Search for B + l + X 0 with hadronic tagging method at Belle

Similar documents
Search for B + l + X with hadronic tagging method at Belle Experiment

Belle Hot Topics. Nagoya University Koji Ikado (for the Belle Collaboration) Flavor Physics and CP Violation Conference (FPCP2006) Apr.

Measurements of Leptonic B Decays from BaBar

KEKB collider and Belle detector

Semileptonic B decays at BABAR

SUSY-related Lepton and Hadron Flavor Results from Belle Yutaro Sato

New B D Result from. Thomas Kuhr LMU Munich FPCP

Searches for Leptonic Decays of the B-meson at BaBar

Results on Tau Physics from BaBar

V cb. Determination of. and related results from BABAR. Masahiro Morii, Harvard University on behalf of the BABAR Collaboration

New BaBar Results on Rare Leptonic B Decays

Rare B decay searches with BABAR using hadronic tag reconstruction

Observation of the rare B 0 s µ + µ decay

Recent Results on Radiative and Electroweak Penguin B Decays at Belle. Akimasa Ishikawa (Tohoku University)

Review of semileptonic b clν decays

Searches for New Physics in quarkonium decays at BaBar/Belle

B D ( ) τν τ decays with hadronic and semileptonic tagging at Belle

Review of Standard Tau Decays from B Factories

Rencontres de Moriond - EW Interactions and Unified Theories La Thuile, March 14-21, 2015

A search for baryon-number violating Λ ml decays using JLab

Hadronic D Decays and the D Meson Decay Constant with CLEO c

b s Hadronic Decays at Belle

Measurement of time dependent CP violation in B φks. Mahalaxmi Krishnamurthy University of Tennessee. BaBar Collaboration Beauty 2003

Measurement of ϕ 2 /α using

Search for heavy neutrinos in kaon decays

arxiv: v3 [hep-ex] 11 Feb 2013

Measurement of the W-mass with the ATLAS detector

D Hadronic Branching Fractions and DD Cross Section at ψ (3770) from CLEO c

Recent Results from CLEO

IFAE 2003 Lecce. Alessio Sarti University and INFN Ferrara. BaBar CLEO. Motivation. Inclusive V ub Exclusive V ub Summary, Outlook and Conclusions

Belle results on Lepton Flavor Violation in tau decays. K. Inami (Nagoya Univ.) for Belle collaboration

IFAE 2003 Lecce. Alessio Sarti University and INFN Ferrara. BaBar CLEO. Motivation. Inclusive V ub Exclusive V ub Summary, Outlook and Conclusions

Electroweak Physics at the Tevatron

SEARCH FOR CP VIOLATION IN

Rare Hadronic B Decays

from B -Factories A. Oyanguren (IFIC U. Valencia) BaBar Collaboration

Search for Lepton Flavour Violation (LFV) in Three-Body Tau Decays at BaBar

Carlos Sandoval Universidad Antonio Nariño On behalf of the ATLAS collaboration DIS Kobe, Japan

Measurements of f D + and f Ds

Taller de Altas Energías Michael Holzbock September 7, LMU Munich

arxiv: v1 [hep-ex] 7 Jul 2016

CLEO c. Anders Ryd Cornell University June 7, e e cc D D. D K,D K e

V ub measurements with the BaBar detector

New Physics search in penguin B-decays

Search for exotic charmonium states

A search for the rare decay B + K + νν

ATLAS-CONF October 15, 2010

Charm Decays. Karl M. Ecklund

Search for Resonant Slepton Production with DØ

Tau Physics with BaBar

The Future of V ub. Antonio Limosani JSPS Fellow (KEK-IPNS JAPAN) BMN BNM Tsukuba (KEK) Sep Antonio Limosani KEK Slide 1

LFV in Tau Decays: Results and Prospects at the LHC. Tau th International Workshop on Tau Lepton Physics Beijing September 22th, 2016

Update on Search for Resonant Slepton Production

Absolute D Hadronic Branching Fractions at CLEO-c

Semileptonic Decays at CLEO:

Leptonic and Semileptonic Charm Decays

The Mystery of Vus from Tau decays. Swagato Banerjee

Searches for Exotics in Upsilon Decays in BABAR

Experimental Search for the Decay

Discovery searches for light new physics with BaBar

b hadron properties and decays (ATLAS)

The W-mass Measurement at CDF

Matthew Charles, University of Iowa

Reconstruction of tau leptons and prospects for SUSY in ATLAS. Carolin Zendler University of Bonn for the ATLAS collaboration

Spectroscopy and Decay results from CDF

B Mixing and Lifetime Measurements with the BABAR Detector.

A search for heavy and long-lived staus in the LHCb detector at s = 7 and 8 TeV

PoS(Kruger 2010)048. B X s/d γ and B X s/d l + l. Martino Margoni SLAC-PUB Universita di Padova and INFN

Direct measurement of the W boson production charge asymmetry at CDF

Study of e + e annihilation to hadrons at low energies at BABAR

Physics at Hadron Colliders

Inclusive. measurement

Recent Results from BABAR

Rare Exclusive Decays. Results from BaBar on the. DPF-2002, College of William and Mary. University of California, Jeffrey Berryhill.

SUSY searches at LHC and HL-LHC perspectives

Searches for low-mass Higgs and dark bosons at BaBar

A search for the rare decay B + K + νν

RESULTS FROM B-FACTORIES

CLEO-c: Recent Results

Lepton Universality in ϒ(nS) Decays at CLEO

arxiv: v1 [hep-ex] 15 May 2017

Searching for Supersymmetry at the LHC David Stuart, University of California, Santa Barbara. CMS SUSY Search, D. Stuart, June 2011, Lisbon!

* ) B s( * ) B s( - 2 -

Evidence for D 0 - D 0 mixing. Marko Starič. J. Stefan Institute, Ljubljana, Slovenia. March XLII Rencontres de Moriond, La Thuile, Italy

Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung

Searches for exotic particles in the dilepton and lepton plus missing transverse energy final states with ATLAS

Measurements of the W Boson Mass and Trilinear Gauge Boson Couplings at the Tevatron

First Results from CLEO-c

Rare B Decays. Yee Bob Hsiung National Taiwan University and Belle Collaboration. Highlights from Belle and Babar

PoS(KAON)049. Testing the µ e universality with K ± l ± ν decays

Lecture 18 - Beyond the Standard Model

Tau Lepton Reconstruction in ATLAS. Tau 2016 Conference, Beijing, 21st September 2016

Hadronic Moments in Semileptonic B Decays from CDFII

Abstract. To be published in the Proceedings of the 8th International Workshop On Tau Lepton Physics September 2004, Nara, Japan

Charmonium(-like) and Bottomonium(-like) States Results from Belle and BaBar

BABAR results on Lepton Flavour Violating (LFV) searches for τ lepton + pseudoscalar mesons & Combination of BABAR and BELLE LFV limits

{CLEO-c Charm Leptonic & Semileptonic Decays}

Studies of D πeν and D Keν at CLEO-c University of Virginia High Energy Seminar

SUSY Search Strategies at Atlas and CMS

Rare Hadronic B decays at BaBar

Transcription:

YongPyong-High1 015 Joint Winter Conference on Particle Physics, String and Cosmology Search for + l + X 0 with hadronic tagging method at elle Chanseok Park (Yonsei Univ.) pcs437@yonsei.ac.kr 015-01-30 High1 015-01-30 cspark Yonsei, YHEP 1

Contents elle Experiment Motivation X 0 candidate Analysis procedure Hadronic tagging method Preliminary result Summary High1 015-01-30 cspark Yonsei, YHEP

elle Experiment High1 015-01-30 cspark Yonsei, YHEP 3

elle Experiment High1 015-01-30 cspark Yonsei, YHEP 4

Motivation At elle, there are searches that have invisible particle in the final states. eg) + l ν, 0 ν ν, K ν ν, D(*) τ ν Neutrino is not detected at elle detector, from this we have interesting assumption What if massive particle can substitute neutrino? From now, we call it X 0 Possible mass range that X 0 can have 0 m(x 0 ) m( + ) m(l + ) High1 015-01-30 cspark Yonsei, YHEP 5

Why + l + X 0? + D 0 l + X 0 * We don t consider 3body decay ( moment is not clear ) + τ + X 0 * additional neutrino produced Hard to search We consider + l + X 0 ( l = e, μ ) For m(x 0 ) : 0.1 1.8 GeV/c High1 015-01-30 cspark Yonsei, YHEP 6

High1 015-01-30 cspark Yonsei, YHEP 7 X 0 candidate : LSP (RPV) ~ ~ ~ 13 0 1 0 6 1 1 1 1 ) ( 8 ~ X l b u l b u l i i M M M M M M m m p m f g l i R L i When we assuming r-parity violation, one lightest neutralino can be produced from meson decay via slepton or squark. We can give bounds for unknown parameters PRD 65, 015001

X 0 candidate : Large Extra Dimension PL 489, 367-376 * RH-neutrino in large extra dimension might candidate of X 0. * When there are δ additional dimensions, decay width via H or W. (Γ W >> Γ H ) * Decay width is proportional to R δ. M Pl : 4D Planck scale M * : (4+δ)D fundamental Planck scale R : size of additional dimension High1 015-01-30 cspark Yonsei, YHEP 8

+ l + X 0 Sample for analysis mode Mass of X Amount + e + X 0.1, 0., 1.8 GeV,000,000 events for each mass of X + μ + X 0.1, 0., 1.8 GeV,000,000 events for each mass of X ackground MC Separately generated! Signal MC We have 18 kinds of X for different mass Mode Process Amount Generic MC, qq 5 streams Rare b s, d 50 streams Ulnu X u lν 0 streams eνγ + eνγ 1000 streams μνγ + μνγ 1000 streams π + K 0 + π + K 0 500 streams π 0 eν + π 0 eν 300 streams π 0 μν + π 0 μν 300 streams High1 015-01-30 cspark Yonsei, YHEP 9

Hadronic tagging method Signal lepton Tagged Signal D K Y(4S) Ex) D + (K - π + π + ) π - π - Invisible >96% of Y(4S) with nothing else produced one -meson is completely reconstructed from known b c decays without ν * 615 + channels are used for reconstruction. * Low efficiency, high purity Good way to reconstruct modes with invisible particle High1 015-01-30 cspark Yonsei, YHEP 10

+ l + X 0 - event selection Particle Identity L e > 0.9 L μ > 0.9 Track quality Dz < cm Dr < 0.5 cm Continuum suppression cosθ thrust < 0.9 for + e + X cosθ thrust < 0.8 for + μ + X E ECL Quality of tagged- meson ΔE < 0.05 GeV M bc > 5.7 GeV/c O N > e -6 0.5 0 p l sideband E ECL Sideband linded Region 1.8.3 3.0 p l (GeV/c) E ECL : Remaining energy of ECL calorimeter (tagged- & signal lepton) p l : signal lepton s momentum in the signal rest frame High1 015-01-30 cspark Yonsei, YHEP 11

+ l + X 0 PDF modeling Fitting Signal Fitting ackground p l peak changes by mass of X p l cut should be optimized for each mass of X Fitting Peaking ackground High1 015-01-30 cspark Yonsei, YHEP 1

+ l + X 0 obtain U.L. of.f.. F. N obs sig G est N( ) *.F. is obtained by Feldman-Cousins method * Signal region is optimized. N obs : Number of Data in the signal region (counting) G est : expected background in the signal region, decided by background PDF, data distribution in the p l sideband ε sig : decided by signal PDF. High1 015-01-30 cspark Yonsei, YHEP 13

+ l + X 0 - preliminary result e mode μ mode Sideband Signal region + e + X M(X) : 1.8 GeV Sideband Signal region + μ + X M(X) : 1.8 GeV High1 015-01-30 cspark Yonsei, YHEP 14

+ l + X 0 E ECL sideband calibration + e + X + μ + X There are some disagreement between Data and MC, about p l >. GeV/c for E ECL sideband region(0.5 < E ECL < 1.0 GeV). Get Calibration Factor!! High1 015-01-30 cspark Yonsei, YHEP 15

High1 015-01-30 cspark Yonsei, YHEP 16 + l + X 0 ounds for parameters ~ ~ ~ 13 0 1 6 1 1 1 1 ) ( 8 ~ R L i b u l b u l i i M M M m m p m f g l ) ( ).(. ) ( 8 6 1 1 1 1 0 ~ ~ ~ 13 0 X l l i b u b u l i m m m p m f g X l U L m m M M M i i R L i This is parameter we give bounds!

Summary * We search for + l + + X 0, where X 0 have 0.1 ~ 1.8 GeV mass range * Hadronic tagging method enables effective background suppression * + l + X 0 has preliminary results, and analysis enters the final steps * e + e - -factory experiments has an advantage for this study. High1 015-01-30 cspark Yonsei, YHEP 17

ACKUP High1 015-01-30 cspark Yonsei, YHEP 18

+ l + X 0 - skim procedure S KIM PATH Hadronic Tagging LX_SKIM ANALYSIS_CODE L X _ S K I M 1 charged particle not used in Full_recon call it c (Charge of c) x (Charge of tagged ) = -1 Momentum of c(la frame) >1.0 GeV High1 015-01-30 cspark Yonsei, YHEP 19

e mode dz, dr, deltae -log(nboutput) distributions High1 015-01-30 cspark Yonsei, YHEP 0

e mode Mbc, Eecl, cos(thrust), pl distributions with basic cut High1 015-01-30 cspark Yonsei, YHEP 1

μ mode dz, dr, deltae -log(nboutput) distributions High1 015-01-30 cspark Yonsei, YHEP

μ mode Mbc, Eecl, cos(thrust), pl distributions with basic cut High1 015-01-30 cspark Yonsei, YHEP 3

Fitting to obtain PDFs (MC samples) - 1D ML fit for p l was done (1.8~3.0 GeV/c) - Cuts for all remaining variables are same - Using simple function as much as possible Some modes in Ulnu are scaled High1 015-01-30 cspark Yonsei, YHEP 4

e-mode signal region(e ecl <0.5 GeV) All Other cuts are applied to signal region : Gaussian Ulnu :.G. Rare : Exp eνγ :.G. π0eν : G +.G. High1 015-01-30 cspark Yonsei, YHEP 5

μ-mode signal region(e ecl <0.5 GeV) All Other cuts are applied to signal region : Gaussian Ulnu : Gaussian μνγ :.G. Rare : Exp + Argus πk0 : G + G π0μν : G +.G. High1 015-01-30 cspark Yonsei, YHEP 6

Signal (left : e mode, right : μ mode) For E ecl <0.5 & 1.8< p l <3.0 Signal is fitted with Gauss+Gauss+.G M X : 0.1 GeV M X : 1.0 GeV M X : 1.8 GeV High1 015-01-30 cspark Yonsei, YHEP 7

Expectation of ranching Fraction Statistical uncertainty PDG uncertainty PDF uncertainty Data in sideband MC(signal)/MC(side) Estimated # of G Signal efficiency and uncertainty Estimate.F.(or upper limit) for observed events when open box. High1 015-01-30 cspark Yonsei, YHEP 8

Expected Upper Limit. F. U. L.( Yield ) N( ) sig 1. Relative uncertainty of ε sig. Estimated G and uncertainty 3. # of observed events POLE U.L. Uncertainty from PDG(F), PDF, systematic, etc High1 015-01-30 cspark Yonsei, YHEP 9

Optimization Study using the criterion of est Upper Limit Mean of U.L. 6 n0 6 Yield n0 U. L. ( G est Poisson( G ; n) Poisson( G est est ; n;1000) N( ) ; n;1000) sig - n : # of observed events in signal region. - Yield_{U.L.} : U.L. of Yields using POLE program - Poisson : # of values of 1,000 events have Poisson dist High1 015-01-30 cspark Yonsei, YHEP 30

+ l + X 0 - Optimization G : Fit p l sideband extrapolate PDF G est Data side S( MC) S( MC) sig side Feldman-Cousins method 1. Relative uncertainty of ε sig. Estimated G and uncertainty 3. # of observed events POLE U.L. Uncertainty from PDG(F), PDF, systematic, etc High1 015-01-30 cspark Yonsei, YHEP 31

+ l + X 0 - Optimization Mean of upper limit of branching fraction based on MC for each p l criteria + e + X M(X) : 1.8 GeV/c + μ + X M(X) : 1.8 GeV/c High1 015-01-30 cspark Yonsei, YHEP 3

Summary Table (e-mode) M(X) pl cut G_est Efficiency( ) Observed event U.L. (10^{-6}) 0.1 (GeV).5 < pl <.70 0.44±0.01 1.13±0.14 0.41 0..5 < pl <.70 0.44±0.01 1.1±0.14 0.43 0.3.55 < pl <.68 0.8±0.134 1.08±0.13 0.70 0.4.55 < pl <.68 0.8±0.134 1.06±0.13 0.75 0.5.5 < pl <.70 0.44±0.01 1.08±0.13 0.5 0.6.5 < pl <.70 0.44±0.01 1.07±0.13 0.54 0.7.5 < pl <.70 0.44±0.01 1.11±0.14 0.45 0.8.51 < pl <.6 0.436±0.190 1.07±0.13 0.54 0.9.51 < pl <.6 0.436±0.190 1.01±0.13 0.69 1.0.51 < pl <.6 0.436±0.190 0.97±0.1 0.81 1.1.47 < pl <.57 0.615±0.51 0.99±0.1 0.54 1..45 < pl <.53 0.636±0.57 0.97±0.1 0.57 1.3.43 < pl <.51 0.738±0.303 0.98±0.1 0.45 1.4.41 < pl <.51 0.985±0.410 1.0±0.1 0.15 1.5.39 < pl <.46 0.843±0.374 0.95±0.1 1 4.80 1.6.37 < pl <.43 0.816±0.380 0.94±0.11 1 4.88 1.7.34 < pl <.39 0.805±0.389 0.89±0.11 1 5.17 1.8 High1 015-01-30.31 < pl <.36 0.941±0.455 cspark 0.90±0.11 Yonsei, YHEP 7.10 33

Summary Table (μ-mode) M(X) pl cut G_est Efficiency( ) Observed event U.L. (10^{-6}) 0.1 (GeV).58 < pl <.68 0.439±0.111 1.18±0.14 1 4.6 0..58 < pl <.68 0.439±0.111 1.19±0.15 1 4.3 0.3.58 < pl <.68 0.439±0.111 1.18±0.14 1 4.6 0.4.58 < pl <.68 0.439±0.111 1.19±0.15 1 4.34 0.5.58 < pl <.68 0.439±0.111 1.15±0.14 1 4.37 0.6.58 < pl <.68 0.439±0.111 1.13±0.14 1 4.45 0.7.56 < pl <.63 0.46±0.116 1.13±0.14 0.35 0.8.54 < pl <.61 0.485±0.140 1.14±0.14 1 4.37 0.9.5 < pl <.60 0.605±0.187 1.14±0.14 1 4.3 1.0.49 < pl <.58 0.838±0.70 1.13±0.14 1 4.04 1.1.49 < pl <.58 0.838±0.70 1.18±0.14 1 3.87 1..48 < pl <.53 0.594±0.194 1.06±0.13 0.37 1.3.45 < pl <.50 0.731±0.33 1.03±0.13 0.8 1.4.4 < pl <.48 0.994±0.307 1.10±0.13 5.75 1.5.40 < pl <.47 1.33±0.371 1.11±0.14 5 10.64 1.6.37 < pl <.4 1.05±0.87 1.05±0.13 4 9.66 1.7.34 < pl <.39 1.164±0.308 1.05±0.13 1 3.93 1.8 High1 015-01-30.31 < pl <.37 1.574±0.40 cspark 1.1±0.14 Yonsei, YHEP 1 3.7 34

+ l + X 0 E ECL sideband calibration 1.8 < p l <.65 1.8 < p l <.45 1.8 < p l <.3 E ECL cut : 0.5 < E ECL <.0 GeV (ecause we want more statistics) Data/MC ratio is fitted to linear function Ratio function : R(p l ) = p 0 + p 1 ( p l - 1.8 ) when p 0 and p 1 is parameter To fit well, we apply error to bins where no events (but MC exist) High1 015-01-30 cspark Yonsei, YHEP 35

+ l + X 0 E ECL sideband calibration Originally we use Data & MC ratio in p l sideband region to scale expectation of G So we use this ratio fitting function to scale G expectation. Calibration factor R* is used for scaling. We use ratio fitting function when fitting range 1.8 < p l <.65 GeV/c Old : G est Data side S( MC) S( MC) sig side New : G est R* Data side S( MC) S( MC) sig side High1 015-01-30 cspark Yonsei, YHEP 36