TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

Similar documents
TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

Chapter 3 Fourier Series Representation of Periodic Signals

ASSERTION AND REASON

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

page 11 equation (1.2-10c), break the bar over the right side in the middle

MM1. Introduction to State-Space Method

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

Fourier Transform Methods for Partial Differential Equations

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

National Quali cations

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Chapter 3 Higher Order Linear ODEs

On Gaussian Distribution

National Quali cations

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Section 5.1/5.2: Areas and Distances the Definite Integral

IIT JEE MATHS MATRICES AND DETERMINANTS

PREPARATORY MATHEMATICS FOR ENGINEERS

How much air is required by the people in this lecture theatre during this lecture?

MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS SUBJECT NOTES. Department of Mathematics FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

Lectures 2 & 3 - Population ecology mathematics refresher

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

TWO MARKS WITH ANSWER

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya

UNIT I FOURIER SERIES T

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS

ENGI 3424 Appendix Formulæ Page A-01

Linear Algebra Existence of the determinant. Expansion according to a row.

Integration by Guessing

PURE MATHEMATICS A-LEVEL PAPER 1

IX. Ordinary Differential Equations

Chapter 6 Perturbation theory

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

Rectangular Waveguides

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

Consider serial transmission. In Proakis notation, we receive

New Advanced Higher Mathematics: Formulae

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions

COMSACO INC. NORFOLK, VA 23502

Section 3: Antiderivatives of Formulas

DEPARTMENT OF MATHEMATICS BIT, MESRA, RANCHI MA2201 Advanced Engg. Mathematics Session: SP/ 2017

Calculus Cheat Sheet. ( x) Relationship between the limit and one-sided limits. lim f ( x ) Does Not Exist

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

Chapter #2 EEE Subsea Control and Communication Systems

TOPIC 5: INTEGRATION

a f(x)dx is divergent.

Ordinary Differential Equations

ROUTH-HURWITZ CRITERION

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

Trigonometric Formula

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

DFT: Discrete Fourier Transform

P a g e 5 1 of R e p o r t P B 4 / 0 9

Further Results on Pair Sum Graphs

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

Frequency Response & Digital Filters

Lectures 5-8: Fourier Series

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2]

Problem Session (3) for Chapter 4 Signal Modeling

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

Right Angle Trigonometry

EE Control Systems LECTURE 11

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1

Problem Value Score Earned No/Wrong Rec -3 Total

The Z transform techniques

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

Digital Signal Processing, Fall 2006

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC

Model of the multi-level laser

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point:

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

MAS221 Analysis, Semester 2 Exercises

HIGHER ORDER DIFFERENTIAL EQUATIONS

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

Signals & Systems - Chapter 3

Chapter 7 Infinite Series

Classical Theory of Fourier Series : Demystified and Generalised VIVEK V. RANE. The Institute of Science, 15, Madam Cama Road, Mumbai

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu

Chapter 9 Infinite Series

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is

A L A BA M A L A W R E V IE W

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca**

1985 AP Calculus BC: Section I

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

15/03/1439. Lectures on Signals & systems Engineering

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

Transcription:

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) Awr: = ( + )(y + ) Diff prtilly w.r.to & y hr p & q y p = (y + ) ; q = ( + ) y (y + ) = p/ ; ( + ) = q/y = (p/)(q/y) 4y = pq. Form th PDE y limitig th ritrry futio from = f(y) Awr: = f(y), Diff prtilly w.r.to & y hr p & q y p = f ( y). y q = f ( y). p/q = y/ p qy = 3. Form th PDE y limitig th ott d from = + y Awr: = + y, Diff. w.r. t. d y hr p & q y p = - ; q = y - p ; q y p q y y p qy 4. Fid th omplt itgrl of p + q =pq Awr: Put p =, q =, p + q =pq += = - Th omplt itgrl i = + 5. Fid th olutio of p q y + Awr: = +y+ ----() i th rquird olutio giv p q -----() put p=, q = i () ( ) ( ) y

6. Fid th Grl olutio of p t + q ty = t. Awr: d dy d t t y t ot d ot y dy ot d tk ot d ot y dy ot y dy ot d log i log i y log log i y log i log i i y i y i i i y, i y i 7. Fid th qutio of th pl who tr li o th -i Awr: Grl form of th phr qutio i Whr r i ott. From () +(-) p= () y +(-) q = (3) From () d (3) y p q 8. Fid th igulr itgrl of p qy pq Awr: Th omplt olutio i y ; y ; y y r (), Tht i py -q = whih i rquird PDE. ( y) ( ) y ( y. ) y y y y y 9. Fid th grl olutio of p+qy= Awr: Th uiliry qutio i From d dy y dy d y y y Thrfor, y d dy d y Itgrtig w gt log = log y + log, o implifyig. i grl olutio. y

. Fid th grl olutio of p +qy = Awr: d dy d y Th uiliry qutio i d dy From y dy d Alo y Thrfor. Solv Awr: Auiliry qutio i. Solv Awr:, Itgrtig w gt y Itgrtig w gt y, y y D DD 3D i grl olutio. m m 3, 3 Th olutio i f y f y 3 y D 4DD 3D Auiliry qutio i m m, m, m 3 m m, m, m 3 m 4m 3, 3 Th CF i CF f y f y 3 PI y D 4DD 3D Put D, D Domitor =. PI y y D 4D Z=CF + PI y f y f y 3 3. Fid P.I D 4DD 4D y Awr: PI D 4DD 4D Put D, D PART-B. Solv. Solv y PI D D y p y q y m y l ly m y 3. Solv 3 4y p 4 q y 3 4. Solv y p yq y y 6 y 5. Solv y p yq 6. Solv y p q y 7. Solv y p q y

8. Solv 9. Solv. Solv. Solv. Solv 3. Solv 4. Solv 3 y D DD D y 3 i(3 ) o o y y D DD 6D y o D DD 3D y 6 y D 6DD 5D ih y y D 4DD 4D y 3 3 y D D D DD D y o( ) 5. Solv 6. Solv p qy p q p qy p q 7. Solv p q 8. Solv 9. Solv (i) ( p q ) ( p q ) y (ii) ( p q ) y UNIT-II FOURIER SERIES PART-A. Dfi priodi futio with mpl. If futio f() tifi th oditio tht f( + T) = f(), th w y f() i priodi futio with th priod T. Empl:- i) Si, o r priodi futio with priod ii) t i r priodi futio with priod.. Stt Dirihlt oditio. (i) f() i igl vlud priodi d wll dfid pt poily t Fiit umr of poit. (ii) f () h t mot fiit umr of fiit diotiuou d o ifiit Diotiuou. (iii) f () h t mot fiit umr of mim d miim. 3. Stt Eulr formul. Awr: I (, l) o f o i l whr f ( ) d o l f ( )o d l f ( )i d

4. Writ Fourir ott formul for f() i th itrvl (, ) Awr: o f ( ) d f ( )o d f ( )i d 5. I th Fourir pio of, f() = i (-π, π ), fid th vlu of, Awr: Si f(-)=f() th f() i v futio. H. = 6. If f() = 3 i π < < π, fid th ott trm of it Fourir ri. Awr: Giv f() = 3 f(-) = (- ) 3 = - 3 = - f() H f() i odd futio Th rquird ott trm of th Fourir ri = o = 7. Wht r th ott trm d th offiit of o i th Fourir Epio f() = 3 i π < < π Awr: Giv f() = 3 f(-) = - - (- ) 3 = - [ - 3 ] = - f() H f() i odd futio Th rquird ott trm of th Fourir ri = = 8. Fid th vlu of for f() = ++ i (, ) Awr: f ( ) d o 3 ( ) d 3 4 8 8 3 3 3 9. Fid i th pio of Fourir ri i (, ). Awr: Giv f() = f(-) = = f() H f() i v futio I th Fourir ri =. Fid i th pio of i Fourir ri i (, ) Awr: Giv f() = i f(-) = (-)i(-) = i = f() H f() i v futio I th Fourir ri =

. If f() i odd futio i ll,. Wht r th vlu of & Awr: If f() i odd futio, o =, =. I th Epio f() = Fourir ri i (-. ) fid th vlu of Awr: Giv f() = f(-) = - = = f() H f() i v futio d o 3. Dfi R.M.S vlu. If lt f() futio dfid i th itrvl (, ), th th R.M.S vlu of f() i dfid y y f ( ) d 4. Stt Prvl Thorm. Lt f() priodi futio with priod l dfid i th itrvl (, +l). l o f ( ) d l 4 Whr, & r Fourir ott o 5. Fid th RMS vlu of f() =, Awr: Giv f() = R.M.S vlu PART-B. Epd l y f ( ) d d l f( ) 5 5 5 (, ) Fourir ri d h ddu tht (, ). Fid th Fourir ri for f() = i (-. ) d lo prov tht (i)... (ii)... 3 6 3 3. Epd f() = o Fourir ri i (-. ). 4. Epd f() = i Fourir ri i (, ) 5. Epd f() = Fourir ri i (-. ) d ddu to 6. If f( ), (,) i, (, )....3 3.5 5.7 4 7. Fid th Fourir pio of... 3 6... 3 5 8 Fid th Fourir ri d h ddu tht... 3 5 8 f ( ) ( ) i (, ) d H ddu tht

8. Fid Fourir ri to rprt 9. Fid th Fourir ri of f i (, ).. Fid th Fourir ri for f f ( ) with priod 3 i th rg (,3) i (, ) i (, ) d h.t... 3 5 8. Fid th th hlf rg i ri for f i th itrvl (, ) d ddu tht 3 3 3... 3 5. Oti th hlf rg oi ri for... 3 6 f i (,) d lo ddu tht 3. Fid th Fourir ri for f() = i (-. ) d lo prov tht 4. Fid th Fourir ri up to od hrmoi X 3 4 5 Y 9 8 4 8 6 5. Fid th Fourir ri up to third hrmoi X π/3 π/3 π 4π/3 5π/3 π F() 4 9 7 5... UNIT-III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS PART-A u u. Clify th Prtil Diffrtil Equtio i) y Awr: u u hr A=,B=,&C=- y B - 4AC=-4()(-)=4>. Th Prtil Diffrtil Equtio i hyproli. u u u. Clify th Prtil Diffrtil Equtio y y y Awr: u u u y y y B -4AC=-4()()=>. hr A=,B=,&C= Th Prtil Diffrtil Equtio i hyproli. 3. Clify th followig od ordr Prtil Diffrtil qutio Awr: u u u u y y hr A=,B=,&C= B -4AC=-4()()=-4<. Th Prtil Diffrtil Equtio i Ellipti. 4. Clify th followig od ordr Prtil Diffrtil qutio u u u u u 4 4 6 8 y y y Awr: 4 u u u 4 6 u 8 u y y y 4 4 9 hr A= 4,B =4, & C = B -4AC =6-4(4)() =. Th Prtil Diffrtil Equtio i Proli. 4 u u u u y y

5. I th wv qutio y y t wht do td for? Awr: y y T hr t m T-Tio d m- M 6. I o dimiol ht qutio ut = α u wht do α td for? Awr:- u u t = k i lld diffuivity of th ut Whr k Thrml odutivity - Dity Spifi ht 7. Stt y two lw whih r umd to driv o dimiol ht qutio Awr: i) Ht flow from highr to lowr tmp ii) Th rt t whih ht flow ro y r i proportiol to th r d to th tmprtur grdit orml to th urv. Thi ott of proportiolity i kow th odutivity of th mtril. It i kow Fourir lw of ht odutio 8. A tightly trthd trig of lgth i ftd t oth d. Th midpoit of th trig i dipld to dit d rld from rt i thi poitio. Writ th iitil oditio. Awr: (i) y(, t) = (ii) y(,t) = y (iii) t t (iv) y(, ) = ( ) 9. Wht r th poil olutio of o dimiol Wv qutio? Awr: Th poil olutio r y(,t) = (A + B - ) (C t + D - t ) y(,t) = (A o + B i )( C o t + D i t) y(,t) = (A + B) ( Ct + D). Wht r th poil olutio of o dimiol hd flow qutio? Awr: Th poil olutio r u(, t) ( A B ) C u(, t) ( Ao Bi ) C u(, t) ( A B) C t. Stt Fourir lw of ht odutio Awr: Q u ka t (th rt t whih ht flow ro r A t dit from o d of r i proportiol to tmprtur grdit) Q=Qutity of ht flowig k Thrml odutivity, A=r of ro tio ; u =Tmprtur grdit

. Wht r th poil olutio of two dimiol hd flow qutio? Awr: Th poil olutio r u(, y) ( A B )( C o y Di y) y y u(, y) ( Ao Bi )( C D ) u(, y) ( A B)( Cy D) 3. Th tdy tt tmprtur ditriutio i oidrd i qur plt with id =,y =, = d y =. Th dg y = i kpt t ott tmprtur T d th thr dg r iultd. Th m tt i otiud uqutly. Epr th prolm mthmtilly. Awr: U(,y) =, U(,y) =,U(,) =, U(,) = T. PART-B. A tightly trthd trig with fid d poit = d = l i iitilly t rt i it quilirium poitio. If it i t virtig givig h poit vloity 3 (l-). Fid th diplmt.. A trig i trthd d ftd to two poit d prt. Motio i trtd y diplig th trig ito th form y = K(l- ) from whih it i rld t tim t =. Fid th diplmt t y poit of th trig. 3. A trig of lgth l i ftd t oth d. Th midpoit of trig i tk to hight d th rld from rt i tht poitio. Fid th diplmt of th trig. 4. A tightly trthd trig with fid d poit = d = l i iitilly t rt i it poitio giv 3 y y(, ) = y i. If it i rld from rt fid th diplmt. l 5. A trig i trthd tw two fid poit t dit l prt d poit of th trig r < < l giv iitil vloiti whr V. Fid th diplmt. ( l ) < < l 6. Driv ll poil olutio of o dimiol wv qutio. Driv ll poil olutio of o dimiol ht qutio. Driv ll poil olutio of two dimiol ht qutio. 7. A rod 3 m log h it d A d B kpt t o C d 8 o C, rptivly util tdy tt oditio prvil. Th tmprtur t h d i th rdud to o C d kpt o. Fid th rultig tmprtur u(, t) tkig =. 8. A rtgulr plt with iultd urf i 8 m wid o log omprd to it width tht ita r m log, with iultd id h it d A & B kpt t o C d 4 o C rptivly util th tdy tt oditio prvil. Th tmprtur t A i uddly rid to 5 o C d B i lowrd to o C. Fid th uqut tmprtur futio u(, t). 9. A rtgulr plt with iultd urf i 8 m wid d o log omprd to it width tht it my oidrd ifiit plt. If th tmprtur log hort dg y = i u (,) = i 8, <<8 Whil two dg = d = 8 wll th othr hort dg r kpt t o C. Fid th tdy tt tmprtur.. A rtgulr plt with iultd urf i m wid o log omprd to it width tht it my oidrd ifiit plt. If th tmprtur log hort dg y = i giv y 5 u d ll othr thr dg r kpt t o C. Fid th tdy tt ( ) 5 tmprtur t y poit of th plt.

UNIT-IV FOURIER TRANSFORMS PART-A. Stt Fourir Itgrl Thorm. Awr: If f( ) i pi wi otiuouly diffrtil d olutly o, th, i( t) f ( ) f t dt d.. Stt d prov Modultio thorm. F f o F F Proof: i F f o f o d i i i f d i( ) i( ) f d f d F F F f o F F 3. Stt Prvl Idtity. Awr: If F i Fourir trform of f, th F d f d 4. Stt Covolutio thorm. Awr: Th Fourir trform of Covolutio of f d g i th produt of thir Fourir trform. F f g F G 5. Stt d prov Chg of l of proprty. Awr: If F F f, th F f F i F f f d i t dt f t ; whr t, F f F

d 6. Prov tht if F[f()] = F() th F f ( ) ( i) F( ) d Awr: i F f d, Diff w.r.t tim d i F f i d d i f ( i) ( ) d d i ( ) F f d () i d d i ( i) F ( ) f d d d d F f i F 7. Solv for f() from th itgrl qutio Awr: f ( )o d f ( )o d F f f o d F f f ( ) F f o d o d o d o d, 8. Fid th ompl Fourir Trform of f( )

Awr: i F f f d ; i F f d (o ii ) d i (o ) d i [U v d odd proprty od trm om ro] 9. Fid th ompl Fourir Trform of f( ) Awr: i F f f d i d ; (o i i ) d i o i ( ( ii ) d () i o i [U v d odd proprty firt trm om ro]. Writ Fourir Trform pir. Awr: If f( ) i dfid i,, th it Fourir trform i dfid i F f d, If F i Fourir trform of f, th t vry poit of Cotiuity of f, w hv i f F d.

. Fid th Fourir oi Trform of f() = - Awr: F f f o d F o d F. Fid th Fourir Trform of Awr: i F f f d f( ) im,, im i i m d d othrwi i m i m i m 3. Fid th Fourir i Trform of. o d i m i m Awr: F f f i d i d F 4. Fid th Fourir i trform of F f f i d F i d F i d 5. Fid th Fourir oi trform of Awr: F f f o d

F o d o d o d 4 4 PART-B. Fid th Fourir Trform of f( ) if if d h o i 3 ddu tht (i) o 3 d 6. Fid th Fourir Trform of 3.Fid th Fourir Trform of i) i d ii) i f( ) f( ) d i o (ii) 3 d 5 i o. h S.T 3 d if if d h vlut if 4. Fid Fourir Trform of f( ) d h vlut if 4 i) i d ii) i 4 d 5. Evlut i) d d ii) d 6. Evlut () 4 () t dt t 4 t 9 7. Fid th Fourir i trform of f( ) i ; wh o ; wh 8. Fid th Fourir oi trform of f( ) o ; wh o ; wh 9. Show tht Fourir trform i.oti Fourir oi Trform of. Solv for f() from th itgrl qutio d h fid Fourir i Trform f ( )o d

.Solv for f() from th itgrl qutio 3. Fid Fourir i Trform of, t f ( )i t d, t, t, > d h ddu tht i d UNIT-V Z- TRANSFORMS PART-A. Dfi Z trform Awr: Lt {f()} qu dfid for =,, d f() = for < th it Z Trform i dfid Z f ( ) F f ( ) (Two idd trform) Z f ( ) F f ( ) (O idd trform). Fid th Z Trform of Awr: Z f f Z ()... 3. Fid th Z Trform of Awr: Z Z f f Z 4. Fid th Z Trform of. Awr: 3 3... d Z Z Z d, y th proprty, d d ( ) ( ) 4 3

5. Stt Iitil & Fil vlu thorm o Z Trform Iitil Vlu Thorm If Z [f ()] = F () th f () = lim F ( ) Fil Vlu Thorm If Z [f ()] = F () th lim f ( ) lim( ) F( ) 6. Stt ovolutio thorm of Z- Trform. Awr: Z[f()] = F() d Z[g()] = G() th Z{f()*g()} = F() G() 7. Fid Z Trform of Awr: Z f f Z 3 3... 8. Fid Z Trform of o d i Awr: Z W kow tht o Z f f o o =>> Z o Z Similrly Z o i 9. Fid Z Trform of o i o i i =>> o Awr: Z f f

Z 3 3... log log log. Fid Z Trform of Awr:! Z f f Z!! 3...!!! 3!. Fid Z Trform of Awr: Z f f Z ( ) 3 3... log log

. Stt d prov Firt hiftig thorm t Sttmt: If Z f t F, th Z f () t F Proof: Z f ( t) f ( T ) t T A f(t) i futio dfid for dirt vlu of t, whr t = T, th th Z-trform i T Z f ( t) f ( T ) F( ). t T T Z f ( t) f ( T ) F( ) 3. Dfi uit impul futio d uit tp futio. Awr: Th uit mpl qu i dfid follow: for ( ) for Th uit tp qu i dfid follow: u ( ) for for 4. Fid Z Trform of Awr: t Z t T T T Z 5. Fid Z Trform of Awr: Z t t T Z t Z t T t T T [Uig Firt hiftig thorm] T T T [Uig Firt hiftig thorm] t 6. Fid Z Trform of Z o t o Awr: Z o t Z o t T o T T ot t T T T ot [Uig Firt hiftig thorm]

7. Fid Z Trform of Z i t T Awr: Lt f (t) = it, y od iftig thorm Z i( t T) Z f ( t T) F( ) f () i t i t t t o o 8. Fid Z trform of Awr: Z f f Z Z Z 3 3 PART-B. Fid (i) Z. Fid (i) Z 3. Fid (i) Z 8 ( )(4 ) 3 3 (ii) Z (ii) Z ( )( ) ( ) (ii) Z ( ) ( )(4 ) 8 y ovolutio thorm. y ovolutio thorm ( )( 3) y ovolutio thorm 4. Stt d prov Iitil & Fil vlu thorm. 5. Stt d prov Sod hiftig thorm 6. Fid th Z trform of (i) 3 (ii) ( )( ) ( )( ) 7. Fid Z ( 4) y ridu. 8. Fid th ivr Z trform of 9. Fid (i) Z. Fid th Z trform of. Fid (ii) Z f( )! ( ) 7 H fid y prtil frtio. Z d ( )! Z d lo fid th vlu of i( ) d o( ).!. Solv y 6y 9y with y & y 3. Solv y 4y 4y y() =,y() = 4. Solv y 3y 4y, giv y() 3& y () 5. Solv y 3 3y y, y 4, y & y 8, Z. ( )!