SYNTHESIS OF CARBON NANOTUBES BY CATALYTIC CVD USING Fe-Mo/MgO AND Fe- Mo/Al 2 O 3 CATALYSTS. Abstract. Introduction. Experimental

Similar documents
Preparation of CNTs with the Controlled Porosity using Co-Mo/MCM-41 as a template

Growth of carbon nanotubes by chemical vapor deposition

Investigation on the growth of CNTs from SiO x and Fe 2 O 3 nanoparticles by in situ TEM

Purification and characterization of zeolite-supported single-walled carbon nanotubes catalytically synthesized from ethanol

Supporting Information

Supporting Information

Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide

SYNTHESIS OF CARBON NANOPARTICLES. 4.0 Production and Characterization of Carbon Nanoballs and other Nanoparticles

Large scale production of carbon nanotube arrays on the sphere surface from liquefied petroleum gas at low cost

Lattice-Oriented Growth of Single-Walled Carbon Nanotubes

Supporting Information

Pyrolytic Temperature Dependent and Ash Catalyzed Formation of Sludge Char. Xiao-Qing Liu, Hong-Sheng Ding, Yuan-Ying Wang, Wu-Jun Liu, Hong Jiang*

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2

Diameter control of multiwalled carbon nanotubes using experimental strategies

Carbon nanotubes synthesis. Ing. Eva Košťáková KNT, FT, TUL

CARBON NANOSTRUCTURES SYNTHESIZED THROUGH GRAPHITE ETCHING

Micro Chemical Vapor Deposition System: Design and Verification

Supporting Information

Supporting Information

Self-Growth-Templating Synthesis of 3D N,P,Co-Doped. Mesoporous Carbon Frameworks for Efficient Bifunctional

Hisayoshi Oshima *, Yoshinobu Suzuki, Tomohiro Shimazu, and Shigeo Maruyama 1

Characterization of partially reduced graphene oxide as room

Supported Ni catalysts from nominal monolayer grow single-walled carbon nanotubes.

Controlled continuous spinning of fibres of single wall carbon nanotubes

This is an author-deposited version published in : Eprints ID : 11205

A Comparative Study of Carbon Nanotubes Synthesized from Co/Zn/Al and Fe/Ni/Al Catalyst

Hollow to bamboolike internal structure transition observed in carbon nanotube films

Electronic Supplementary Information

Supporting Information. Engineering Two-Dimensional Mass-Transport Channels

LETTERS. Sangjin Han, Taekyung Yu, Jongnam Park, Bonil Koo, Jin Joo, and Taeghwan Hyeon* Seunghun Hong and Jiwoon Im

Effect of Aqueous Ion Species on Carbon Nanoparticles Synthesis using Arc Discharge in Water Method

Supporting Information

Arc-synthesis of Single-walled Carbon Nanotubes in Nitrogen Atmosphere

A new method of growing graphene on Cu by hydrogen etching

School of Physical Science and Technology, ShanghaiTech University, Shanghai

Control of Diameter Distribution of Single-walled Carbon Nanotubes Using the Zeolite-CCVD Method

Carbon Nanotubes. Seminar report. Submitted in partial fulfillment of the requirement for the award of degree of Mechanical.

Supporting Information for

ARC-ASSISTED CO-CONVERSION OF COAL-BASED CARBON AND ACETYLENE

Morphology of carbon nanotubes prepared via chemical vapour deposition technique using acetylene: A small angle neutron scattering investigation

3D Boron doped Carbon Nanorods/Carbon-Microfiber Hybrid Composites: Synthesis and Applications as Highly Stable Proton Exchange Membrane Fuel Cell

High yield synthesis of multi-walled carbon nanotubes by catalytic decomposition of ethane over iron supported on alumina catalyst

Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material

Hydrogen Storage by Carbon Fibers Synthesized by Pyrolysis of Cotton Fibers

Raman study on single-walled carbon nanotubes with different laser excitation energies

Supporting Information. Direct Growth of Graphene Films on 3D Grating. Structural Quartz Substrates for High-performance. Pressure-Sensitive Sensor

Synthesis of multiwalled carbon nanotubes by high-temperature vacuum annealing of amorphous carbon

Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique

7. Carbon Nanotubes. 1. Overview: Global status market price 2. Types. 3. Properties. 4. Synthesis. MWNT / SWNT zig-zag / armchair / chiral

Supporting Information. Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage

SUPPLEMENTARY INFORMATION

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra.

Revelation of the Excellent Intrinsic Activity. Evolution Reaction in Alkaline Medium

Electronic Supplementary Information (ESI)

Thermodynamic calculations on the catalytic growth of carbon nanotubes

Magnesiothermic synthesis of sulfur-doped graphene as an efficient. metal-free electrocatalyst for oxygen reduction

Supporting Information

Supporting Information

Candle Flame Synthesis and Electrochemical Behavior of Chain-like Carbon Nano-onions on 304 Stainless Steel

SUPPLEMENTARY INFORMATION

Supplementary Information for

Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts

Spray coating as a simple method to prepare catalyst for growth. of diameter-tunable single-walled carbon nanotubes

Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition

Supplementary Information. Large Scale Graphene Production by RF-cCVD Method

Carbon Nanotubes: Development of Nanomaterials for Hydrogen Storage

Supporting Information

Supporting Information

Flexible Asymmetric Supercapacitors with High Energy and. High Power Density in Aqueous Electrolytes

High Salt Removal Capacity of Metal-Organic Gel Derived. Porous Carbon for Capacitive Deionization

Supporting Information

Carbon Nanotube: The Inside Story

Low-temperature specific heat of double wall carbon nanotubes

Chapter 6. Anodic Aluminum Oxide Template Assisted Chemical Vapor Deposition of Carbon Nanotubes from Acetylene

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Toward Controllable Growth of Carbon Nanotubes

Multi-Wall Carbon Nanotubes/Styrene Butadiene Rubber (SBR) Nanocomposite

Growth window and possible mechanism of millimeter-thick single-walled carbon nanotube forests

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

Supporting Information

Layer-modulated synthesis of uniform tungsten disulfide nanosheet using gas-phase precursors.

FeP and FeP 2 Nanowires for Efficient Electrocatalytic Hydrogen Evolution Reaction

Diameter-Controlled Growth of Carbon Nanotubes

Production of Y-Junction Carbon Nanotubes by Floating Catalyst Method with a Low Cost and Highly Y- Branched Approach

Supporting Infromation

An Advanced Anode Material for Sodium Ion. Batteries

Hierarchical Nanocomposite by Integrating Reduced Graphene Oxide and Amorphous Carbon with Ultrafine MgO Nanocrystallites for Enhanced CO 2 Capture

Determining Carbon Nanotube Properties from Raman. Scattering Measurements

Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts

Efficient Hydrogen Evolution. University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816,

Please do not adjust margins. Flower stamen-like porous boron carbon nitride nanoscrolls for water cleaning

Growth of carbon nanotubes and nanofibres in porous anodic alumina film

Defense Technical Information Center Compilation Part Notice

Temperature and Gas Pressure Effects in Vertically Aligned Carbon Nanotube Growth from Fe-Mo Catalyst

Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties

Effect of Ni Loading and Reaction Conditions on Partial Oxidation of Methane to Syngas

Comptes Rendus Physique

The design and construction of 3D rose petal-shape MoS 2. hierarchical nanostructures with structure-sensitive. properties

Synthesis of Single Crystalline Tellurium Nanotubes with Triangular and Hexagonal Cross Sections

Transcription:

SYNTHESIS OF CARBON NANOTUBES BY CATALYTIC CVD USING Fe-Mo/MgO AND Fe- Mo/Al 2 O 3 CATALYSTS Shinn-Shyong Tzeng, Ting-Bin Liang, Sheng-Chuan Wang, Ting-Yu Wu and Yu-Hun Lin Department of Materials Engineering, Tatung University, Taipei 104, Taiwan Abstract Carbon nanotubes (CNTs) were synthesized by catalytic chemical vapor deposition using Fe-Mo/MgO and Fe-Mo/Al 2 O 3 catalysts. Methane was used as the carbon source. The catalysts were prepared by impregnating MgO or Al 2 O 3 catalyst support with a Fe-Mo solution. Two different iron sources, Fe(NO 3 ) 3 and Fe 2 (SO 4 ) 3, were used to prepare the catalyst. Experimental results indicate that addition of molybdenum favors the formation of CNTs and that the growth temperature is lower when Fe 2 (SO 4 ) 3 is used as the iron source. SEM observations show that large quantities of entangled CNT bundles with a layer network morphology can be synthesized and that very small amount of amorphous carbon is observable. Under optimum growth condition, compacted CNT bundles of several micrometers in length, protruded out of the catalyst surface, can be grown and the yield can be increased significantly. Most of the CNT products are double-walled CNTs by TEM observations. Introduction Carbon nanotubes (CNTs) have attracted a lot of attention in the last decade due to their fascinating properties. Many potential applications are wide open, which extend from composite reinforcement to nanoelectronics [Popov 2004]. For the commercial applications, a process method to grow high quality CNTs with a large quantity and controlled morphology and structure is desired. Among the three main techniques used to synthesize CNTs, arc discharge, laser ablation and catalytic chemical vapor deposition (CVD), large scale syntheses of CNTs are mainly carried out by the catalytic CVD technique due to the high yield, high selectivity and low cost [Gulino et al. 2005]. Using catalytic CVD, Fe and Fe-Mo catalysts have shown potential to grow single-walled CNTs (SWCNTs), doublewalled CNTs (DWCNTs) and multi-walled CNTs (MWCNTs) in a large scale [Lyu et al. 2004a,b; Gulino et al. 2005; Cassell et al. 1999]. In this study, two different iron sources and two different catalyst supports were used to prepare the Fe and Fe- Mo catalysts and their influences on the growth of CNTs were investigated. Experimental Growth of CNTs Two different iron sources, Fe(NO 3 ) 3 9H 2 O and Fe 2 (SO 4 ) 3 5H 2 O, were used in the catalyst preparation. Iron catalysts were made by impregnating support materials in the Fe(NO 3 ) 3 9H 2 O or Fe 2 (SO 4 ) 3 5H 2 O aqueous solution. For the Fe-Mo catalysts, suitable amount of (NH 4 ) 6 Mo 7 O 24 4H 2 O was added in the solution. Two kinds of catalyst supports, MgO and Al 2 O 3, were adopted. CNTs were synthesized by CVD in a horizontal tube furnace. The catalysts were positioned in the center of the furnace and then heated up to the reaction temperature under a argon flow. The reaction gas mixture was CH 4 and Ar with a flow ratio of CH 4 /Ar = 4. Characterization The morphology of as-grown CNTs was observed by field-emission scanning electron microscopy (FE-SEM, LEO 1530). The oxidation behavior of as-grown CNTs was explored using a thermogravimetry analyzer (TGA, TA Instrument 5). Data were obtained in flowing air using a heating rate of 5 /min up to 0. The arrangement of graphene layers in the CNTs was characterized by the high resolution transmission electron microscopy (HRTEM, JEOL, JEM 2010). Results and Discussion Growth of CNTs using different catalyst supports and iron sources Figure 1 shows the FE-SEM images of CNTs synthesized using different catalyst supports and iron sources. Figure 1 and present the CNTs grown using MgO as the catalyst support and Figure 1 and (d) present the CNTs grown using Al 2 O 3 as the catalyst support. As shown in Figure 1 and, the Fe/MgO catalysts were almost fully covered with entangled CNT bundles, forming a network-like layer. very small amount of amorphous carbon is observable. On the contrary, only small amount of CNTs were obtained when the Al 2 O 3 support was used. For the Fe 2 (SO 4 ) 3 /MgO catalyst, the

yield of CNTs could be increased significantly by growing the compacted CNT bundles at a lower temperature of 800 (Figure 1(e)). As indicated in Figure 1(e), compacted CNT bundles of several micrometers in length, protruded out of the catalyst surface, could be observed. (d) (e) Figure 1. FE-SEM images of CNTs synthesized using different catalyst supports and iron sources: Fe(NO 3 ) 3 /MgO, 5wt%, 0, Fe 2 (SO 4 ) 3 /MgO, 5wt%, 0, Fe(NO 3 ) 3 /Al 2 O 3, 10 wt%, 0, (d) Fe 2 (SO 4 ) 3 / Al 2 O 3, 10wt%, 0 and (e) Fe 2 (SO 4 ) 3 /MgO, 5wt%, 800. Comparison between the CNT growth using Fe(NO 3 ) 3 and Fe 2 (SO 4 ) 3 as the carbon sources showed that the growth temperature is lower when Fe 2 (SO 4 ) 3 is used as the iron source. Addition of sulfur had been shown to increase significantly the yield of vapor-grown carbon fibers [Katsuki et al. 1981;Tibbetts et al. 1994] and also the CNTs recently [Cheng et al. 1998; Ci et al. 2002; Wei et al. 2004]. Tibbetts et al. [1994] pointed out that small amounts of sulfur in iron cause some liquefaction of the particle which increases the rate of filament nucleation. Due to the decrease of the melting point of iron particle when using Fe 2 (SO 4 ) 3 as the carbon source, lower growth temperatures were observed for both Fe 2 (SO 4 ) 3 /MgO and Fe 2 (SO 4 ) 3 /Al 2 O 3 catalysts.

Effect of Mo Addition Figure 2 shows the FE-SEM images of CNTs synthesized using different catalyst supports and iron sources with the addition of Mo. As shown in Figure 2 and for the MgO surpport, entangled network-like CNT bundles were also observed to cover the entire catalyst surface. Higher yield was measured according to the TGA results (Figure 3) when the Mo was added. For the Al 2 O 3 support (Figure 2 and (d)), significant increase of growth yield was found for both the Fe(NO 3 ) 3 and Fe 2 (SO 4 ) 3 carbon sources. Above results indicate that the increase of CNT yield by the addition of Mo seems to be independent of the support materials. It is also noted that for the Al 2 O 3 support the optimized growth temperatures were ~50 lower for both the Fe(NO 3 ) 3 and Fe 2 (SO 4 ) 3 carbon sources than those without Mo addition. (d) Figure 2. FE-SEM images of CNTs synthesized using different catalyst supports and iron sources with the addition of Mo: Fe(NO 3 ) 3 -Mo/MgO, 5wt%, Mo/Fe= 0.1, 0, Fe 2 (SO 4 ) 3 -Mo/MgO, 5wt%, Mo/Fe= 0.1, 0, Fe(NO 3 ) 3 -Mo/Al 2 O 3, 10 wt%, Mo/Fe= 0.5, 0 and (d) Fe 2 (SO 4 ) 3 -Mo/Al 2 O 3, 10wt%, Mo/Fe= 0.1, 800. Figure 3 shows the TGA-DTG results of as-grown CNTs synthesized using different Mo/Fe ratio in the Fe(NO 3 ) 3 - Mo/MgO catalysts. In addition to the increase of carbon yield, the oxidation temperature was found to shift to the higher temperature as the Mo/Fe ratio was raised. It has been reported [Herrera and Resasco 2003; Li et al. 2004] that the oxidation sequence of the carbon phases is amorphous carbon, SWCNTs and MWCNTs in order of increasing temperature. Li et al. [2004] showed that amorphous carbon is oxidized below 450, SWCNTs are oxidized between 450 and 600 and MWCNTs between 600 and 700. As indicated by the TEM images (Figure 4), most of the products are DWCNTs and the oxidation temperatures measured are in the range of 455~601, which are close to the reported values of SWCNTs. Although most of the products were DWCNTs, the probability of finding CNTs with the number of graphene sheet greater than two is higher when the Mo/Fe ratio was increased. This might contribute a little to the increase of the oxidation temperature. Further investigation is needed to elucidate the problem. TEM Study Figure 4 shows the TEM images CNTs synthesized using two catalysts, Fe(NO 3 ) 3 -Mo/MgO and Fe 2 (SO 4 ) 3 -Mo/MgO, with different iron sources. As presented in Figure 4 and, most of the products were DWCNTs. Some CNTs with the number of graphene sheet greater than two, as indicated by the arrow sign in Figure 4, were also observed.

Derivative of Weight(%/C) 0.12 0.12 Mo/Fe=0 Mo/Fe=0.1 Mo/Fe=0.3 332 o C 455.3 o C 80 0 200 400 600 800 0 Temperature( o C) 572.2 o C 601.4 o C DTG Weight% 80 Weight(%) Figure 3. TGA-DTG analyses of as-grown CNTs synthesized using different Mo/Fe ratio in the Fe(NO 3 ) 3 - Mo/MgO catalysts: Mo/Fe= 0, Mo/Fe= 0.1 and Mo/Fe= 0.3. Figure 4. TEM images of CNTs synthesized using different catalysts: Fe(NO 3 ) 3 -Mo/MgO, 5wt%, Mo/Fe= 0.1, 0 and Fe 2 (SO 4 ) 3 -Mo/MgO, 5wt%, Mo/Fe= 0.1, 0. Scale bar = 10 nm.

Conclusions Two different iron sources, Fe(NO 3 ) 3 and Fe 2 (SO 4 ) 3, and two different catalyst supports, MgO and Al 2 O 3, were used to prepare the Fe and Fe-Mo catalysts and their influences on the growth of CNTs by catalytic CVD were investigated. Experimental results indicate that addition of molybdenum favors the high yield of CNTs and that the growth temperature is lower when Fe 2 (SO 4 ) 3 is used as the iron source. SEM observations show that large quantities of entangled CNT bundles with a layer network morphology can be synthesized and that very small amount of amorphous carbon is observable. Under optimum growth condition, compacted CNT bundles of several micrometers in length, protruded out of the catalyst surface, can be grown and the yield can be increased significantly. Most of the CNT products are double-walled CNTs by TEM observations. References Cassell, A.M., Raymakers, J.A., Kong, J. and Dai, H. 1999. Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 103:6484-6492. Cheng, H.M., Li, F., Su, G. Pan, H.Y., He, L.L., Sun, X. and Dresselhaus, M.S. 1998. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl. Phys. Lett. 72:3282-3284. Ci, L., Rao, Z., Zhou, Z., Tang, D., Yan, X. et al. 2002. Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system. Chem. Phys. Lett. 359:63-67. Gulino, G., Vieira, R., Amadou, J., Nguyen, P., Ledoux, M.J., Galvagno, S. et al. 2005. C 2 H 6 as an active carbon source for a large scale synthesis of carbon nanotubes by chemical vapor deposition. Appl. Catal. A. 279:89-97. Herrera, J.E. and Resasco, D.E. 2003. In situ TPO/Raman to characterize single-walled carbon nanotubes. Chem. Phys. Lett. 376:302-309. Katsuki, H., Matsunaga, K., Egashira, M. and Kawasumi, S. 1981. Formation of carbon fibers from naphthalene on some sulfur-containing substrates. Carbon 19(2):148-150. Li, F., Wang, Y., Wang, D. and Wei, F. 2004. Characterization of single-wall carbon nanotubes by N2 adsorption. Carbon 42:2375-2383. Lyu, S.C., Liu, B.C., Lee, S.H., Park, C.Y., Kang, H.K., Yang, C.W. and Lee, C.J. 2004a. Large-scale synthesis of highquality single-walled carbon nanotubes by catalytic decomposition of ethylene. J. Phys. Chem. B 108:1613-1616. Lyu, S.C., Liu, B.C., Lee, S.H., Park, C.Y., Kang, H.K., Yang, C.W. and Lee, C.J. 2004b. Large-scale synthesis of highquality double-walled carbon nanotubes by catalytic decomposition of n-hexane. J. Phys. Chem. B 108:2192-2194. Popov, V.N. 2004. Carbon nanotubes: properties and application. Mat. Sci. Eng. R.43:61-102. Tibbetts, G.G., Bernardo, C.A., Gorkiewicz, D.W. and Alig, R.L. 1994. Role of sulfur in the production of carbon fibers in the vapor phase. Carbon 32(4):569-576. Wei, J., Jiang, B., Wu, D. and Wei, B. 2004. Large-scale synthesis of long double-walled carbon nanotubes. J. Phys. Chem. B 108:8844-8847. Acknowledgment Part of this work was supported by the Tatung University, Taiwan under the contract No. B-T10-081.