Relaxation of central Arctic Ocean hydrography to pre-1990s climatology

Similar documents
Distribution of Convective Lower Halocline Water. In the Eastern Arctic Ocean

General AW Circulation Schemes

Origins of the SHEBA freshwater anomaly in the Mackenzie River delta

Typical Arctic profiles. How to form halocline water? 2012 Changing Arctic Ocean 506E/497E - Lecture 7 - Woodgate

The Arctic Crossroads

Pacific ventilation of the Arctic Ocean s lower halocline by upwelling and diapycnal mixing over the continental margin

Halocline structure in the Canada Basin of the Arctic Ocean

Deep-Water Flow over the Lomonosov Ridge in the Arctic Ocean

Effect of vertical mixing on the Atlantic Water layer circulation in the Arctic Ocean

Rapid change in freshwater content of the Arctic Ocean

Arctic sea ice falls below 4 million square kilometers

Arctic decadal and interdecadal variability

PHC: A Global Ocean Hydrography with a High Quality Arctic Ocean

PHC: A Global Ocean Hydrography with a High-Quality Arctic Ocean

Christopher K. H. Guay 1, Fiona A. McLaughlin 2, and Michiyo Yamamoto-Kawai 2. Canada

Tracing Pacific water in the North Atlantic Ocean

MONTHLY TEMPERATURE, SALINITY AND TRANSPORT VARIABILITY OF THE BERING STRAIT THROUGHFLOW

How to form halocline water?

Arctic Ocean-Sea Ice-Climate Interactions

Global Atmospheric Circulation

Recent changes in the dynamic properties of declining Arctic sea ice: A model study

The Arctic Ocean's response to the NAM

GEOCHEMICAL TRACERS OF ARCTIC OCEAN CIRCULATION

THE RELATION AMONG SEA ICE, SURFACE TEMPERATURE, AND ATMOSPHERIC CIRCULATION IN SIMULATIONS OF FUTURE CLIMATE

The Arctic Ocean Climate a balance between local radiation, advected heat and freshwater

Submarine-Based Acoustic Doppler Current Profiler (ADCP) Measurements of the Upper Arctic Ocean

What drove the dramatic retreat of arctic sea ice during summer 2007?

Winter sea-ice melt in the Canada Basin, Arctic Ocean

Arctic sea ice response to atmospheric forcings with varying levels of anthropogenic warming and climate variability

Spectral Albedos. a: dry snow. b: wet new snow. c: melting old snow. a: cold MY ice. b: melting MY ice. d: frozen pond. c: melting FY white ice

S12. The Arctic Ocean and Nordic Seas: Supplementary Materials

The impact of an intense summer cyclone on 2012 Arctic sea ice retreat. Jinlun Zhang*, Ron Lindsay, Axel Schweiger, and Michael Steele

Atlantic water circulation over the Mendeleev Ridge and Chukchi Borderland from thermohaline intrusions and water mass properties

What makes the Arctic hot?

Atlantic sources of the Arctic Ocean surface and halocline waters

Changes in the thickness distribution of Arctic sea ice between and

The Canada Basin, : Upstream events and far-field effects of the Barents Sea

Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent?

Getting around in the Arctic

Homework 5: Background Ocean Water Properties & Stratification

NSIDC Sea Ice Outlook Contribution, 31 May 2012

REVISING THE BERING STRAIT FRESHWATER FLUX INTO THE ARCTIC OCEAN

Nancy N. Soreide NOAA/PMEL, Seattle, WA. J. E. Overland, J. A. Richter-Menge, H. Eicken, H. Wiggins and and J. Calder

The 2007 Bering Strait Oceanic Heat Flux and anomalous Arctic Sea-ice Retreat

The Arctic Climate System GEOG 4271/5271. Mark C. Serreze Department of Geography University of Colorado, Boulder CO

Storm-driven mixing and potential impact on the Arctic Ocean

North Pacific Climate Overview N. Bond (UW/JISAO), J. Overland (NOAA/PMEL) Contact: Last updated: August 2009

OCB Summer Workshop WHOI, July 16-19,

Richard A. Krishfield * Woods Hole Oceanographic Institution, Woods Hole, Massachusetts ABSTRACT

Summer retreat of Arctic sea ice: Role of summer winds

Joint effects of boundary currents and thermohaline intrusions on the warming of

ARCTIC OCEAN CIRCULATION - going around at the Top of the World

CHAPTER 1. INTRODUCTION-DRAFT: UPDATE WITH KEY RESULTS FROM PAR CHAPTERS

Isopycnal Analysis of Near-surface Waters in the Norwegian-Barents Sea Region. by Tom Rossby, Vladimir Ozhigin, Victor Ivshin, and Sheldon Bacon

Joint effects of boundary currents and thermohaline intrusions on the warming of Atlantic water in the Canada Basin,

Changes in seasonal cloud cover over the Arctic seas from satellite and surface observations

f r o m a H i g h - R e s o l u t i o n I c e - O c e a n M o d e l

Arctic oceanography; the path of North Atlantic Deep Water

Arctic sea ice response to wind stress variations

IMPACTS OF A WARMING ARCTIC

Changes in the properties and distribution of the intermediate and deep waters in the Fram Strait

Future abrupt reductions in the summer Arctic sea ice

ICES Journal of Marine Science

Comparison of the Siberian shelf seas in the Arctic Ocean

Don't let your PBL scheme be rejected by brine: Parameterization of salt plumes under sea ice in climate models

Seasonal and interannual variability of downwelling in the Beaufort Sea

Arctic sea ice in IPCC climate scenarios in view of the 2007 record low sea ice event A comment by Ralf Döscher, Michael Karcher and Frank Kauker

Is the basin wide warming in the North Atlantic Ocean related to atmospheric carbon dioxide and global warming?

ARCTIC OCEAN CIRCULATION - going around at the Top of the World

June Report: Outlook Based on May Data Regional Outlook: Beaufort and Chuckchi Seas, High Arctic, and Northwest Passage

Canadian Ice Service

Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column

Appendix E: Oceanographic Databases

Arctic Sea Ice and Freshwater Changes Driven by the Atmospheric Leading Mode in a Coupled Sea Ice Ocean Model

Drivers of declining sea ice in the Arctic winter: A tale of two seas

ARTICLE IN PRESS. Deep-Sea Research I

Research Interests: variability of sea ice thickness interactions among ocean, seaice and atmosphere climate modelling

Acoustic Thermometry in the Arctic Ocean. Peter Mikhalevsky Acoustic and Marine Systems Operation Science Applications International Corporation

Freshwater and brine behaviors in the Arctic Ocean deduced from historical data of D 18 O and alkalinity ( A.D.)

The North Atlantic Oscillation: Climatic Significance and Environmental Impact

Climatic Conditions Around Greenland 1995

Retreat of the cold halocline layer in the Arctic Ocean

Modeling the Formation and Offshore Transport of Dense Water from High-Latitude Coastal Polynyas

Adrift in the Beaufort Gyre: A Model Intercomparison

Ocean Sciences 101 The Marine Environment OCEA 101 THE MARINE ENVIRONMENT MID-TERM EXAM

North Pacific Climate Overview N. Bond (UW/JISAO), J. Overland (NOAA/PMEL) Contact: Last updated: September 2008

The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat

Freshwater budget of the Canada Basin, Arctic Ocean, from salinity, d 18 O, and nutrients

High initial time sensitivity of medium range forecasting observed for a stratospheric sudden warming

Eos,Vol. 83, No. 33,13 August 2002

Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability ( )

Hydrography and biological resources in the western Bering Sea. Gennady V. Khen, Eugeny O. Basyuk. Pacific Research Fisheries Centre (TINRO-Centre)

Accelerated decline in the Arctic sea ice cover

Correction to Evaluation of the simulation of the annual cycle of Arctic and Antarctic sea ice coverages by 11 major global climate models

Challenges of Collecting Data for Article 76 in Ice Covered Waters of the Arctic

On Modeling the Oceanic Heat Fluxes from the North Pacific / Atlantic into the Arctic Ocean

Variability in river runoff distribution in the Eurasian Basin of the Arctic Ocean

On the Circulation of Atlantic Water in the Arctic Ocean

SCICEX Phase 2 Accommodation Cruises. Provided by T. Boyd

Physical Oceanography in the Arctic Ocean: 1968

Transcription:

Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33,, doi:10.1029/2006gl026826, 2006 Relaxation of central Arctic Ocean hydrography to pre-1990s climatology J. Morison, 1 M. Steele, 1 T. Kikuchi, 2 K. Falkner, 3 and W. Smethie 4 Received 7 May 2006; revised 26 July 2006; accepted 1 August 2006; published 8 September 2006. [1] Upper ocean hydrography in the central Arctic Ocean has relaxed since 2000 to near-climatological conditions that pertained before the dramatic changes of the 1990s. The behavior of the anomalies of temperature and salinity in the central Arctic Ocean follow a first-order linear response to the AO with time constant of 5 years and a delay of 3 years. Citation: Morison, J., M. Steele, T. Kikuchi, K. Falkner, and W. Smethie (2006), Relaxation of central Arctic Ocean hydrography to pre-1990s climatology, Geophys. Res. Lett., 33,, doi:10.1029/2006gl026826. 1. Introduction [2] In the 1990s, changes in the marine Arctic were widespread and seemingly systematic. The influence of Atlantic water in the Arctic Ocean became more widespread [e.g., Carmack et al., 1997]. The front separating more saline Atlantic-derived upper-ocean water from less saline Pacific-derived waters moved from a pre-1990 position roughly over the Lomonosov Ridge [Environmental Working Group (EWG), 1997] counterclockwise to rough alignment with the Alpha-Mendelyev ridge system. The pattern of water circulation and ice drift shifted with it [Morison et al., 1998] resulting in a more cyclonic circulation and weakening of the cold halocline layer that isolates the ice cover from warm Atlantic water [Steele and Boyd, 1998]. These changes were manifest as a 2 psu increase in salinity of the upper 200 m at the North Pole and in the Makarov Basin and as a 1 2 C increase in Atlantic Water temperature along the continental slopes and Lomonosov Ridge. The changes in the 1990s roughly corresponded to a strengthening of the Arctic Oscillation (AO) [Thompson and Wallace, 1998]. The rising AO index includes a drop in surface atmospheric pressure over the Arctic and a cyclonic spin up of the polar vortex. Arguably, such a pattern brings more warm air into the Greenland Sea and increases the temperature of Atlantic water transported into the Arctic Ocean [Morison et al., 2000]. The more cyclonic atmospheric circulation results in the shift in the Atlantic-Pacific upper-ocean front and more cyclonic ocean circulation. Several modeling studies support these ideas [e.g., Proshutinsky and Johnson, 1997; Zhang et al., 2000]. 1 Polar Science Center, Seattle, Washington, USA. 2 Institute of Observational Research for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan. 3 College of Oceanic and Atmospheric Science, Oregon State University, Corvallis, Oregon, USA. 4 Lamont-Doherty Earth Observatory, Palisades, New York, USA. Copyright 2006 by the American Geophysical Union. 0094-8276/06/2006GL026826$05.00 [3] The purpose of the North Pole Environmental Observatory (NPEO) is to track and understand change in the Central Arctic Ocean. Annually since 2000, it has deployed an automated drifting station and made airborne hydrographic sections radiating from the Pole. This paper describes the recent return to near pre-1990s climatology as observed in the NPEO hydrographic sections and oceanographic buoy drifts. [4] The NPEO hydrographic surveys utilize ski-equipped De Havilland DHC-6 aircraft that are landed on refrozen leads. A winch operated directly from the aircraft cycles a Sea-Bird SBE-19 internally recording CTD to depths of 500 1000 m. Provision is made for sampling at 4 depths with 1.5 L Niskin bottles and for drawing the water samples in a heated space. Generally we make one 555 km section every year with a station every degree of latitude on a line radiating from the Pole nominally down 90 W, 170 W, 160 Eor90 E. Sections are repeated every 2 or 3 years. Since 2004, a project named Switchyard to study circulation in the sector 70 100 W has made the CTD stations on the 90 W line south of 87 N. Every year NPEO has deployed a JAMSTEC (Japan Agency for Marine-Earth Science and Technology) Compact Arctic Drifter (J-CAD) as part of the Automated drifting station. These buoys typically include 6 Sea-Bird Microcat CTDs suspended at depths to 250 m, and over a period of about 1 year they complete a drift section to Fram Strait. [5] Chemical analyses of water samples include salinity, phosphate, nitrate, nitrite, ammonium, siliceous acid, barium, oxygen isotopes and dissolved oxygen. Since 2003, we have used a Sea-Bird Electronics SBE-43 dissolved O 2 sensor on the CTD. [6] Early airborne survey results, 2000 through 2003, suggested that hydrographic conditions remained similar to those in the 1990s, though some relaxation toward climatology was observed [Morison et al., 2002; Steele et al., 2004]. The halocline circulation pattern inferred from O 2 observations is different from a simple boundary-following cyclonic flow [Falkner et al., 2005]. The J-CAD data are consistent with the airborne survey results and have revealed, among other things, changes in cold halocline formation mechanisms [Kikuchi et al., 2004]. 2. Comparisons to Climatology Through 2005 [7] We show recent Arctic Ocean change by comparing our observations with winter oceanographic climatology [EWG, 1997]. The values of temperature and salinity from the NPEO CTD are averaged in 4-m bins down to 500 m. The J-CAD data over 5-day periods are averaged in 4-m bins where available, and values for empty bins are interpolated from adjacent depth bins. The gridded EWG aver- 1of5

age (1950 87) data are interpolated in space to the location of each NPEO CTD cast and 5-day average J-CAD position, and these are subtracted from the NPEO data to yield anomalies of salinity and temperature (Figure 1). In 2000 2001 (Figure 1a) the salinities in the upper 150 m near the Pole and in the northern Makarov Basin were elevated 1 2 above climatology and temperatures in the Atlantic Water core along the Lomonosov Ridge were elevated 1 2 C, conditions nearly the same as observed in 1993 [Morison et al., 2000]. In the 2000 section near the coast of the Canadian Archipelago the near-surface salinity (Figure 1a) was reduced 1 below climatology. The temperature and salinity profiles (not shown) are reminiscent of the Beaufort Sea. These conditions are consistent with the 1990s advance toward North America and counterclockwise rotation of the front between saltier Atlantic-derived water on the Eurasian side and less salty Pacific-derived water on the North American side [Morison et al., 1998, Figure 1; Morison et al., 2000, Figures 2 and 3]. [8] Anomaly patterns for 2002 2003 (Figure 1b) are similar to those in 2000 2001. The 2002 hydrographic section angled more toward the center of the Makarov Basin than did the 2001 section. The salinity anomaly there was slightly more intense and the temperature anomaly was more pervasive. Along the 2003 section toward Ellesmere Island the temperature anomalies increased slightly relative to 2000, but the salinity anomalies were reduced slightly, and the fresh anomaly near the coast was gone. Qualitatively, conditions in 2002 2003 were still consistent with the 1990s. [9] In 2004 and 2005, hydrographic conditions returned to near climatology. The salinity anomalies of the 2004 survey at the Pole and along the line down 90 W, and on the 2004 2005 J-CAD 8 section across the Lomonosov Ridge into the Amundsen Basin (Figure 1c) were less than half those of 2000 01 and 2002 03. Similarly, the 2004 temperature anomalies (Figure 1c) in the Atlantic Water core near the Lomonosov Ridge and Amundsen Basin were half the values of the previous year. Only the southern part of the section down 170 W shows salinity and temperature anomalies close to the 2001 levels. [10] In 2005 near the Pole and in the west longitudes there was little evidence of the shift in frontal structure that characterized the 1990 s. The upper-ocean salinity anomalies (Figure 1d) near the Pole generally decreased to near zero and are consistent with Pacific-derived salinities in the Canadian Basin. Relative to 2000, salinities at the stations closest to Canada increased to essentially climatological values. This suggests a shift in the water mass structure toward climatology in the Canadian sector. Salinity anomalies less than 1 occurred in a thin layer along 90 W and two patches on the J-CAD track through the Amundsen and Nansen basins. The maximum temperature anomalies (Figure 1d) across the Lomonosov Ridge and through the Amundsen and Nansen basins were a little less than in 2004 and nearly all less than 1 C. At the North Pole, the Atlantic Water temperature anomaly, as well as upper ocean salinity, was similar to that found by Anderson et al. [1994] in 1991. [11] Based on a composite of key tracers measured in 1993 96, Jones et al. [1998] found that the boundary of 50% Pacific-derived surface waters was roughly along 0 180 longitude. From this line toward Canada, the surface waters were more than 50% Pacific-derived. This distribution reflected the 1990s counterclockwise rotation and advance toward Canada of the Atlantic-Pacific boundary [Morison et al., 1998, Figures 1 and 7]. [12] In 2000 and 2001, applying the same composite of tracers used by Jones et al. [1998], we found the 50% Pacific-derived surface water boundary farther toward Canada at about 88 N on the 2000 section along 90 W and at 85.5 N on the 2001 section along 170 W. The 70% Pacific-derived surface water boundary (Figure 1a) was found at 87 N, 90 W in 2000 and at 85 N, 170 W in 2001. The position of the Pacific-derived boundaries differed at depth where lesser amounts of Pacific-derived water were found. At 125 m in the 2000 section, the northern boundary of Pacific-derived water (20%) was at 86 N, 70 W. Pacific-derived water below 100 m is limited to about 10% along the 170 W section except possibly at 85 N where at 75m 24% Pacific water was present. [13] Variability is high near the surface, but overall we saw the Pacific-derived waters move north in west longitudes subsequent to 2001. In 2003, the 80% Pacific-derived surface water was found at 89 N, 90 W, and at the Pole the surface waters were 70% Pacific-derived (Figure 1b), slightly more influenced by the Pacific than in 1993 96. The 20% boundary at 125 m was between 87 and 89 N, along 90 W, north relative to 2000. [14] For 2004 we have no chemistry data south of 87 N on the 90 W section, but the 70% Pacific-derived boundary was south of that point (Figure 1c). Deeper frontal structure continued to move north along 90 W; the 125-meter 20% Pacific-derived boundary was at 89 N, 90 W. On the 170 W line, the surface boundary was near the 2001 position. [15] In 2005, Pacific-derived water advanced to the Pole and into east longitudes (Figure 1d). The fraction of Pacificderived near-surface water near the Pole was substantially higher than found by Jones et al. [1998]. In contrast to the near-surface results from NPEO 2000 and 2003, the surfacelayer water at 89.4 N, 147.4 E, ( Borneo base camp), was nearly all Pacific-derived. Samples from 10 and 16 m at Borneo and from 20 m at 89 N 90 W and the North Pole were about 90% Pacific-derived. Despite somewhat sparse spatial coverage, the high Pacific water fraction along 90 W and at 89.4 N, 147.4 W, suggests that the orientation of the Pacific-derived surface water boundary had shifted north and rotated clockwise relative to 1993 96 [Jones et al., 1998]. 3. Discussion [16] The idea that the 1990s pattern of Arctic change is related to a strengthening of the AO [e.g., Steele and Boyd, 1998; Morison et al., 2000; Karcher et al., 2003] has been cast in doubt by continued decreases in ice extent [e.g., Stroeve et al., 2004] in spite of a decline in AO in the mid-1990s. The persistence of thin ice has been explained in terms of the need for a strongly negative AO to allow sea ice to mature [e.g., Lindsay and Zhang, 2005]. [17] With declining AO, there have been reversals in the ocean such as the partial recovery of the cold halocline layer [e.g., Boyd et al., 2002]. However, the return of the central 2of5

MORISON ET AL.: UPPER OCEAN HYDROGRAPHY Figure 1. (left) Salinity and (right) temperature anomalies relative to EWG climatology along the NPEO surveys and J-CAD tracks for the years indicated on the temperature sections. Gray vertical lines mark survey station sites. Deep magenta lines (Figure 1, left) mark location of greater than 20% Pacific-derived water at 100 150 m. Surface lines mark greater than 70% Pacific-derived in the surface layer. 3 of 5

Figure 2. Winter AO Index (NDJFMA) from 1950 to 2005 in blue with a lagged, first-order linear response in magenta and average of North Pole hydrographic section temperature and salinity anomalies from Figure 1 within 100 km of the Pole and to 500m. Arctic hydrography to near climatology is perhaps the most significant reversion we have seen. It has lagged the decline in AO considerably. [18] The overlapping reasons for the ocean lag are likely that transport times are significant, the changes in the baroclinic circulation are slow, and the decline in AO has been gradual. Lags in water properties occur in part because, even if circulation remained constant, the transit times required to move a changed water property through the basin are measured in years [Polyakov et al., 2005]. For example, a 7-year lag between Atlantic water temperature rise in the Makarov Basin and that initially seen at the North Pole was found by Kikuchi et al. [2005]. More importantly, the time for the ocean circulation to adjust baroclinically to a change in wind forcing is long. Ice and surface water respond almost instantly to changes in the wind field, but for those changes to penetrate to depth in a stratified fluid requires months to years. [19] We can obtain an estimate for the adjustment time in the central Arctic Ocean by noting that the AO index, averaged November through April (Figure 2), jumped to a high value in 1989 90, yet the water mass changes at the Pole in 1991 were modest [Anderson et al., 1994]. Not until 1995 1996 did the changes in water mass properties first reach extreme levels [Steele and Boyd, 1998]. Steele et al. [2004] found a 3-year lag between the AO and the temperature of summer Bering Sea Water in the Lincoln Sea. The time scale for adjustment for the upper ocean appears to be about 3 7 years. [20] Complicating the picture is that, while the AO declined sharply after 1995, the 1988 2005 average remained about one standard deviation higher than the 1950 1988 average. Only in 1996 and 2001 did the index go appreciably below the 1950 88 average. Perhaps most significantly relative to the relaxation toward climatology seen in 2004 and 2005, it is only in 2003 05 that the AO Index has remained near the pre-1989 average for three consecutive years. [21] A simple way to account for baroclinic response, transport lags, and the unsteady nature of the AO decline is to assume the upper (e.g., 0 500 m) ocean near the North Pole generally reacts as a first-order linear response to the AO with time constant, t, and time lag, q. Such a response (Figure 2) to the winter (NDJFMA) AO index for t = 5 years and q = 3 years is slightly positive by 1991 and peaks in 1996 98 as observed. It also retains some signal past 2000 to at least 2005. The average of salinity and temperature anomalies relative to EWG climatology, from 0 to 500 m depth and from NPEO hydrographic sections within 100 km of the Pole (Figure 1), are well correlated with this response. The average anomalies for the EWG decadal averages and 1990s SCICEX cruises show similarly good agreement. This simple comparison suggests that the slow recovery of the central Arctic Ocean hydrography to climatology with the decline in AO is consistent with the response to the rapid rise in AO in 1989. Obviously, there remains the issue of understanding the time scales and magnitude of the response, but these findings suggest that we cannot dismiss the strength of the AO as a key driver of Arctic Ocean change. [22] Acknowledgment. This work was supported by NSF grants OPP 0352754, OPP 0352984, and ARC 02230427. References Anderson, L. G., B. Bjork, O. Holby, E. P. Jones, G. Kattner, K. P. Koltermann, B. Liljeblad, R. Lindegren, B. Rudels, and J. H. Swift (1994), Water masses and circulation in the Eurasian Basins: Results from the Oden 91 expedition, J. Geophys. Res., 99(C2), 3273 3283. Boyd, T. J., M. Steele, R. D. Muench, and J. T. Gunn (2002), Partial recovery of the Arctic Ocean halocline, Geophys. Res. Lett., 29(14), 1657, doi:10.1029/2001gl014047. Carmack, E. C., K. Aagaard, J. H. Swift, R. W. Macdonald, F. A. McLaughlin, E. P. Jones, R. G. Perkin, J. N. Smith, K. Ellis, and L. Kilius (1997), Changes in temperature and contaminant distributions within the Arctic Ocean, Deep Sea Res., Part II, 44, 1487 1502. Environmental Working Group [EWG] (1997), Joint U.S.-Russian atlas of the Arctic Ocean, oceanography atlas for the winter period [CD-ROM], Natl. Oceanogr. Data Cent., Silver Spring, Md. Falkner, K. F., M. Steele, R. A. Woodgate, J. H. Swift, K. Aagaard, and J. H. Morison (2005), Dissolved oxygen extrema in the Arctic Ocean halocline from the North Pole to the Lincoln Sea, Deep Sea Res., Part I, 52, 1138 1154. Jones, E. P., L. G. Anderson, and J. H. Swift (1998), Distribution of Atlantic and Pacific waters in the upper Arctic Ocean: Implications for circulation, Geophys. Res. Lett., 25, 765 768. Karcher, M. J., R. Gerdes, F. Kauker, and C. Köberle (2003), Arctic warming: Evolution and spreading of the 1990s warm event in the Nordic seas and the Arctic Ocean, J. Geophys. Res., 108(C2), 3034, doi:10.1029/ 2001JC001265. Kikuchi, T., K. Hatakeyama, and J. H. Morison (2004), Distribution of convective Lower Halocline Water in the eastern Arctic Ocean, J. Geophys. Res., 109, C12030, doi:10.1029/2003jc002223. Kikuchi, T., J. Inoue, and J. Morison (2005), Temperature difference across the Lomonosov Ridge: Implications for the Atlantic Water circulation in the Arctic Ocean, Geophys. Res. Lett., 32, L20604, doi:10.1029/ 2005GL023982. Lindsay, R. W., and J. Zhang (2005), The thinning of Arctic Sea Ice, 1988 2003: Have we passed a tipping point, J. Clim., 18, 4879 4894. Morison, J. H., M. Steele, and R. Andersen (1998), Hydrography of the upper Arctic Ocean measured from the nuclear submarine USS Pargo, Deep Sea Res., Part I, 45, 15 38. Morison, J. H., K. Aagaard, and M. Steele (2000), Recent environmental changes in the Arctic: A review, Arctic, 53(4), 359 371. Morison, J. H., et al. (2002), Early results from the North Pole Environmental Observatory, Eos Trans. AGU, 83(33), 357, 360 361. Polyakov, I. V., et al. (2005), One more step toward a warmer Arctic, Geophys. Res. Lett., 32, L17605, doi:10.1029/2005gl023740. 4of5

Proshutinsky, A., and M. Johnson (1997), Two circulation regimes of the wind-driven Arctic Ocean, J. Geophys. Res., 102, 12,493 12,514. Steele, M., and T. Boyd (1998), Retreat of the cold halocline layer in the Arctic Ocean, J. Geophys. Res., 103, 10,419 10,435. Steele, M., J. Morison, W. Ermold, I. Rigor, M. Ortmeyer, and K. Shimada (2004), Circulation of summer Pacific Halocline water in the Arctic Ocean, J. Geophys. Res., 109, C02027, doi:10.1029/2003jc002009. Stroeve, J., M. Serreze, F. Fetterer, T. Arbetter, W. Meier, J. Maslanik, and K. Knowles (2004), Tracking the Arctic s shrinking ice cover: Another extreme September minimum in 2004, Geophys. Res. Lett., 32, L04501, doi:10.1029/2004gl021810. Thompson, D. W. J., and J. M. Wallace (1998), The Arctic Oscillation signature in the wintertime geopotential height and temperature fields, Geophys. Res. Lett., 25, 1297 1300. Zhang, J., D. A. Rothrock, and M. Steele (2000), Recent changes in the Arctic sea ice: The interplay between ice dynamics and thermodynamics, J. Clim., 13, 3099 3114. K. Falkner, College of Oceanic and Atmospheric Science, Oregon State University, Corvallis, OR 97331-5503, USA. (kfalkner@coas.oregonstate. edu) T. Kikuchi, Institute of Observational Research for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan. (takashik@jamstec.go.jp) J. Morison and M. Steele, Polar Science Center, 1013 NE 40th Street, Seattle, WA 98105, USA. (morison@apl.washington.edu; mas@apl. washington.edu) W. Smethie, Lamont-Doherty Earth Observatory, P.O. Box 1000, Route 9W, Palisades, NY 10964-8000, USA. (bsmeth@ldeo.columbia.edu) 5of5