Working Group Bipolar (Tr..)

Similar documents
Modeling high-speed SiGe-HBTs with HICUM/L2 v2.31

Non-standard geometry scaling effects

Regional Approach Methods for SiGe HBT compact modeling

About Modeling the Reverse Early Effect in HICUM Level 0

HICUM / L2. A geometry scalable physics-based compact bipolar. transistor model

Accurate transit time determination and. transfer current parameter extraction

Status of HICUM/L2 Model

HICUM Parameter Extraction Methodology for a Single Transistor Geometry

A Novel Method for Transit Time Parameter Extraction. Taking into Account the Coupling Between DC and AC Characteristics

Didier CELI, 22 nd Bipolar Arbeitskreis, Würzburg, October 2009

HICUM release status and development update L2 and L0

Nonlinear distortion in mm-wave SiGe HBTs: modeling and measurements

Methodology for Bipolar Model Parameter Extraction. Tzung-Yin Lee and Michael Schröter February 5, TYL/MS 2/5/99, Page 1/34

2 nd International HICUM user s meeting

Charge-storage related parameter calculation for Si and SiGe bipolar transistors from device simulation

Digital Integrated CircuitDesign

Investigation of New Bipolar Geometry Scaling Laws

ELEC 3908, Physical Electronics, Lecture 19. BJT Base Resistance and Small Signal Modelling

Runtime Analysis of 4 VA HiCuM Versions with and without Internal Solver

HICUM/L2 version 2.2: Summary of extensions and changes

Thermal Capacitance cth its Determination and Influence on Transistor and Circuit Performance

Device Physics: The Bipolar Transistor

13. Bipolar transistors

Bipolar junction transistor operation and modeling

Breakdown mechanisms in advanced SiGe HBTs: scaling and TCAD calibration

A new transit time extraction algorithm based on matrix deembedding techniques

Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002

Sample Exam # 2 ECEN 3320 Fall 2013 Semiconductor Devices October 28, 2013 Due November 4, 2013

Lecture 17 - The Bipolar Junction Transistor (I) Forward Active Regime. April 10, 2003

MEXTRAM (level 504) the Philips model for bipolar transistors

I. Semiconductor Device Capacitance-Voltage Characteristics

ELEC 3908, Physical Electronics, Lecture 17. Bipolar Transistor Injection Models

HICUM/L2 version 2.21: Release Notes

Bipolar Junction Transistor (BJT) - Introduction

Lecture 20 - p-n Junction (cont.) October 21, Non-ideal and second-order effects

ELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and Self-Heating

TCAD setup for an advanced SiGe HBT technology applied to the HS, MV and HV transistor versions

TEMPERATURE DEPENDENCE SIMULATION OF THE EMISSION COEFFICIENT VIA EMITTER CAPACITANCE

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

Lecture 38 - Bipolar Junction Transistor (cont.) May 9, 2007

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since

Electric Field--Definition. Brownian motion and drift velocity

Chapter 2. - DC Biasing - BJTs

Spring Semester 2012 Final Exam

Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises

LOW TEMPERATURE MODELING OF I V CHARACTERISTICS AND RF SMALL SIGNAL PARAMETERS OF SIGE HBTS

Institute of Solid State Physics. Technische Universität Graz. Exam. Feb 2, 10:00-11:00 P2

Semiconductor Device Modeling and Characterization EE5342, Lecture 16 -Sp 2002

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

Transistor Characteristics and A simple BJT Current Mirror

Microelectronic Devices and Circuits Lecture 9 - MOS Capacitors I - Outline Announcements Problem set 5 -

EE105 Fall 2015 Microelectronic Devices and Circuits: Semiconductor Fabrication and PN Junctions

Prof. Paolo Colantonio a.a

The Devices. Devices

CHAPTER 4: P-N P N JUNCTION Part 2. M.N.A. Halif & S.N. Sabki

Chapter 2 - DC Biasing - BJTs

Schottky Rectifiers Zheng Yang (ERF 3017,

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.

Tunnel Diodes (Esaki Diode)

PCM- and Physics-Based Statistical BJT Modeling Using HICUM and TRADICA

Recitation 17: BJT-Basic Operation in FAR

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

ELE46703 TEST #1 Take-Home Solutions Prof. Guvench...

Charge-Storage Elements: Base-Charging Capacitance C b

Lecture 16 The pn Junction Diode (III)

Problem 9.20 Threshold bias for an n-channel MOSFET: In the text we used a criterion that the inversion of the MOSFET channel occurs when V s = ;2 F w

EECS130 Integrated Circuit Devices

ECE-305: Spring 2018 Final Exam Review

Session 6: Solid State Physics. Diode

Lecture 35 - Bipolar Junction Transistor (cont.) November 27, Current-voltage characteristics of ideal BJT (cont.)

Student Number: CARLETON UNIVERSITY SELECTED FINAL EXAMINATION QUESTIONS

6.012 Electronic Devices and Circuits

Semiconductor Device Simulation

Ideal Diode Equation II + Intro to Solar Cells

The Devices. Jan M. Rabaey

CLASS 3&4. BJT currents, parameters and circuit configurations

MICROELECTRONIC CIRCUIT DESIGN Second Edition

ELEC 3908, Physical Electronics, Lecture 13. Diode Small Signal Modeling

BIPOLAR JUNCTION TRANSISTOR MODELING

MOS Transistor I-V Characteristics and Parasitics

Lecture 17. The Bipolar Junction Transistor (II) Regimes of Operation. Outline

55:041 Electronic Circuits The University of Iowa Fall Exam 2

Novel Back-Biased UTBB Lateral SCR for FDSOI ESD Protections

Plan Bipolar junction transistor Elements of small-signal analysis Transistor Principles: PETs and FETs Field effect transistor Discussion

Chapter 13 Small-Signal Modeling and Linear Amplification

EECS 151/251A Homework 5

Lecture 19 - p-n Junction (cont.) October 18, Ideal p-n junction out of equilibrium (cont.) 2. pn junction diode: parasitics, dynamics

Lecture 16 - The pn Junction Diode (II) Equivalent Circuit Model. April 8, 2003

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: PD5 Avalanche PhotoDiodes. Sensors, Signals and Noise 1

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

Metal-oxide-semiconductor field effect transistors (2 lectures)

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

248 Facta Universitatis ser.: Elect. and Energ. vol. 9,No.2 (1996) doping of donor (N D ) and acceptor (N A ), respectively. With the degenerate appro

Lecture 15 - The pn Junction Diode (I) I-V Characteristics. November 1, 2005

Getting J e (x), J h (x), E(x), and p'(x), knowing n'(x) Solving the diffusion equation for n'(x) (using p-type example)

EE105 - Fall 2006 Microelectronic Devices and Circuits

Tunneling transport. Courtesy Prof. S. Sawyer, RPI Also Davies Ch. 5

exp Compared to the values obtained in Example 2.1, we can see that the intrinsic carrier concentration in Ge at T = 300 K is 2.

SPICE SIMULATIONS OF CURRENT SOURCES BIASING OF LOW VOLTAGE

Microelectronic Devices and Circuits Lecture 13 - Linear Equivalent Circuits - Outline Announcements Exam Two -

Transcription:

Department of Electrical Engineering and Information Technology Institute of Circuits and Systems Chair for Electron Devices and Integrated Circuits Working Group Bipolar (Tr..) I T parameter extraction issues in HiCuM/L for very advanced HBTs M. Schroter, J. Krause Hamburg, 30.10.008

Outline 1 Introduction Doping profiles 3 Transit frequency 4 Parameter extraction 5 Extraction results 6 Results from device simulations M. Schroter, J. Krause IT parameter extraction issues in HiCuM/L for very advanced HBTs Slide /15

1 Introduction Currently, weight factors in the GICCR charge integral are assumed to be constant over bias. Depending on the extraction method experimental determination of the transfer current related model parameters Q p0 and c 10 may lead to issues for certain advanced devices. It is unclear whether this problem is caused by the method or the model formulation. exp( V B'E' V T ) exp( V B'C' V T ) exp( V I T c ---------------------------------------------------------------------------------------- B'E' V T ) exp( V B'C' V T ) = 0 = c --------------------------------------------------------------------------------------------------------------- x 10 u Q p0 + h jei Q jei + h jci Q jci + Q ft, + Q r, T h g pdx x l with h g = μ nb n ib ----------------------------- μ n ( x)n i ( x) Reproducing the issue by 1D device simulation allows to find the cause. M. Schroter, J. Krause IT parameter extraction issues in HiCuM/L for very advanced HBTs Slide 3/15

Doping profiles Two different reference profiles 500 GHz 300 GHz 10 1 0.8 10 1 0.4 D [cm 3 ] 10 0 10 19 0.4 0. 0.16 0.1 Ge [%atom] D [cm 3 ] 10 0 10 19 0. 0.16 0.1 10 18 0.08 10 18 0.08 0.04 0.04 10 17 0 0.01 0.0 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0 x [μm] 10 17 0 0.05 0.1 0.15 0. 0.5 0.3 0.35 0.4 0 x [μm] all investigations based on 1D DD device simulation indicated ft values are for 1D HD/MC simulation M. Schroter, J. Krause IT parameter extraction issues in HiCuM/L for very advanced HBTs Slide 4/15

3 Transit frequency Transit frequency 500 GHz 300 GHz 400 50 350 300 00 50 150 f T [GHz] 00 150 f T [GHz] 100 100 50 50 0 10 10 1 10 0 10 1 10 f T vs. @ V CE = (0.6, 0.8, 1.0, 1., 1.5)V 0 10 10 1 10 0 10 1 10 M. Schroter, J. Krause IT parameter extraction issues in HiCuM/L for very advanced HBTs Slide 5/15

4 Parameter extraction 1st step: BE junction capacitance parameter extraction 17 13 16 1.5 15 1 14 11.5 Q jei [fc/μm ] 13 1 11 Q jei [fc/μm ] 11 10.5 10 10 9.5 9 9 8 8.5 7 0 0. 0.4 0.6 0.8 1 V [V] BE 8 0 0. 0.4 0.6 0.8 1 V [V] BE from extended HiCuM formulation, allows to analytically determine Q jei Note: C j,max is not directly measurable experimentally M. Schroter, J. Krause IT parameter extraction issues in HiCuM/L for very advanced HBTs Slide 6/15

4 Parameter extraction (cont d) nd step: c 10 and Q p0 extraction 7.5 analytical value numerical value linear fit 7.5 analytical value numerical value linear fit 7 7 Q jei [fc/μm ] 6.5 Q jei [fc/μm ] 6.5 6 6 5.5 0.034 0.035 0.036 0.037 0.038 0.039 exp(v BE /V T )/ [μm /aa] c 10 exp( V BE V T ) Q jei h jei 0.65 V BE 0.75 0.65 V BE 0.75 Q p0 5.5 0.011 0.01 0.013 0.014 0.015 0.016 exp(v BE /V T )/ [μm /aa] = ---------- -------------------------------------- ---------- @ V BC = 0V and very low h jei Slope and intercept of Q jei vs. exp(v BE /V T )/ represent auxiliary parameters c 10 =c 10 /h jei and Q p0 =Q p0 /h jei, resp. M. Schroter, J. Krause IT parameter extraction issues in HiCuM/L for very advanced HBTs Slide 7/15

4 Parameter extraction (cont d) Q p0 variation over V BE range (varied extraction intervals) 8.5 0 8 7.5 0.5 7 1 Q p0 [fc/μm ] 6.5 6 5.5 Q p0 [fc/μm ] 1.5 5.5 4.5 4 3 3.5 0.65 0.7 0.75 0.8 V BE,max [V] 3.5 0.65 0.7 0.75 0.8 V BE,max [V] Wide variation range of Q p0! Linear fit of Q jei vs. exp(v BE /V T )/ using increasing V BE interval with fixed starting point and V BE,max as final value M. Schroter, J. Krause IT parameter extraction issues in HiCuM/L for very advanced HBTs Slide 8/15

5 Extraction results Extracted model parameters parameter 500 GHz 300 GHz 100 GHz C jei0 7.8440 ff/µm² 8.1670 ff/µm² 6.431 ff/µm² V DEi 0.7996 V 0.9488 V 0.9119 V z Ei 0.145 0.616 0.107 a jei.1410 1.6030 1.5060 Q p0,tech 6.130 fc/µm² 35.186 fc/µm² 78.603 fc/µm² Q p0,rsbi 6.753 fc/µm² 33.75 fc/µm² 75.5 fc/µm² Q p0,extr 4.6647 fc/µm² -.576 fc/µm² 8.665 fc/µm² c 10 3.06 10-31 AC/µm 4.996 10-31 AC/µm 4 5.766 10-31 AC/µm 4 I S 6.564 10-17 A/µm² -1.163 10-16 A/µm² 6.6544 10-17 A/µm² h jci 0.0886 0.737 10-3 1.053 h jei 1.0 1.0 1.0 Direct extraction gives too low or negative value for Q p0! M. Schroter, J. Krause IT parameter extraction issues in HiCuM/L for very advanced HBTs Slide 9/15

5 Extraction results (cont d) Forward gummel plot @ V BC = 0V 10 10 1 simulated modeled 10 10 1 simulated modeled 10 0 10 1 10 10 0 10 1 10 3 10 10 4 0.65 0.7 0.75 0.8 0.85 0.9 0.95 V [V] BE 10 3 0.65 0.7 0.75 0.8 0.85 0.9 0.95 V BE [V] Despite of the negative/non-physical value obtained for Q p0, the fit in the gummel plot shows good conformance. M. Schroter, J. Krause IT parameter extraction issues in HiCuM/L for very advanced HBTs Slide 10/15

6 Results from device simulations Q p0h from DEVICE simulations 150 10 100 100 80 Q p0h [fc/μm ] 50 Q p0 Q p0h [fc/μm ] 60 40 Q p0 f T peak 0 f T peak 0 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 V [V] BE 0 0.65 0.7 0.75 0.8 0.85 0.9 V BE [V] Q p0h significantly larger than Q p0 distinctive bias dependence of Q p0h M. Schroter, J. Krause IT parameter extraction issues in HiCuM/L for very advanced HBTs Slide 11/15

6 Results from device simulations (cont d) weight factors from DEVICE simulations 10 4 10 3 hje hjc hfe hfb hfc hp0 10 3 10 hje hjc hfe hfb hfc hp0 10 h h 10 1 10 1 10 0 f T peak 10 0 f T peak 10 1 10 10 0 10 1 10 10 0 most weight factors are fairly constant up to peak f T Q jei largest contribution in low-/medium bias range -> bias dependence of h jei relevant M. Schroter, J. Krause IT parameter extraction issues in HiCuM/L for very advanced HBTs Slide 1/15

6 Results from device simulations (cont d) calculation of Q jeih and h jei from internal quantities.6 14.4. 1 10 hjei 1.8 1.6 1.4 const. value 0.4V < VBE < 0.7V hjei 8 6 const. value 0.4V < VBE < 0.7V 1. 1 4 0.8 0.4 0.5 0.6 0.7 0.8 0.9 V BE [V] ΔQ jeh Q jeih q A E h g ( Δp Δn) dx with h jei (V BE ) = Q jeih (V BE )/(Q jei (V BE ). h p0 ) 0.4 0.5 0.6 0.7 0.8 0.9 V BE [V] x μ Bn nr n ir = = h x g = ----------------------------- me μ n ( x)n i ( x) M. Schroter, J. Krause IT parameter extraction issues in HiCuM/L for very advanced HBTs Slide 13/15

7 Results from device simulations (cont d) Insertion in GICCR 10 10 10 0 10 0 10 10 4 10 10 4 10 6 h jei (V BE ) h jei (V BE ) ------ const. h jei 10 8 0.4 0.5 0.6 0.7 0.8 0.9 1 V BE [V] 10 6 0.4 0.5 0.6 0.7 0.8 0.9 1 V BE [V] Total weighted charge Q pt, = Q p0h + Q jeih low-/medium bias cond.: only Q jeih and Q p0h significant c 10 i T = ------------- ( V Q BE V T ) V BC V T c 10 ( qa E ) = V T μ nb n ib pt, [ exp exp( )] with ------ const. h jei M. Schroter, J. Krause IT parameter extraction issues in HiCuM/L for very advanced HBTs Slide 14/15

8 Summary Extracting Q p0 from I C may not give accurate values. Ignoring the bias dependence of h p0 (or Q p0 ) and h jei obviously leads to the observed extraction issue. Pros and cons of existing compact GICCR formulation to be investigated and evaluated on advanced HBT: Keeping existing absolute charge term seems more favorable if bias dependence is mainly caused by Q p0h => otherwise h p0 (bias) mixed with bias dependence of other weight factors M. Schroter, J. Krause IT parameter extraction issues in HiCuM/L for very advanced HBTs Slide 15/15

9 Appendix 3rd Extraction step: h jci determination 13.5 13.48 13.46 simulated modeled 4.355 c 10 exp(v BE /V T )/I C [fc] 13.44 13.4 13.4 13.38 c 10 exp(v BE /V T )/I C [fc] 4.3545 4.354 13.36 13.34 13.3 0.8 0.6 0.4 0. 0 0. 0.4 0.6 Q jci [fc/μm ] 4.3535 simulated modeled 0.8 0.6 0.4 0. 0 0. 0.4 0.6 Q jci [fc/μm ] c 10 [exp(v BE /V T )]/I C plotted vs. Q jci is linear and the slope gives the auxiliary parameter h jci =h jci /h jei. h jei is currently set to 1 per default! M. Schroter, J. Krause IT parameter extraction issues in HiCuM/L for very advanced HBTs Slide 16/15

Appendix (cont d) Extraction of Q p0 from R SBi 1.8 1.6 V CE = 0V linear fit 1.8 1.6 V CE = 0V linear fit 1.4 1.4 1. 1. 1/r r 1 0.8 1/r r 1 0.8 0.6 0.6 0.4 0.4 0. 0. 0 0 0. 0.5 0 0.5 1 1.5.5 3 Q x 10 14 j [C/μm ] 0. 0.5 0 0.5 1 1.5.5 3 Q x 10 14 j [C/μm ] Q j = Q jei + Q jci vs. r = r SBi /r SBi0 @ V CE = 0V 1 r Q j -- r = ---------- -> Q p0 as the slope Q p0 M. Schroter, J. Krause IT parameter extraction issues in HiCuM/L for very advanced HBTs Slide 17/15

9 Appendix (cont d) Internal BC capacitance C jci [ff/μm ] 0 18 16 14 1 10 C jci0 = 4.739 ff/µm² V DCi = 0.867 V z Ci = 0.6166 a jci = 3.886 V PTCi = 1.8155 V C jci [ff/μm ] 8 7 6 5 4 C jci0 = 3.4011 ff/µm² V DCi = 0.7664 V z Ci = 0.3885 a jci =.336 V PTCi = 3.4343 V 8 6 3 4 3 1 0 1 V [V] BC 1 3 1 0 1 V [V] BC M. Schroter, J. Krause IT parameter extraction issues in HiCuM/L for very advanced HBTs Slide 18/15

9 Appendix (cont d) from DEVICE REGAP postprocessor τ f 0 10 18 9 16 8 14 7 1 6 τ f [ps] 10 τ f [ps] 5 8 4 6 3 4 1 0 0 10 0 30 40 0 0 5 10 15 0 =0.356 ps, =0.5769 ps τ 0500GHz, τ 0300GHz, M. Schroter, J. Krause IT parameter extraction issues in HiCuM/L for very advanced HBTs Slide 19/15