58 Hz 158 Hz 15.8 khz ex = -0.016 K = 66 deg T(K) 0 0.01 0.1 1 10 100 T(K) ex = -0.016 K = 0 = 66 degrees Noncollinear anisotropy axes z 2 z 1

M( B /Tb 2 molecule) T(emuK/Oe mole Tb 2 ) Magnetic asymmetry 100 80 60 15.8 mhz 1.58 Hz 158 Hz 15.8 khz dc 0 H = 0.1 T 40 20 0 0.01 0.1 1 10 100 T(K) z 2 z 1 8 6 4 Hall T = 0.26 K Hall T = 2.0 K SQUID T = 2.0 K = 66 degrees 2 theory T = 0.26 K = 66 o 0 = 0 o 0.0 0.1 0.2 0.3 0.4 0.5 0 H (T) Noncollinear anisotropy axes

c p /R c p /R c p /R Magnetic asymmetry 1 Experiment 0 H = 0 0.1 1 theory: = 0 0 H = 0.125 T 0 H = 0.25 T 0 H = 0.5 T z 1 z 2 0.1 1 theory: = 66 deg. 0 H = 0 0 H = 0.125 T 0 H = 0.25 T 0 H = 0.5 T = 66 degrees 0.1 0 H = 0 0 H = 0.125 T 0 H = 0.25 T 0 H = 0.5 T 1 2 3 T(K) Noncollinear anisotropy axes

Heterometallic clusters [LaEr] Er 3+ = 15/2, g = 6/5 [CeEr] Ce 3+ = 5/2, g = 6/7 [CeY]

All ingredients are met! Tb 1 Non-collinear easy axes or different ions 99.99% lie in the ground state below 20 K Tb 2 z Tb 1 Tb 2 m = 0 m = ±4 Antiferromagnetic exchange below 3 K x y 180 K! m = ±5 m = ±6 two qubits interaction = 66 deg

0.0 0.2 0.4 0.6 0.8-4 -2 0 2 4 Energy(K) 0 H (T) [Tb] 2 as a CNOT logic gate ) ( 2 2 2 1 1 2 2 1 1 2 1 6 z z z z hf z z z z B z z ex m I I A H H g H CNOT

Energy(K) EPR signal (a.u.) Implementation by EPR 4 0.0 CNOT 2 0-2 -0.4-0.8 T = 6 K = 9.8 GHz X-band -4 0.0 0.2 0.4 0.6 0.8 0 H (T) -1.2 0.0 0.2 0.4 0.6 0.8 0 H (T) CNOT transitions are not forbidden

F. Luis et al, Phys. Rev. Lett. 107,.117203 (2011). Energy(K) EPR signal (a.u.) 4 0.0 2 0-0.4 T = 6 K = 9.8 GHz -2-0.8-4 0.0 0.2 0.4 0.6 0.8 0 H (T) -1.2 0.0 0.2 0.4 0.6 0.8 0 H (T) SWAP gate operations are also possible!

Intensity (a.u.) echo intensity (a.u.) Quantum coherence? (X-band pulsed EPR) Tb 2 : m = -6 m = +6 ECHO? NOT OBSERVED Ce 2 : m = -1/2 m = +1/2 OBSERVED!! CNOT 8.0x10 5 20000 T 1 = 1 s T 2 = 250 ns 0.0 10000-8.0x10 5 0 2500 5000 7500 10000 12500 15000 0 H(G) 0 0 800 1600 2400 time(ns)

Outline Molecular design of CNOT and SWAP quantum gates Tb 2 Integration of SMM into superconducting microdevices

Hybrid quantum computation architectures Magnetic qubits as hardware for quantum computers.. Tejada, E. M. Chudnovsky, E. del Barco,. M. Hernandez and T. P. Spiller, Nanotechnology 12 (2001) 181 186 Cavity QED Based on Collective Magnetic Dipole Coupling: Spin Ensembles as Hybrid Two-Level Systems. Atac Imamoglu, PRL 102, 083602 (2009) Molecule-based qubits and qugates Superconducting circuits

The goal: maximizing the flux coupling 1. Scaling down the dimensions of the loop 2. Playing with the sample position!!! The first challenge is the placement of a single nanoparticle close to the nanosquid while achieving sufficient magnetic coupling between the particle and the device C. P. Foley and H. Hilgenkamp. Supercond. Sci. Technol. 22, 064001 (2009).

M Martínez-Pérez,. Sesé, F. Luis, D. Drung and T. Schurig Rev. Sci. Instrum. 81, 016108 (2010) The device: microsquid ac susceptometer

10 0 10-1 (F 0 Oe/ B A) 10-2 10-3 10-4 d coupled n i Cross-section view B i P P

The tool: Dip pen nanolithography AFM Tip Water Meniscus Writing Direction Substrate

The sample: ferritin-based nanomagnets (CoO) CoO 2 nm sized Antiferromagnetic particle ~ 12 B

Height (nm) Au Au SiO 2 Cross-sectional view Al Nb ~10 nm 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Section (μm)

Direct deposition on the most sensitive areas 10 5 molecules/dot

M.. Martínez-Pérez, E. Bellido, R.. De Miguel,. Sese, A. Lostao, C. Gómez-Moreno, D. Drung, T. Schurig, D. Ruiz-Molina, and F. Luis, APL. 99, 032504 (2011) Detection of the linear response of a SMM monolayer ' [emu/mol(clus)oe] 450 300 25 Hz 2.1 khz 72 khz 150 0 0.0 0.2 0.4 0.6 T (K) Sensitivity 10 2 B /Hz 1/2

Mn 12 Gd 2

Towards the implementation of quantum computation architectures Magnetic qubits as hardware for quantum computers.. Tejada, E. M. Chudnovsky, E. del Barco,. M. Hernandez and T. P. Spiller, Nanotechnology 12 (2001) 181 186 Cavity QED Based on Collective Magnetic Dipole Coupling: Spin Ensembles as Hybrid Two-Level Systems. Atac Imamoglu, PRL 102, 083602 (2009) Molecule-based qubits and qugates DPN!!! Superconducting circuits

CONCLUSIONS [LnLn ] clusters, designed and synthesized via coordination chemistry, meet the following ingredients proper definition of qubit states weak AF coupling between qubits magnetic asymmetry molecular prototypes for CNOT quantum gates SWAP gate operations can be performed in the same molecule Dip pen nanolithography offers a very attractive tool to integrate molecular qubits into superconducting microdevices: towards the implementation of quantum architectures

Dietmar Drung Thomas Schurig Ana Repollés Olivier Roubeau Marco Evangelisti María osé Martínez David Zueco Agustín Camon avier Sesé Rosa Cordoba Rocío de Miguel Ana Isabel Lostao Guillem Aromí (et al.) Elena Bellido Daniel Ruiz