Cooperative Triangulation in MSBNs. without Revealing Subnet Structures. Y. Xiang. Department of Computer Science, University of Regina

Similar documents
Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

Constructive Geometric Constraint Solving

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

Planar Upward Drawings

Present state Next state Q + M N

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

1 Introduction to Modulo 7 Arithmetic

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

Garnir Polynomial and their Properties

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

CS 461, Lecture 17. Today s Outline. Example Run

CS September 2018

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

0.1. Exercise 1: the distances between four points in a graph

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

CS 241 Analysis of Algorithms

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

EE1000 Project 4 Digital Volt Meter

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

Section 10.4 Connectivity (up to paths and isomorphism, not including)

QUESTIONS BEGIN HERE!

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

QUESTIONS BEGIN HERE!

Trees as operads. Lecture A formalism of trees

Problem solving by search

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

12. Traffic engineering

COMP108 Algorithmic Foundations

Numbering Boundary Nodes

Graph Contraction and Connectivity

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Seven-Segment Display Driver

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

Designing A Concrete Arch Bridge

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Outline. Binary Tree

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Chapter 9. Graphs. 9.1 Graphs

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

Computational Biology, Phylogenetic Trees. Consensus methods

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

Section 3: Antiderivatives of Formulas

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently?

A Low Noise and Reliable CMOS I/O Buffer for Mixed Low Voltage Applications

Solutions to Homework 5

CS553 Lecture Register Allocation 1

Steinberg s Conjecture is false

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

Announcements. These are Graphs. This is not a Graph. Graph Definitions. Applications of Graphs. Graphs & Graph Algorithms

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

C-201 Sheet Bar Measures 1 inch

overconstrained well constrained underconstrained a b c d e f g h i j k

(a) v 1. v a. v i. v s. (b)

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

arxiv: v1 [cs.ds] 20 Feb 2008

Discovering Frequent Graph Patterns Using Disjoint Paths

Weighted Graphs. Weighted graphs may be either directed or undirected.

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014

Self-Adjusting Top Trees

Properties of Hexagonal Tile local and XYZ-local Series

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f

Lecture 20: Minimum Spanning Trees (CLRS 23)

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

Transcription:

Cooprtiv Tringultion in MSBNs without Rvling Sunt Struturs Y. Xing Dprtmnt o Computr Sin, Univrsity o Rgin Rgin, Ssthwn, Cn S4S 0A, yxing@s.urgin. To ppr in Ntwors Astrt Multiply stion Bysin ntwors (MSBNs) provis ohrnt rmwor or proilisti inrn in ooprtiv multignt istriut intrprttion systm. Inrn in MSBNs n prorm tivly using ompil rprsnttion. Th ompiltion involvs th tringultion o th olltiv pnny strutur ( grph) n in trms o th union o st o lol pnny struturs ( st o grphs). Privy o gnts limints th option to ssml ths grphs t ntrl lotion n to tringult thir union. Erlir wor solv istriut tringultion in rstrit s. Th mtho is onptully omplx n th orrtnss o its xtnsion to th gnrl s is iult to justiy. In this ppr, w prsnt nw mtho tht is onptully simplr n is int. W prov its orrtnss in th gnrl s n monstrt its prormn xprimntlly. 1 Introution Multiply stion Bysin ntwors (MSBNs) provis ohrnt rmwor or proilisti inrn in lrg omin [9]. It n ppli unr singl gnt prigm [8] or ooprtiv multi-gnt prigm [6]. It supports ojt-orint inrn [3]. Inrn in MSBN n prorm tivly using ompil rprsnttion ll lin juntion orst (LJF) [9]. Th ompiltion o MSBN into LJF ts svrl stps tht r similr in prinipl to th ompiltion o Bysin ntwor (BN) into its juntion tr o li univrss []. This wor ouss on th tringultion stp. In prtiulr, th input o th pross is st o unirt grphs with ovrlpping nos whih olltivly ns grph union (to n ormlly), n th output is orrsponing st o horl suprgrphs whih olltivly ns horl suprgrph o. Unr th multignt prigm, h gnt my onstrut y n inpnnt vnor who ms th now-hows out suomin into th gnt. For xmpl, th vnor o omponnt in omplx systm n uil n gnt with th now-hows o th omponnt m. Th vnor my not willing to rvl th now-hows whn th gnt is 1

intgrt into multignt MSBN. To prott th now-hows o suh vnors, it is sirl not to or h gnt to rvl its intrnl strutur (th grph lol to th gnt). This privy rquirmnt limints th option to ssml ths grphs t ntrl lotion n to tringult thir union s in th singl-gnt prigm. An lgorithm to solv th prolm unr rstritiv onition ws prsnt in [9]. Th mtho is onptully omplx n th orrtnss o its xtnsion to th gnrl s is iult to justiy ormlly. In this wor, w prsnt onptully simpl mtho to solv th prolm n w prov its orrtnss in th gnrl s. In Stion, w motivt this rsrh with n ovrviw o MSBNs n its pplitions. W riy introu th grph-thortil trminologis to us in th rst o th ppr in Stion 3. W n th prolm o multignt tringultion in Stion 4. In Stion 5 w prsnt our mtho in th simplst s n prov its orrtnss. Th mtho is xtn to mor gnrl s in Stion 6. Builing on th rsults o Stions 5 n 6, w prsnt th most gnrl s in Stions 7 n 8. Th xprimntl stuy is prsnt in Stion 9. W nlyz th omplxity o th propos lgorithms in Stion 10. Ovrviw o MSBNs In this stion, w riy introu th rmwor o MSBNs. A BN [4] S is triplt (N;D;P) whr N is st o omin vrils, D is DA whos nos r ll y lmnts o N, n P is joint proility istriution (jp) ovr N spi in trms o proility istriutions o h no in D onition on its prnts. 1 g 4 1 3 g () 4 3 () Figur 1: () A igitl iruit. () Th strutur o BN rprsnting th iruit. Figur 1 () shows simpl igitl iruit. A BN () n us to mol th iruit or troul-shooting purpos. Th BN rprsnts h vi n h input/output s no/vril, n rprsnts irt pnn twn h pir o vrils y n r. Th pnn is proilisti in gnrl, spilly or th ulty hvior o vis. Eh no is thus ssoit with proility istriution onition on its prnts. For xmpl, th no g (output o n OR gt) is ssoit with th istriution p(gj; ; ). Th istriution ns how th vlu o g pns on th vlus o its prnt vrils. For instn, p(g =0j =0; =0; = norml) =1:0 rprsnts how input = 0 n =0 to trmin g whn th gt is norml. On th othr hn, p(g =0j =0;=0; = norml) =0:3 rprsnts tht g ts th orrt vlu or th sm input 30% o tim

whn th gt is norml (n ts th wrong vlu 70% o th tim). Th BN n thn us to nswr quris suh s \p( = normljg =1;=0;= 1) =?". A MSBN [9] M is olltion o Bysin sunts tht togthr ns BN. Ths sunts shoul stisy rtin onitions to prmit ohrnt istriut inrn. On onition rquirs tht nos shr y two sunts orm -spst, s n low. Lt i =(N i ;E i )(i =0; 1) two grphs. Th grph =(N0 [ N1;E0 [ E1) is rrr to s th union o 0 n 1, not y = 0 t 1. Dnition 1 Lt D i =(N i ;E i )(i =0; 1) two DAs suh tht D = D0 t D1 is DA. Th intrstion I = N0 \ N1 is -spst twn D0 n D1 i or vry x I with its prnts in D, ithr N0 or N1. Eh x I is ll -spno. Just s th strutur o BN is DA, th strutur o MSBN is multiply stion DA (MSDA) with hyprtr orgniztion: Dnition A hyprtr MSDA D = F i D i, whr h D i is onnt DA, is onnt DA onstrutil y th ollowing prour: Strt with n mpty grph (no no). Rursivly DA D, ll hyprno, to th xisting MSDA F 1 i=0 D i sujt to th onstrints: [-spst] For h D j (j<), I j = N j \ N is -spst whn th two DAs r isolt. [lol ovring] Thr xists D i (i<) suh tht, or h D j (j < ; j 6= i), w hv I j N i : For n ritrrily hosn suh D i, I i is th hyprlin twn D i n D whih r si to jnt. W us P T (N) to not proility istriution ovr st N o vrils tht is ssoit with n ojt T. A MSBN is thn n s ollows: Dnition 3 A MSBN M is triplt M =(N ; D; P). N = S i N i is th totl univrs whr h N i is st o vrils. D = F i D i ( hyprtr MSDA) is th strutur whr nos o h DA D i r ll y lmnts o N i. P = Q i P Di (N i )= Q P I (I ) is th jp. Eh P Di (N i ) is istriution ovr N i suh tht whnvr D i n D j r jnt in D, th mrginliztions o P Di (N i ) n P Dj (N j ) onto thir -spst r intil. Eh P I (I ) is suh mrginl istriution ovr hyprlin I o D. Eh triplt S i =(N i ;D i ;P i ) is ll sunt o M. S i n S j r jnt i D i n D j r jnt. 1 0 1 0 l q m n o j h i g Figur : An xmpl MSDA o thr DAs. Figur illustrts MSBN with trivil MSDA. Th hyprtr is pit in th lt n th thr DAs r shown in th right. Th -spnos r highlight with oul ovls. 3

Snsors Bysin Sunt Dision Mr Atutor Snsitivity Anlyzr Rsonr Communitor Distriut lol Strutur Vriir Figur 3: Min omponnts o n gnt in MSBN-s multi-gnt systm. MSBNs provi rmwor or proilisti rsoning in ooprtiv multi-gnt istriut intrprttion systms. Eh gnt hols its prtil prsptiv o lrg prolm omin (Sunt in Figur 3), sss lol vin sour (Snsors in Figur 3), ommunits with othr gnts inrquntly (Communitor), rsons with th lol vin n limit glol vin (Rsonr), n nswrs quris (Rsonr) or ts tions (Dision Mr/Atutor). I gnts r ooprtiv, n h pir o jnt gnts r onitionlly inpnnt givn thir shr vrils n hv ommon initil li on th shr vrils, thn joint systm li is wll n whih is intil to h gnt's li within its suomin n supplmntl to th gnt's li outsi th suomin [6]. Evn though multipl gnts my quir vin synhronously in prlll, th ommunition oprtions o MSBNs nsur tht th nswrs to quris rom h gnt r onsistnt with vin quir in th ntir systm tr h ommunition. Sin ommunition is inrqunt, th oprtions lso nsur tht twn two sussiv ommunitions, th nswrs to quris or h gnt r onsistnt with ll lol vin gthr so r n r onsistnt with ll vin gthr in th ntir systm up to th lst ommunition. Potntil pplitions o th rmwor inlu ision support to ooprtiv humn usrs in unrtin omins n troulshooting omplx systm y multipl nowlg s susystms [6]. 3 rph-thortil trminologis In this stion, w riy introu th grph-thorti trminologis tht th rmining o th ppr pns on. Aitionl trminologis tht r us ut r not ssntil to unrstning r inlu in th Appnix. W shll ll grph =(N;E) sovr N. Th jny o no x is th st o nos jnt to x, n is not y j(x). A st X o nos in is omplt i h pir o nos in X is jnt. A hor is lin onnting two nonjnt nos. is tringult or horl i vry yl o lngth > 3 hs hor. A no x in grph =(N;E) islimint i j(x) is m omplt y ing lins (i nssry) or x n lins inint to x r rmov. Eh lin thus is ll ll-in. Lt F th st o ll-ins in liminting ll nos in som orr. Thn th grph 0 =(N;E [ F ) is horl. A grph is horl i ll nos n limint on y on in som orr without ll-ins []. Our mtho is s on no limintion in rtin orr. W stt this onpt 4

prisly: Dnition 4 Lt grph ovr N1 [ N suh tht N1 \ N =. is liminl in th orr (N1;N) i it is possil to limint ll nos in N1 on y on rst n thn limint ll nos in N on y on without ny ll-ins. Th onpt n xtn suh tht th orr is spi s n-tupl. For simpliity, w shll writ (g; g; g) s(; ; ). W n th onpt o grph-onsistny to rr to pir o grphs whos sugrphs ovr shr nos r intil. Dnition 5 Lt 1 ovr N1 n ovr N two grphs suh tht N1\N 6=. Thn 1 n r si to grph-onsistnt i th sugrphs o 1 n spnn y N1 \ N r intil. 4 Th prolm o ooprtiv tringultion Prorming inrn irtly in MSBN is iult sin its MSDA is otn multiply onnt. As on o th most int wys o inrn in multiply onnt BN uss juntion tr (JT) (Appnix) rprsnttion, w ompil MSBN into st o intr-rlt JTs ll lin juntion orst (LJF) [9] or inrn. In th LJF, th JTs r orgniz into th intil hyprtr strutur s th MSDA. Th ompiltion o MSBN into LJF ts svrl stps, som o whih prlll th ompiltion o BN. W isuss only th rst our stps tht r rlvnt to th purpos o this ppr: Th rst stp, ll morliztion, is to onvrt th MSDA into its morl grph y omplting prnts or h no n ropping th irtions o lins. Sin th MSDA is th union o st o DAs, its morl grph is n in trms o th union o morl grphs o ths DAs. Th son stp is to tringult th morl grph o th MSDA into horl grph. This is n or th sm rson in ompiling BN: JT o grph xists i th grph is horl. Agin, this horl grph is n s th union o st o horl grphs h o whih is otin rom th morl grph o DA. Eh omponnt grph shoul horl sin w wnt to orgniz h sunt into JT or lol inrn. Th thir stp is to onvrt h horl grph in th union into juntion tr (JT) o li univrss [] to us in th inrn omputtion. Th ourth stp is to ompil h hyprlin (-spst) o MSDA into ling tr [6]. This stp llows n gnt's li on -spst ( proility istriution) to toriz omptly so tht ommunition twn gnts n prorm mor intly whn th -spst is lrg. Mor tils on this n oun in [5]. W giv hr nition o ling trs quivlnt to tht in [6] (ut omputtionlly lss int) to ilitt th isussion. Th proo o quivln is trivil. Dnition 6 Lt I th -spst twn JTs T n T in LJF. Rpt th ollowing until no vril n rmov: (1) Rmov vril x 6 I i x is ontin in singl liqu C. () I C oms sust o n jnt liqu D tr (1), union C into D. 5

Lt L th grph rsultnt rom th prour. Thn L is ling tr o T with rspt to I i [ ll l = I, whr h liqu l in L is ling. Dn liqu in T tht ontins l s its ling host n r tis ritrrily. It n shown [7] tht th ling tr L is JT, n tht i T is n I-mp (Appnix), thn L is n I-mp ovr I. Thror, to propgt li on I rom T to T uring inrn, it is suint to propgt li on h ling [5] sin B(I) =[ Y l B(l)]=[ Y q B(q)]; whr h l is ling in L with its li tl B(l) n h q is sprtor in L with its li tl B(q). On th othr hn, i [ ll l I whn th prour in Dnition 6 hlts, in whih s L is not ling tr, thn B(I) nnot omptly rprsnt y th ov qution n n only otin y mor xpnsiv omputtion [9]. Th ollowing thorm intis th onition unr whih th ling tr xists 1. Th onition is tht th grph rom whih T is onstrut must tringult in rtin wy. Thorm 7 Lt grph ovr N rom whih JT T is onstrut. Lt I sust o nos in. Thn ling tr o T xists with rspt to I i is liminl in th orr (N ni;i). Proo: [Suiny] Suppos is liminl in (N n I;I). Consir no x N n I tht n limint rst without ll-ins. Thn x must ppr in singl liqu C in T sin othrwis j(x) is inomplt. Hn x n rmov rom C. Rpting this rgumnt or h no in N n I, w will l to limint N n I rom T n th rsultnt grph is th ling tr. [Nssity] Suppos is not liminl in (N n I;I). Tht is, N n I nnot limint without ll-ins in ny prtiulr orr tht is onsistnt with (N n I;I). This mns tht no mttr wht orr w us, thr xists non-mpty sust o N n I (th sust my ir or irnt orrs) suh tht h no in th sust pprs in t lst two liqus o T. Hn th ling tr os not xist. For h JT T in th hyprtr, li propgtion ns to prorm rltiv to h jnt JT. To nsur th xistn o ling tr or h jnt JT, w hv th ollowing rquirmnt or tringultion: Rquirmnt 1 For h hyprno in th hyprtr o MSBN, th tringult morl grph ovr N or th hyprno must suh tht or vry hyprlin I inint to th hyprno, is liminl in th orr (N n I;I). For h hyprlin in th hyprtr, th two npoints (hyprnos) my potntilly onnt th -spst irntly uring tringultion. Th ollowing xmpl shows tht suh tringultion shoul prvnt. 1 This onition n shown to quivlnt to th host omposition onition in [9]. Howvr, th host omposition onition is sriptiv whil th onition prsnt hr is prourl n hn provis irt guilin to tringultion. 6

Q,,,,,,, Figur 4: Illustrtion o Rquirmnt. Th -spst is shown y oul ovls. Consir th two morl grphs n Q (ignor th sh lin) in Figur 4 (lt). Using th orr in Thorm 7, is limint without ny ll-ins n Q is limint with th ll-in ; g (sh). Th two orrsponing JTs r shown in th right. Not howvr, tht th JT rom xprsss ls onitionl inpnn rltion, i.., tht ; g is inpnnt o ; g givn. To voi this prolm, th -spst I = ; ; g shoul intilly onnt in n Q (y ing th ll-in ; g to ). Hn, w hv th ollowing rquirmnt or tringultion: Rquirmnt For h pir o jnt hyprnos in th hyprtr o MSBN, th orrsponing -spst must onnt intilly in th two tringult morl grphs. Tht is, th two tringult grphs must grph-onsistnt. Th smntis o Rquirmnt is tht ssumptions on th onitionl inpnn within -spst xprss in irnt JTs must onsistnt. Unr th multignt prigm, MSBN my intgrt rom st o gnts, sy, or troul-shooting omplx systm. Th MSBN signr my now only th intr (spst) twn suomins (sunts intrnl to gnts) ut not th tils o h sunt. Eh gnt my onstrut y n inpnnt vnor who ms th now-hows out suomin into th gnt. For xmpl, th vnor o omponnt in omplx systm n uil n gnt with th now-hows o th omponnt m. Th vnor my not willing to rvl th now-hows whn th gnt is intgrt into multignt MSBN. To prott th now-hows o suh vnors, it is sirl not to or h gnt to rvl its intrnl strutur uring ompiltion. An gnt will givn, y th MSBN signr, th inormtion whih othr gnts it intrs to n wht r th -spsts, ut not muh mor thn tht rgring th intrnl o othr gnts. This privy rquirmnt limints th option to ssml DAs in th MSDA t ntrl lotion or ompiltion. In othr wors, it is sirl to istriut ll stps o ompiltion. Th rst stp (morliztion) n istriut sily. First, h gnt prorms morliztion lolly. Thn jnt gnts in th hyprtr xhng lins mong -spnos so tht h pir o -spnos r onnt intilly t irnt lol grphs. Hn privy o gnts is not ompromis in this stp. On th tringultion (son stp) is omplt, th thir n ourth stps (onstrution o JT rom th horl grph n onstrution o th ling tr rom JT) r lol n thy o not thrtn privy o gnts. W stt th privy rquirmnt or th son stp s ollows: Rquirmnt 3 For h hyprno H in th hyprtr o MSBN n h o its jnt hyprno H 0, th intrnl pnny strutur o H yon th sugrph spnn y thir -spst shoul not rvl to H 0. 7

Th ous o this wor is th istriution o th son stp: tringultion. Th prolm n strt s ollows: A st o gnts is orgniz into hyprtr whr h hyprno is ll y n gnt. Eh gnt hs n unirt grph m in it. Eh pir o grphs m in jnt gnts on th hyprtr shr st o ommon nos n r grph-onsistnt. W shll rr to gnts n grphs intrhngly. Th grphs r so lot on th hyprtr tht whnvr two grphs hv st S o shr nos with thir grph on th hyprpth twn thm, S is lso shr y th thir grph 3. Th prolm is to n n tiv wy in whih h gnt tringults its lol grph sujt to Rquirmnts 1 through 3 suh tht th union o ll lol horl grphs is tringult. W shll rr to this prolm s th prolm o ooprtiv tringultion. An lgorithm to solv th prolm in hyprstr ( gnrt hyprtr) ws prsnt in [9]. Th mtho is onptully omplx (.g., six typs o lins n onpt -pth r n, n th srh o suh -pths is nssry) n its orrtnss in th gnrl hyprtr s is iult to justiy ormlly. In this ppr, w prsnt onptully simpl mtho s on no limintion [1] n w prov its orrtnss in th gnrl s. W prsnt th mtho stpwis n rss only Rquirmnts n 3 in Stions 5 through 7. Rquirmnt 1 is rss in Stion 8. 5 Cooprtiv tringultion o two gnts In this stion, w onsir th simplst s o th prolm o ooprtiv tringultion, whr only two gnts/grphs r involv. Algorithm 1 os th ooprtiv tringultion. ivn st F o lins ovr st N o nos, w shll ll sust E F rstrition o F to S N i E = (x; y)jx S; y S; (x; y) F g: Algorithm 1 Dsription: Lt N, V n S isjoint nonmpty sts o nos. Lt grph ovr N [ S n Q grph ovr V [ S suh tht n Q r grph-onsistnt. Lt A n B two gnts suh tht is m in A n Q is m in B. gin 1 A limints nos in in th orr (N;S); not th ll-ins y F ; A s F to ; not th rsultnt grph y 0 ; 3 A sns B th rstrition o F to S; 4 B s to Q th rstrition o F to S riv; not th rsultnt grph y Q 0 ; 5 B limints nos in Q 0 in th orr (V;S); not th ll-ins y F 0 ; 6 B s F 0 to Q 0 ; not th rsultnt grph y Q 00 ; 7 A sns A th rstrition o F 0 to S; 8 B s to 0 th rstrition o F 0 to S riv; not th rsultnt grph y 00 ; n This onition n nsur y istriut morliztion. 3 This is quivlnt to th lol ovring onition. 8

Algorithm 1 lrly stiss th privy rquirmnt sin h xhng twn th two gnts rvls only th onntion ovr S. Figur 5 illustrts th lgorithm, whr grphs n Q r shown in th lt. Th shr nos S = ; g r shown s oul ovls. Elimintion in is prorm in th orr (;;;g; ; g). No n limint without ll-in. No nos in ;;g n now limint without ll-ins. I is limint nxt, thn ll-in ; g is rquir. No n thn limint without ll-in. To limint nxt, nothr ll-in ; g is n. Hn limintion in in th orr (;;;;;) prous 0 in Figur 5 (right), whr th ll-ins r shown s sh lins. Q l q Q" j m n o l n m q o j Figur 5: Illustrtion o Algorithm 1. Th ll-in ; g is thn to Q to otin Q 0 (not shown). Elimintion in Q 0 in th orr (;o;j;l;q;m;n;;) prous ll-in ; qg n th rsultnt grph Q 00 is shown in Figur 5 (right). For this xmpl, no ll-ins rom Q 00 n to to 0, n hn 00 = 0. Howvr, this is not lwys th s. Q Q Figur 6: Illustrtion o lst two stps o Algorithm 1. To s th n o stps 7 n 8 in Algorithm 1, onsir th xmpl in Figur 6. Th grphs n Q r shown in th lt, whr S = ; ; ; g. Atr limintion in in th orr (;;;;;), th rsultnt 0 is shown in Figur 6 (right). Atr th rstrition o ll-ins to S is to Q, w otin Q 0 in Figur 6 (right). Elimintion in Q 0 shoul strt with, whih rquirs ll-in ; g. This is th only ll-in to otin Q 00 (not shown). Sin ; g is twn nos in S, it will to 0 to otin 00 (not shown) in stps 7 n 8 o Algorithm 1. 9

Th ollowing proposition shows tht th rsultnt grphs rom Algorithm 1 r grphonsistnt n thir union is horl: Proposition 8 Whn Algorithm 1 hlts, th ollowing hol: (1) 00 n Q 00 r grph-onsistnt. () Th grph union 00 t Q 00 is horl. Proo: (1) It is tru rom stps 4 n 8. () It sus to show tht nos in 00 t Q 00 is liminl in th orr (V;N;S). V n limint rst without ll-ins sin th sugrph o 00 t Q 00 spnn y V [ S is Q 00 y stps 7 n 8, n Q 00 is liminl in th orr (V;S) rom stps 5 n 6. Th rmining grph is 00 y stp 8. N n limint rst rom 00 without ll-ins sin sugrphs o 00 n 0 spnn y N r intil y stp 8, n 0 is liminl in th orr (N;S) y stps 1 n. Th rmining grph is spnn y S. It is liminl sin Q 00 is liminl in th orr (V;S). Proposition 8 not only srvs to illustrt th si i o our mtho, it is lso n in proving th mor gnrl s low. 6 Cooprtion with hyprstr orgniztion Nxt, w onsir ooprtiv tringultion whr n> gnts r orgniz into hyprstr. W not th gnt t th ntr o th hyprstr y A0, n th gnt t h l y A i (i =1; :::; n 1). W not th grph m in gnt A i (i =0; :::; n 1) y i ovr nos N i. W ssum tht ths grphs stisy th lol ovring onition: N i \ N j N0 or vry i n j (i 6= j). W not N0 \ N i y S i. Algorithm st LINK = ; or h l gnt A i,o limint N0 in th orr (N0 n S i ;S i ) n not th rsultnt ll-ins y F ; F to 0 n LINK; sn A i th rstrition o F to S i ; riv st F 0 o ll-ins ovr S i rom A i ; F 0 to 0 n LINK; not th rsultnt grph y 0 0; or h l gnt A i,o sn A i th rstrition o LINK to S i ; Algorithm is xut y A0. It is orgniz into two stgs init y lin lin in-twn. Algorithm 3 is xut y h A i (i =1; :::; n 1). It is lso orgniz into two stgs. W ssum tht i n xisting lin is to to grph, it hs no t. 10

Algorithm 3 riv st F o ll-ins ovr S i rom A0; F to i ; limint N i in th orr (N i n S i ;S i ) n not th rsultnt ll-ins y F 0 ; F 0 to i ; sn A0 th rstrition o F 0 to S i ; riv st LINK 0 o ll-ins ovr S i rom A0; LINK 0 to i n not th rsultnt grph y 0 i; Th pross strts y A0. In h itrtion o th rst or loop (Algorithm ), it prorms lol limintion rltiv to S i, s ll-ins lolly n sns thm to A i. Whn A i rivs th ll-ins (Algorithm 3), it upts its grph, prorms lol limintion rltiv to S i, s ll-ins lolly n sns thm to A0. Atr th ov hs n on with h A i, A0 nlizs 0 0 n strts th son or loop (Algorithm ). It sns ll rlvnt ll-ins otin in th rst loop to h A i. In rspons, h A i rivs th ll-ins n nlizs 0 i (Algorithm 3). A A 0 A 1 () 1 0 l q m n o j h i g () l q 1 0 m g n o j h i () 1 0 l n m q o j h g i () Figur 7: Illustrtion o Algorithm n 3. Figur 7 illustrts Algorithms n 3. Th hyprstr with thr gnts is shown in (), n th thr grphs r shown in (). Atr A0 itrt on in th rst or loop (rltiv to A1) n A1 omplt its rst stg, th rsultnt grphs r shown in (). Th orrsponing limintion orrs r (o;;j;l;q;m;n;;) n (;;;;;), rsptivly. Atr A0 itrt th son tim in th rst or loop (rltiv to A) n A omplt its rst stg, th rsultnt grphs r shown in (). Th orrsponing limintion orrs r (o;l;;;q;m;n;j;) n (i;h;g;j;), rsptivly. For this xmpl, no ll-ins r to istriut in th son stg o Algorithms or A0. This is not th s in th nxt xmpl. Suppos th thr gnts on th hyprstr o Figur 7() r ssoit with th grphs in Figur 8(). Atr th rst itrtion o A0 in th rst or loop n th rst stg o A1, th rsultnt grphs r shown in (). Th limintion orrs r (; ; ; ; ) n (i; ; ; ), 11

0 0 i 1 0 () i 1 0 () i 1 () i 1 () Figur 8: Illustrtion o Algorithm n 3. rsptivly. Atr th son itrtion o A0 in th rst or loop n th rst stg o A, th rsultnt grphs r shown in (). Th limintion orrs r (;;;;)n(;;;;;), rsptivly. Atr th son stg o A0, th rsultnt grphs r shown in (). Not tht without this stg, th ll-in ; g nnot to 1. Also not tht in th son stg o A0, it is unnssry to itrt through th l gnt involv in th lst itrtion o th rst or loop (i.., A in this xmpl). W i not xlu this itrtion in Algorithm in orr to p it simpl. Clrly, Algorithms n 3 stisy th privy rquirmnt. W show tht th rsultnt grphs is grph-onsistnt n thir union is horl: Proposition 9 Whn Algorithms n 3 hlt t ll orrsponing gnts, th ollowing hol: (1) For i =1; :::; n 1, 0 0 n 0 i r grph-onsistnt. () Th grph union t n 1 i=0 0 i is horl. Proo: (1) For h i, 0 n i r grph-onsistnt y ssumption (Stion 4). All ll-ins ovr S i uring th ntir pross r to 0 0, umult in LINK, n snt to A i y A0. Thy r to 0 i y A i. Hn, 0 0 n 0 i r grph-onsistnt. () W prov th rsult through moi vrsion o Algorithms n 3: Without losing gnrlity, w shll ssum tht th rst or loop in Algorithm pros in th orr i =1; ; :::; n 1. For Algorithm, w to th moi vrsion th ollowing s th lst stp o th rst or loop: sn A j (j =1; :::; i 1) th rstrition o LINK to S j ; For Algorithm 3, w m its son stg (th lst two lins) into loop tht itrts i tims, whr th rst i 1 itrtions orrspons to th itionl sning y A0. 1

Th t o th moition is tht s soon s A0 n A i hv h omplt lol limintion rltiv to h othr, th nw ll-ins r immitly ommunit to A1 through A i 1 n r inlu in thir lol grphs. Thror, th moi vrsion will prou xtly th sm n rsult s th originl lgorithms. Lt 1 0 not th moi 0 tr A0 hs omplt th rst itrtion o th rst or loop (i = 1). W shll us th vlu o i s th suprsript to inx th urrnt grphs in irnt gnts. Lt 1 not th moi 1 tr A1 hs omplt its rst stg. Aoring to Proposition 8, th grph union Q 1 = 1 0 t 1 is horl. Atr A0 hs omplt th son itrtion o th rst or loop (i = ), it upts 1 0 into 0. Aoring to th moi lgorithm, A0 will ommunit th nw ll-ins ovr S1 to A1 so tht A1 n upt 1 into 1. This upting y A 0 n A1 n olltivly onsir s quivlnt to upting Q 1 into Q 1 = 0 t 1. Not tht 0 n 1 r grph-onsistnt. Th upting n lso onsir s n limintion y A1 ollow y n limintion y A0 s sri in Algorithm 1. Hn Q 1 is horl oring to Proposition 8. On th A si, tr A hs omplt its rst stg, it upts into. Th upting y A0, A1 n A n olltivly onsir s quivlnt to n limintion on Q 1 ollow y n limintion on s sri in Algorithm 1 us th lol ovring onition hols. Applying Proposition 8, w onlu tht th grph union Q = Q 1t = 0t 1t is horl. Using th ov rgumnt rursivly on i (i =3; :::; n 1), th n rsult Q n 1 n 1 = n 1 0 t ::: t n 1 n 1 = t n 1 i=0 0 i is horl. Not th us o th lol ovring onition in th ov proo. Th horlity rsult woul not hol without th lol ovring onition. Not lso tht just s th itionl ommunition in th moi vrsion o Algorithms n 3 us in th proo os not t th n rsult, th sttmnt \ F 0 to i " in Algorithm 3 os not t th n rsult n n rmov. 7 Cooprtion with hyprtr orgniztion W now onsir th most gnrl s o th ooprtiv tringultion prolm, whr n>3 gnts r orgniz into hyprtr. W prsnt rursiv lgorithms or h gnt. Th xution o h lgorithm y n gnt is tivt y ll rom n ntity nown s llr. W not th gnt ll to xut th lgorithm y A0. Th llr is ithr n jnt gnt o A0 in th hyprtr or th systm. I llr is n gnt, w not it y A (with grph ovr N m). I A0 hs jnt gnts othr thn A, w not thm y A1; :::; A n. W not N \ N0 y S n N0 \ N i y S i (i =1; :::; n). In lgorithm DpthFirstElimint, n gnt A0 prorms limintion n upting with rspt to ll jnt gnts. In lgorithm DistriutDlin, n gnt A0 rivs ll-ins rom llr n thn istriuts ll ll-ins mong -spnos to 0 sin th strt o th ooprtiv tringultion to h othr jnt gnt. 13

Algorithm CoTringult is xut y th systm to tivt th ooprtiv tringultion y multipl gnts. Algorithm 4 (DpthFirstElimint) i llr is n gnt A,o riv st F o ll-ins ovr S rom A ; F to 0; st LINK = ; or h gnt A i (i =1; :::; n), o limint N0 in th orr (N0 n S i ;S i ) n not th rsultnt ll-ins y F ; F to 0 n LINK; sn A i th rstrition o F to S i ; ll A i to run DpthFirstElimint n riv ll-ins F 0 ovr S i rom A i whn nish; F 0 to 0 n LINK; i llr is n gnt A,o limint N0 in th orr (N0 n S ;S ) n not th rsultnt ll-ins y F 0 ; F 0 to 0 n LINK; sn A th rstrition o LINK to S ; Algorithm 5 (DistriutDlin) i llr is n gnt A,o riv st F o ll-ins ovr S rom A ; F to 0; st LINK to th st o ll ll-ins to 0 so r; or h gnt A i (i =1; :::; n), o sn A i th rstrition o LINK to S i ; Algorithm 6 (CoTringult) hoos n gnt A ritrrily; ll A to run DpthFirstElimint; tr A hs nish, ll A to run DistriutDlin; Figur 9 illustrts CoTringult with systm o 11 gnts. Th hyprtr is pit in th gur with h no ll y n gnt. Suppos th gnt A hosn in th lgorithm is A5. For h rrow, n limintion (s DpthFirstElimint) y th gnt t th til on its lol grph is prorm n th rlvnt ll-ins gnrt r thn snt to th gnt t th h. For xmpl, th rrow rom A5 to A3 rprsnts th limintion o A5 on 5 in th orr (N5 n N3;N5 \ N3), ollow y sning A5 th rstrition o ll-ins to N5 \ N3. Th ll o h rrow shows th orr o th oprtion. It's sy to s tht th orr is similr to pth-rst trvrsl n hn th nm o th oprtion. 14

Atr A5 hs nish DpthFirstElimint, th ow o ll-ins uring xution o DistriutDlin is shown y only thos rrows pointing wy rom A5. A 0 A 1 A 3 4 8 5 9 A 19 3 1 A9 6 0 18 7 A 5 A7 13 17 A4 1 11 14 15 16 A 10 10 A6 A8 Figur 9: Illustrtion o CoTringult. In Thorm 11, w show th proprtis o CoTringult. W n th ltitu o no in hyprtr to us in th proo. ivn no A0 on th hyprtr, n th longst pth rom A through A0 to l, n not th l y A. Th ltitu o A0 is thn th lngth o th pth twn A0 n A. In Figur 9, or xmpl, i A is A5, thn th ltitus o A, A4 n A5 r 0, 1 n, rsptivly. Lmm 10 stlishs th pth-rst proprty o DpthFirstElimint to us in proving Thorm 11. W shll rgr A s th root o th hyprtr. Lmm 10 All limintions on grphs lot t th su(hypr)tr root t A0 r prorm tr A0 is ll to run DpthFirstElimint n or A0 rturns rom th ll. Proo: W prov y inution on th ltitu o A0. Whn =0,A0 is l n xtly on limintion is prorm on 0 (s Figur 9, whr th totl numr o limintions on grph lot t (hypr)no is shown y th numr o outgoing rrows o th no). Only th two i sttmnts in DpthFirstElimint r xut in this s, whr th son on ontins th limintion. Hn th lmm is tru. Assum tht th lmm is tru whn = m 0. Now onsir th s = m + 1. Th limintions prorm on grphs lot t th sutr root t A0 r thos prorm on 0 n thos prorm on grphs lot t th sutr root t h A i (i =1; :::; n). Extly n + 1 limintions r to prorm on 0 (on rltiv to h A i (i =1; :::; n) n on rltiv to A ). Th n limintions rltiv to A i (i =1; :::; n) r ontin in th or loop. All limintions on grphs lot t th sutr root t h A i (i =1; :::; n) r lso prorm in th or loop uring th ll to A i y th inutiv ssumption. Th lst limintion on 0 is prorm in th i sttmnt ollowing th or loop. W now prov th proprtis o CoTringult. Thorm 11 Whn CoTringult hlts, th ollowing hol: (1) Eh pir o jnt grphs on th hyprtr r grph-onsistnt. () Th grph union o ll grphs on th hyprtr is horl. 15

Proo: (1) This is tru u to th xution o DistriutDlin y gnt A, whih rursivly propgts ll-ins outwrs rom A to th ntir hyprtr. () W prov using moi DpthFirstElimint whr th ollowing sttmnt is t th n: or h gnt A j (j =1; :::; n), o sn A j th rstrition o LINK to S j n ll A j to run DistriutDlin; Its t is tht s soon s ll limintions on grphs lot in th sutr root t A0 hs omplt (Lmm 10), jnt grphs on th sutr r m grph-onsistnt. Hn, th n rsult o CoTringult using th moi DpthFirstElimint is invrint. Using th moi lgorithm, w prov y inution on th ltitu o gnt A0. Whn =1,A1 through A n r lvs o th hyprtr. By Lmm 10, ll limintions on grphs lot on th sutr root t A0 r prorm whn A0 is ll to run DpthFirstElimint. Th prossing is intil to tht o Algorithms n 3, xpt th itionl limintion in 0 rltiv to A. Hn y Proposition 9, th grph union Q o 0 through n is horl or th itionl limintion. Sin th itionl limintion n th upting tht ollows hng nithr th horlity o 0 nor tht o th rmining sugrph o Q, th grph union o 0 through n is horl tr th itionl limintion. Now ssum tht whn th ltitu o A0 is = m 1, th grph union o 0 through n is horl tr A0 is ll to run th moi DpthFirstElimint. Consir th s = m +1. Whn DpthFirstElimint is ll y A0 in h A i (i =1; :::; n), it is quivlnt to rgr A i s (hypr)l with Q i m in it, whr Q i is th union o ll grphs on th sutr root t A i. It is quivlnt sin ll limintions on grphs in th sutr root t A i r prorm uring th ll o DpthFirstElimint on A i y Lmm 10, n sin th lol ovring onition hols. By th inutiv ssumption, whn th ll is omplt, Q i is horl. Du to th quivln with th prossing o Algorithms n 3, w onlu tht th grph union o 0, Q1; :::; Q n is horl y Proposition 9. Thorm 11 shows tht whn CoTringult hlts, th union o ll grphs on th hyprtr is horl. Rll tht h lol grph ns to horl s wll (Stion 4). Thorm 1 shows tht this is utomtilly stis u to th wy in whih MSDA is n. Thorm 1 Lt horl grph n g grph otin y lting som nos (n lins inint to ths nos) rom. Thn g is horl. Proo: It sus to show tht tr th ltion o singl no x, th rmining grph g is horl. W prov y ontrition: Suppos tht g is nonhorl. Thn thr must horlss yl o lngth > 3in g. Sin is horl, shoul prou y th ltion o x n lins inint to x. Howvr, no mttr wht th jny o x is in, w nnot m th horlss yl to go wy. Hn, is in or x is lt. This implis tht is nonhorl: ontrition. 16

8 Ensur limintion orrs or multipl -spsts In Stion 7, w hv prsnt CoTringult tht solvs th ooprtiv tringultion prolm sujt to Rquirmnts n 3. Woul Rquirmnt 1 stis s wll? Th ollowing xmpl shows tht this is not th s in gnrl. 1 0 g h Figur 10: Illustrtion o violtion o Rquirmnt 1. Consir th thr lol grphs (ignor th sh lins) in Figur 10 with th hyprstr 1 0. Following CoTringult, gnt A0 rst limints 0 in th orr (;;;;;) rltiv to A1. Th limintion prous no ll-ins. Thn gnt A1 limints 1 in th orr (g;;;;) rltiv to A0 lso without ll-ins. Nxt, gnt A0 limints 0 rltiv to A in th orr (;;;;;), whih prous ll-in ; g (th sh lin in 0). It will snt to A n to (th sh lin in ). A thn limints in th orr (h; ; ; ) rltiv to A0 without itionl ll-ins. CoTringult now hlts. Howvr, i w limint th nw 0 gin rltiv to A1 in th orr (;;;;;), nothr ll-in ; g is now n. Hn, CoTringult os not gurnt stistion o Rquirmnt 1 in gnrl. On th othr hn, situtions li th ov xmpl o not sm to ris otn. In our xprimntl stuy (s Stion 9) with thr MSBNs, ll o thm stis Rquirmnt 1 whn CoTringult hlt. Hn w suggst th ollowing lgorithm to rss Rquirmnt 1: Algorithm 7 (SCoTringult) prorm CoTringult; h gnt prorms n limintion rltiv to th -spst with h jnt gnt; i no gnt ny ll-ins, hlt; ls rstrt this lgorithm; Not tht th limintion prorm in SCoTringult is stritly lol to h gnt. S Stion 10 or th omplxity nlysis n possil msurs or improving th iny. W hv th ollowing thorm on th proprty o SCoTringult: Thorm 13 SCoTringult will hlt, n whn it hlts, Rquirmnt 1 is stis. Proo: Eh roun o SCoTringult will som ll-ins to som lol grphs, sin othrwis it will hlt. Sin only nit numr o ll-ins n to h lol grph 17

or it oms omplt, n omplt grph is liminl in ny orr, w onlu tht SCoTringult will hlt. Whn SCoTringult hlts, Rquirmnt 1 hs n xpliitly vri. By Thorms 11, 1 n 13, w onlu tht th prolm o ooprtiv tringultion with Rquirmnts 1 through 3 is solv y SCoTringult. 9 Exprimntl Stuy So r, w hv shown tht SCoTringult orrtly solvs th prolm o ooprtiv tringultion. Howvr, our nlysis sys nothing out how sprs th rsultnt tringultion is. In t, DpthFirstElimint spiys only th (prtil) orr o limintion in trms o susts o nos in grph. Th orr o limintion within h sust is lt unspi. Dpning on th (totl) orr us, irnt ll-ins n prou. In gnrl, w prr limintion orrs tht prou th minimum numr o ll-ins. As it is NP hr [10] to n suh orrs, huristis shoul us. A simpl n tiv huristis or ntrliz tringultion is liminting th no with th smllst ll-ins []. W hv opt th sm huristis to supplmnt th prtil orr spi in Dpth- FirstElimint. To vlut how wll SCoTringult (supplmnt y th huristis) prorms, w onut th ollowing xprimntl stuy: W hv implmnt our lgorithms in WEBWEAVR-III (th sussor o WEBWEAVR- II writtn in JAVA). To vlut th sprsnss o rsults rom ooprtiv tringultion, w ompr with th rsults rom th ntrliz tringultion using th sm huristis. A 0 A A A 1 4 A 3 gt1 gt4 gt gt3 0 h gt10 g gt9 g gt5 gt6 n m o gt8 q gt7 g gt1 i j 1 l gt11 p gt14 gt17 w q gt18 gt13 s l x r gt15 t gt16 p z y gt19 u v 4 3 Figur 11: CIRCS: n xprimntl prolm or ooprtiv tringultion. Tsts wr run using thr gnrt MSBNs: 5PARTS (not shown), CIRCS (Figur 11) n BIB (Figur 1). Th hyprtr o CIRCS with v gnts is shown in Figur 11 (lt). Lol grphs tr morliztion r shown in th right (without th sh lins). Fill-ins uring ooprtiv tringultion r rwn s sh lins. Th rsult or BIB is shown in Figur 1. For ll thr MSBNs, SCoTringult trmint with just on xution o CoTringult. 18

A 3 A 0 A 1 A A 4 T1 S1 R1 O1 N1 y M1 U1 Q1 w P1 t L1 v u A V1 s g 3 y x 0 v w t u A B z F1 m n i p l h s 1 o E1 j H1 D1 q x V I1 B J1 R W H z K1 I S D E J U T F X1 Z1 g W1 m n l r H C I D E J F Y1 B1 h o C K N 1 1 C1 i p j q P Q L M O 1 A1 Z X r 4 Y Figur 1: BIB: n xprimntl prolm or ooprtiv tringultion. Th xprimntl rsults r summriz in Tl 1. Th son olumn lists th totl vrils (shr vrils r ount on) in h MSBN. Th numr o ll-ins prou y h ntrliz tringultion is list in th thir olumn, n th orrsponing rsult or ooprtiv tringultion is list in th lst olumn. For 5PARTS, smll MSBN, th sm ll-in ws prou y oth mthos. For CIRCS, h mtho prou ight ll-ins ut two ll-ins wr irnt. For BIB, rsults rom th two mthos shr only two ll-ins, n th ooprtiv tringultion prou two mor. Totl numr Fill-ins Fill-ins MSBN o vrils (ntrliz) (ooprtiv) 5PARTS 1 1 1 CIRCS 45 8 8 BIB 80 6 8 Tl 1: Summry o xprimntl rsults Th rsults monstrt tht SCoTringult prous rsonly sprs tringultions ompr with th ntrliz tringultion. 19

10 Complxity nlysis First, w nlyz th tim omplxity o CoTringult. W onntrt on DpthFirstElimint n ous on its limintion prossing only, s th mount o omputtion in ommunition o ll-ins to jnt gnts uring DpthFirstElimint n DistriutDlin is minor. ivn hyprtr o n gnts, rom Figur 9, it's sy to s tht n limintions r prorm uring DpthFirstElimint. Lt th mximum numr o nos in lol grph, n i th mximum gr o no. To limint no, th ompltnss o its jny is h. Th omplxity o th hing is O(i ). Using th huristis, O() nos r h or on is limint. Hn th tim omplxity o liminting ll nos in grph is O( i ). Th omplxity o CoTringult is thn O(n i ). Nxt, w onsir th omplxity o SCoTringult. Clrly, th worst s omplxity o SCoTringult is muh highr thn CoTringult. Howvr, our xprimntl stuy provis vin tht th vrg s omplxity o SCoTringult will los to tht o CoTringult. Furthrmor, iny o SCoTringult n improv in svrl wys: For instn, i -spst oms omplt uring tringultion, thn th hyprlin it rprsnts is \lo" n n ntir su(hypr)tr in on si o th hyprlin ns not pross in ltr itrtions o CoTringult i no ll-ins r prou in th sutr. Anothr onition or rly prtil trmintion is th hng o lol topology. I n gnt nithr prous ny ll-ins lolly nor rivs ny rom jnt gnts uring on roun o CoTringult, it os not hv to prtiipt in th nxt roun (lthough it my hv to prtiipt in ltr rouns). Bs on ths possil improvmnts n our mpiril rsults, w liv tht lthough th worst s omplxity o SCoTringult is quit xpnsiv, only vry smll numr o (otn on) itrtions o CoTringult n to prorm in mny MSBNs. Most gnts n not prtiipt in most o th itrtions o CoTringult xpt th rst on. Thror, th vrg s omplxity o SCoTringult (with ths improvmnts) will similr with tht o CoTringult. 11 Conlusion Inrn with multi-gnt MSBN n prorm tivly in ompil rprsnttion. Th ompiltion without ompromising gnts' privy rquirs ooprtiv tringultion o grph union without rvling h gnt's lol grph yon th sugrph ovr shr nos. W hv propos onptully simpl n int lgorithm (SCoTringult) or ooprtiv tringultion o grph n s th union o st o grphs orgniz into hyprtr. Th lgorithm hs n implmnt n smll sl tst monstrt sprs tringultions ompr with th ntrliz prossing. 0

Anowlgmnts This wor is support y th Rsrh rnt OP015545 rom th Nturl Sins n Enginring Rsrh Counil (NSERC) o Cn. Hlpul wr riv on n rly vrsion rom F. Jnsn, U. Kjrul n K.. Olsn. Appnix: Othr rph-thortil trminologis A juntion tr (JT) T ovr st N is tr whr h no is ll y sust (ll lustr) on n h lin is ll y th intrstion (ll spst) o its inint lustrs, suh tht th intrstion o ny two lustrs is ontin in vry spst on th pth twn thm. Two simpl JTs r shown in Figur 4 (right). A mximl omplt st o nos in grph is ll liqu. ivn horl grph ovr st N o nos, JT T o is rt y lling h no o T with liqu o. Suh JT xists i is horl. Th two JTs in Figur 4 (right) r JTs o n Q in Figur 4 (lt), rsptivly. For isjoint susts X, Y n Z o nos in grph, wus<xjzjy > to not tht nos in Z grphilly sprt nos in X n nos in Y. rphil sprtion my n irntly in irnt typs o grphs. I is n unirt grph, thn th norml grphil sprtion pplis. In Figur 4 (lt), ; g n ; g r sprt y g in. In JT T ovr N, grphil sprtion is n s ollows: Lt X, Y n Z isjoint susts o N. Suppos tht or h x X n h lustr C x suh tht x C x, n or h y Y n h lustr C y suh tht y C y, thr xists spst S on th pth twn C x n C y suh tht S Z. Thn X n Y r si to grphilly sprt y Z in T. In Figur 4 (right), ; g n ; g r sprt y g in th lt JT. Lt N th st o vrils in omin n P (N) th proility istriution ovr N. For thr isjoint susts X, Y n Z o vrils, X n Y r onitionlly inpnnt givn Z i P (XjY;Z) =P (XjZ) whnvr P (Y;Z) > 0: Dnot th rltion y I(X; Z; Y ). A grph is n I-mp [4] o PDM ovr N i thr is n on-to-on orrsponn twn nos o n vrils in N suh tht or ll isjoint susts X, Y n Z o N, <XjZjY > =) I(X; Z; Y ). Rrns [1] M.C. olumi. Algorithmi rph Thory n Prt rphs. Ami Prss, 1980. [] F.V. Jnsn. An introution to Bysin ntwors. UCL Prss, 1996. [3] D. Kollr n A. Pr. Ojt-orint Bysin ntwors. In D. igr n P.P. Shnoy, itors, Pro. 13th Con. on Unrtinty in Artiil Intllign, pgs 30{ 313, Provin, Rho Isln, 1997. [4] J. Prl. Proilisti Rsoning in Intllignt Systms: Ntwors o Plusil Inrn. Morgn Kumnn, 1988. 1

[5] Y. Xing. Optimiztion o intr-sunt li upting in multiply stion Bysin ntwors. In Pro. 11th Con. on Unrtinty in Artiil Intllign, pgs 565{573, Montrl, 1995. [6] Y. Xing. A proilisti rmwor or ooprtiv multi-gnt istriut intrprttion n optimiztion o ommunition. Artiil Intllign, 87(1-):95{34, 1996. [7] Y. Xing. Bli upting in MSBNs without rpt lol propgtions. Thnil Rport CS-98-01, Univrsity o Rgin, 1998. [8] Y. Xing, B. Pnt, A. Eisn, M. P. Bos, n D. Pool. Multiply stion Bysin ntwors or nuromusulr ignosis. Artiil Intllign in Miin, 5:93{314, 1993. [9] Y. Xing, D. Pool, n M. P. Bos. Multiply stion Bysin ntwors n juntion orsts or lrg nowlg s systms. Computtionl Intllign, 9():171{ 0, 1993. [10] M. Ynnis. Computing th minimum ll-in is NP-omplt. SIAM J. o Algri n Disrt Mthos, (1), 1981.