Numerical simulation of Earth s gravitational field recovery from SST based on the energy conservation principle

Similar documents
Demonstration on the indexes design of gravity satellite orbit parameters in the low-low satellite-to-satellite tracking mode

Gravity Recovery and Climate Experiment (GRACE) alias error from ocean tides

Geophysical Journal International

Test Computations

Satellite Geodesy and Navigation Present and Future

Two-step data analysis for future satellite gravity field solutions: a simulation study

Specific gravity field and deep crustal structure of the Himalayas east structural knot

GRAVITY ANOMALY ASSESSMENT USING GGMS AND AIRBORNE GRAVITY DATA TOWARDS BATHYMETRY ESTIMATION

Calculation of Earth s Dynamic Ellipticity from GOCE Orbit Simulation Data

Circular Letter SC7: Satellite Gravity Field Missions SSG 2.193: Gravity Field Missions: Calibration and Validation

A Mission to Planet Mars Gravity Field Determination

Gravity recovery capability of four generic satellite formations

Curriculum Vitae. Haiying WANG

HYBRID DECADE-MEAN GLOBAL SEA LEVEL WITH MESOSCALE RESOLUTION. University of Hawaii, Honolulu, Hawaii, U.S.A.

Application of Accelerometer Data in Precise Orbit Determination of GRACE -A and -B

Advances in Geosciences

GRACE impact in geodesy and geophysics. R. Biancale (GRGS-CNES Toulouse), M. Diament (IPG Paris)

THE DETERMINATION OF GRAVITATIONAL POTENTIAL DIFFERENCES FROM SATELLITE-TO-SATELLITE TRACKING

Originally published as:

THE DETERMINATION OF GRAVITATIONAL POTENTIAL DIFFERENCES FROM SATELLITE-TO-SATELLITE TRACKING

Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement

Earth gravity field recovery using GPS, GLONASS, and SLR satellites

Global Models. Franz Barthelmes

Numerical Investigation on Spherical Harmonic Synthesis and Analysis

Dependences in the pillar Earth s gravity field of

Simulation study of a follow-on gravity mission to GRACE

1

Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters

Vicente, R.O, and C.R. Wilson, On Long Period Polar Motion, Journal of Geodesy, 2002, 76:

ESA s supporting Activities Related to Mass Transport in the Earth System

Model name GO_CONS_GCF_2_DIR_R5 Producer Method Data period Max. degree Input data Processing strategy

Gravity Recovery Using COSMIC GPS Data: Application of Orbital Perturbation Theory

Wavelet Modeling of the Gravity Field over Japan

Precise Orbit Determinatibn for CHAMP'using GPS Data from BlackJack Receiver

Supporting information:

Gravity Anomaly and Satellite Altimetry in the China Seas: Applications to Geodynamics

GRACE. Gravity Recovery and Climate Experiment. JPL Level-2 Processing Standards Document. For Level-2 Product Release 05.1

Gravitational Effects of Rotating Bodies

Evaluation of the EGM2008 Gravity Model

Comparison bet ween the observation of the particle detector inside ZY21 Satellite and the model of the radiation belt

Hydrological balance in the large Russian river basins from GRACE satellites

The Global Geodetic Observing System (GGOS) of the International Association of Geodesy, IAG

Global Inverse for Surface Mass Variations, Geocenter Motion, and Earth Rheology

B. Loomis, D. Wiese, R. S. Nerem (1) P. L. Bender (2) P. N. A. M. Visser (3)

Impact of short period, non-tidal, temporal mass variability on GRACE gravity estimates

GOCE based Gravity Field Models Signal and Error Assessment

Gravity gradiometry for fundamental physics, planetary science and Earth observation -- Heritage from LISA Pathfinder

GPS-ONLY GRAVITY FIELD RECOVERY FROM GOCE

Supporting Information

Hydrological Mass Variations due to Extreme Weather Conditions in Central Europe from Regional GRACE 4D Expansions

Simulation Study of A Low-Low Satellite-to-Satellite Tracking Mission. Jeongrae Kim, B.S., M.S. Dissertation. Doctor of Philosophy

FRAME-DRAGGING (GRAVITOMAGNETISM) AND ITS MEASUREMENT

GGOS Bureau for Standards and Conventions

Geoid Determination Based on a Combination of Terrestrial and Airborne Gravity Data in South Korea

Gravity 3. Gravity 3. Gravitational Potential and the Geoid. Chuck Connor, Laura Connor. Potential Fields Geophysics: Week 2.

Gravitation. Luis Anchordoqui

Short-arc analysis of intersatellite tracking data in a gravity mapping mission

EVALUATING GOCE DATA NEAR A MID-OCEAN RIDGE AND POSSIBLE APPLICATION TO CRUSTAL STRUCTURE IN SCANDINAVIA

Chapter 2 Study on the Earth s Volume Change by Using Space Observed Technology

Towards combined global monthly gravity field solutions

SPIE Annual Reporting

An improved sampling rule for mapping geopotential functions of a planet from a near polar orbit

Gravity Inversion Using Point Mass Distribution

Earth gravity field recovery using GPS, GLONASS, and SLR satellites

Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field

Regional gravity field recovery from GRACE using position optimized radial base functions

Consolidation properties of dredger fill under surcharge preloading in coast region of Tianjin

GOCE SGG and SST quick-look gravity field analysis

Interplanetary Tidal Interactions and Gravity

Earth rotation and Earth gravity field from GRACE observations. Lucia Seoane, Christian Bizouard, Daniel Gambis

GOCE QUICK-LOOK GRAVITY FIELD ANALYSIS: TREATMENT OF GRAVITY GRADIENTS DEFINED IN THE GRADIOMETER REFERENCE FRAME

Copyright 2004 American Geophysical Union. Further reproduction or electronic distribution is not permitted.

Influences of crustal thickening in the Tibetan Plateau on loading modeling and inversion associated with water storage variation

Geodesy Part of the ACES Mission: GALILEO on Board the International Space Station

Calibration/validation of GOCE data by terrestrial torsion balance observations

Satellite Gravimetry and its Application to Glaciology by Anthony Arendt for the UAF Summer School in Glaciology, June post-glacial rebound

GPS 10, GPS , GPS. (J PL ) Zumbeger. mm, cm ; ( Global RT K) [3 ]

Status of the European Gravimetric Quasigeoid

The Effect of the Geocentric Gravitational Constant on Scale

Received: 13 July 2018; Accepted: 31 August 2018; Published: 15 September 2018

10 General Relativistic Models for Space-time Coordinates and Equations of Motion

1 The satellite altimeter measurement

Astrodynamics (AERO0024)

Orbit Determination Using Satellite-to-Satellite Tracking Data

Globally covering a-priori regional gravity covariance models

Joint International Mechanical, Electronic and Information Technology Conference (JIMET 2015)

arxiv: v1 [physics.ins-det] 19 Apr 2014

GOCE GGM analysis through wavelet decomposition and reconstruction and validation with GPS/Leveling data and gravity anomalies

Astrodynamics (AERO0024)

Future Satellite Gravity Missions

Physics Lecture 03: FRI 29 AUG

GOCE DATA PRODUCT VERIFICATION IN THE MEDITERRANEAN SEA

On the problem of geoid height transformation between different geodetic reference frames

Universal Associated Legendre Polynomials and Some Useful Definite Integrals

RADIALLY ADAPTIVE EVALUATION OF THE SPHERICAL HARMONIC GRAVITY SERIES FOR NUMERICAL ORBITAL PROPAGATION

Lake level variations from satellite radar altimetry with retracking of multi-leading edge

Geodetic use of global digital terrain and crustal databases in gravity eld modeling and interpretation Research article

Supporting Information

, ; 21. , km km 2 [1 3 ] [4 ) ; 3 000, Vol. 27,No. 5 Sep.,2005 RESOURCES SCIENCE : (2005) ,2 1,2 ,,,

The GOCE User Toolbox

Transcription:

49 3 2006 5 CHINESE JOURNAL OF GEOPHYSICS Vol. 49, No. 3 May, 2006,,.., 2006, 49 (3) :712717 Zheng W, Shao C G, Luo J, et al. Numerical simulation of Earth s gravitational field recovery from SST based on the energy conservation principle. Chinese J. Geophys. (in Chinese), 2006, 49 (3) :712717 1, 1, 1 3, 2 1, 430074 2, 430077,., 120. :, EIGEN2GRACE02S ;, 2.,GRACE,,, 0001 5733(2006)03 0712 06 P223 2005 08 16,2006 02 28 Numerical simulation of Earth s gravitational field recovery from SST based on the energy conservation principle ZHENG Wei 1, SHAO Cheng Gang 1, LUO Jun 1 3, HSU Houtse 2 1 Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, China 2 Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China Abstract Based on the measurement principle of Satelliteto Satellite Tracking mission (SST), the new and effective observation equations of two satellites anhree satellites are established, respectively using the energy conservation principle. The high accuracy Earthπs gravitational field up to degree and order 120 is recovered through numerical simulation by applying an improved pre conditioned conjugate gradient ( PCCG) iterative approach. The simulated results show that the accuracy of the Earthπs gravitational field recovery using two satellites is close to the results of EIGEN GRACE02S publicized by Jet Propulsion Laboratory (J PL ) in America, anhe accuracy of the Earthπs gravitational field recovery using three satellites is about 2 times higher than that using two satellites. Keywords Earthπs gravitational field, GRACE satellites, Satelliteto satellite tracking mission, Energy conservation principle, Pre conditioned conjugate gradient approach (40174049 40234039).,,1977,,. 3,,1956,,,. Email : junluo @mail. hust. edu. cn

3 : 713 1,. OKeefe [1 ],,. GPS( Global Positioning System) [2 ] CHAMP (Challenging Minisatellite Payload ) GRACE ( Gravity Recovery and Climate Experiment), GPS,.,Jekeli [3 ], Han [4,5 ], Visser [6 ],Gerlach [7 ] [8 ]. GRACE 2002 3 17, [911 ].,GRACE K., K, [12 ]., 1 2 ( gr 1 + gr 2 ) ( gr 12 e 12 ) e 12 1 2 ( gr 1 + gr 2 ) [ gr 12 ( gr 12 e 12 ) e 12 ],gr 1,gr 2,gr 12, gr 12 = gr 2 gr 1, e 12, e 12 = r 12 Π r 12., g 12 e 12 ( gr 12 e 12 ) e 12. K g 12,, 120.,K g 12 = 1mΠs,. 2. 211 : E k 1 = D kn u n 1, (1), E k 1, k. D k n k n, n = L 2 max + 2L max 3, L max. u n 1.,: r = F + f, (2), r, F, F = F e ( r, t) + F T ( r, t). F e ( r, t), F T ( r, t) ( ), r. f,. (2) gr, gr r = gr ( F e + F T ) + gr f, (3), F e F T F e(t) = 9V e(t) Π9r, (4), V e, V e = V 0 + T e. V 0, V 0 = GMΠr., r = r x 2 + y 2 + z 2. x, y, z r. GM M G. T e, V T. (4) d V e(t) = 9 V e(t) 9 r d r + 9 V e(t) = F e(t) gr + 9 V e(t). (5) (5) (3), 1 2 gr 2 = d V e 9 V e + gr f + E 0 + d V T = V 0 + T e + V T 9 V T 9 ( V e + V T ) + gr f + E 0. (6) (6),, : T e = E k E f + V V T V 0 E 0, (7), E k, E k = 1 2 gr 2 ; E f

714 (Chinese J. Geophys. ) 49, E f [3] = gr f ; V, V= 9 ( V e + V T ) 9 e ( xgy t ygx), e ; E 0. (7),, : T e12 = E E f12 + V12 V T12 V 012 E 012,, T e12, T e12 ( r 1, 1, 1, r 2, 2, 2 ) = T e2 ( r 2, 2, 2 ) T e1 ( r 1, 1, 1 ) = L R e l = 2 m = l R e r 1 l l +1 R e r 2 l +1 gy lm ( 2, 2 ) gy lm ( 1, 1 ) gc lm, (8) gy l, m (, ) = gp l m ( cos) Q m (), Q m () = cos m m 0,= GM. sin m m < 0 r 1, r 2, 1, 2, 1, 2. R e. gp lm ( cos) Legendre, l, m. gc lm. (8) E, E = 1 2 ( gr 2 + gr 1 ) ( gr 2 gr 1 ) ; E f12, E f12 = ( gr 2 f 2 gr 1 f 1 ) ; V 12 [2 ], V 12 = e ( x 12 gy 2 y 2 gx 12 y 12 gx 1 + x 1 gy 12 ) ; V T12 ; V 012, V 012 = GM r 2 GM r 1 ; E 012,. (8), E, CHAMP,., GRACE K g12 = 1mΠs., Jekeli [3 ] Han [4 ], GRACE.. (8) E E = 1 2 ( gr 2 + gr 1 ) { ( gr 12 e 12 ) e 12 + [ gr 12 ( gr 12 e 12 ) e 12 ]}, (9), 1 2 ( gr 2 + gr 1 ),gr 12 = ( gr 12 e 12 ) e 12,gr 12 = gr 12 ( gr 12 e 12 ) e 12. E = 1 2 ( gr 2 + gr 1 ) ( gr 12 e 12 ) e 12, E = 1 2 ( gr 2 + gr 1 ) [ gr 12 ( gr 12 e 12 ) e 12 ]. gr 12 gr., 12 1, E,, E K, 2 ( A). 2 A B,., GRACE K g 12 e 12 ( gr 12 e 12 ) e 12. (9) 12 = 1 2 ( gr 2 + gr 1 ) { g E 12 e 12 + [ gr 12 ( gr 12 e 12 ) e 12 ]}. (10) 1 Table 1 Errors of kinetic energy difference (m 2 Πs 2 ) E = 1 2 ( gr 2 + gr 1 ) ( gr 2 gr 1 ) E = 013278 E = 1 2 ( gr 2 + gr 1 ) [ ( gr 12 e 12 ) e 12 ] E = 1 2 ( gr 2 + gr 1 ) [ gr 12 ( gr 12 e 12 ) e 12 ] 12 = 1 2 (gr 2 + gr 1 ) {g 12 e 12 + [ gr 12 (gr 12 e 12 ) e 12 ]} E = 013265 E E = 0101 E 12 = 010139 E 12 = 1 2 ( gr 2 + gr 1 ) g 12 e 12 E = 01008 12 E 12 = 1 2 ( gr 2 + gr 1 ) [ gr 12 ( gr 12 e 12 ) e 12 ] E = 0101 12 1, K g12 = 1mΠs,

3 : 715 2 Table 2 Commensurate relationship of accuracy A B (8 10 3 m 2 Πs 2 ) (8 10 2 m 2 Πs 2 ), g 12 1 10 6 mπs 1 10 5 mπs, f, r, r12 5 10 10 mπs 2 5 10 9 mπs 2 3 10 2 m 3 10 1 m 1 10 3 m 1 10 2 m 3 Table 3 Numerical simulation parameters of satellite orbits EGM96 500 km 220 km 89 01004 30 days 10 s, gr, gr12 3 10 5 mπs 3 10 4 mπs 2 10 5 mπs 2 10 4 mπs. (10) (8), : T e12 = 1 2 ( gr 2 + gr 1 ) { g 12 e 12 + [ gr 12 ( gr 12 e 12 ) e 12 ]} E f12 + V12 V T12 V 012 E 012. (11) (11),, : T e23 T e12 = ( E 23 E 12) ( E f23 E f12 ) + ( V 23 V12 ) ( V T23 V T12 ) ( V 023 V 012 ) ( E 023 E 012 ). (12), r gr., Runge Kutta 12 AdamsCowell. 3, 9h. gc lm,r, gr,k g 12 f.,(11),,. 2 A, Te12 = 8 10 3 m 2 Πs 2,,, 10 4,,. 1, (11). 212 (1),,,. (1) D T k n 1, (11) (10 5 m 2 Πs 2 ) Fig. 1 Numerical computation errors of the observation Eq. (11) without random noise (10 5 m 2 Πs 2 ) D T kn E k 1 = D T kn D kn u n 1. (13) G n 1 = D T k n E k 1, S n n = D T k n D k n, (13) G n 1 = S nn u n 1. (14) [12 ]. P n n. P n n :, P 1 n n., P 1 n ns 1 n n. 2, S n n,,, l = 30,, 10. S n n,p n n 0,0.,S n n, P 1 n n S 1 n n., ( 1Π1000).

716 (Chinese J. Geophys. ) 49 3, 8, 8h. (14) P 1 n n P 1 nn G n 1 = P 1 nn S nn u n 1. (15) G n 1 = P 1 n ng n 1, S n n = P 1 n n S n n, (15) G n 1 = S nn u n 1. (16) 3 GRACE, Fig. 3 Comparison of cumulative geoid height errors among GRACE satellites, two satellites anhree satellites 2 S n n ( l = 30),10. Fig. 2 Block diagonally dominant characteristics of matrix S n n ( l = 30) The value of the matrix elements are represented by color 3 intensity, anhe color bar values are denoted by denary logarithm. 3, EIGEN GRACE02S 120 GRACE. 120,20 cm. 120,. 120, 2. 4., g 12 e 12 gr 12 ( gr 12 e 12 ) e 12. K g 12,., K g12 = 1mΠs,K,,. :, EIGEN GRACE02S ;, 2.,,. (NASA) ( GFZ) GRACE. (References) [ 1 ] O Keefe J A. An application of Jacobi s integral to the motion of an Earth satellite. 266 The Astronomical Journal, 1957, 62 (1252) : 265 [ 2 ],,. GPSΠ ().,2005,48(2) : 294298 Li F, Yue J L, Zhang L M. Determination of geoid by GPSΠGravity data. Chinese J. Geophys. (in Chinese), 2005, 48 (2) : 294298 [ 3 ] Jekeli C. The determination of gravitational potential differences from SST tracking. Celestial Mechanics and Dynamical Astronomy, 1999, 75 : 85101 [ 4 ] Han S C. Efficient determination of global gravity field from satellite tosatellite tracking mission. Celestial Mechanics and Dynamical

3 : 717 Astronomy, 2004, 88 : 69102 [ 5 ] Han S C, Jekeli C, Shum C K. Efficient gravity field recovery using in situ disturbing potential observables from CHAMP. Geophys. Res. Lett., 2002, 29 (16) :36 136 4 [ 6 ] Visser P, Sneeuw N, Gerlach C. Energy integral method for gravity field determination from satellite orbit coordinates. Journal of Geodesy, 2003, 77 : 207216 [ 7 ] Gerlach C, Sneeuw N, Visser P. CHAMP gravity field recovery using energy balance approach. Advances in Geosciences, 2003, 1 : 7380 [ 8 ],. CHAMP.,2005,48(2) : 288293 Xu T H, Yang Y X. CHAMP gravity field recovery using kinematic orbits. Chinese J. Geophys. (in Chinese), 2005, 48 (2) : 288 293 [ 9 ],,..,2005, 48(2) : 282287 Zhou X H, Wu B, Xu H Z, et al. Resolution estimation of Earth gravity field recovery through the lowlow satellite to satellite technology by numerical simulation. Chinese J. Geophys. ( in Chinese), 2005, 48 (2) : 282287 [10 ],,..,2005,48(4) : 807811 Shen Y Z, Xu H Z, Wu B. Simulation of recovery of the geopotential model based on intersatellite acceleration data in the lowlow satellite to satellite tracking gravity mission. Chinese J. Geophys. ( in Chinese), 2005, 48 (4) : 807811 [11 ],,.. :.. :,20041 328333 Zheng W, Shao C G, Luo J. Research of satellite in near polar and low earth orbit recovering Earth s gravitational field. In : Zhu Y Z eds. Progress of Geodesy and Geodynamics (in Chinese). Wuhan : Hubei Science & Technology Press, 20041 328333 [12 ] Zheng W, Lu XL, Xu H Z, et al. Simulation of Earthπs gravitational field recovery from GRACE using the energy balance approach. Progress in Natural Science, 2005, 15(7) : 596601 ( )