Production and Characterization of carbon-free bifunctional cathodes for the use in lithium-air batteries with an aqueous alkaline electrolyte

Similar documents
Electrochemical Characterization of Silver Gas Diffusion Electrodes during Oxygen Reduction in Alkaline Solution

Unit 3: Direct current and electric resistance Electric current and movement of charges. Intensity of current and drift speed. Density of current in

Electronic Supplementary Information

Summary of equations chapters 7. To make current flow you have to push on the charges. For most materials:

Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: An. efficient catalyst for oxygen reduction reaction

Physical Chemistry I for Biochemists Chem340. Lecture 38 (4/20/11) Yoshitaka Ishii. Announcement

CHEMICAL KINETICS

Name Class Date. Match each phrase with the correct term or terms. Terms may be used more than once.

Which of the following describes the net ionic reaction for the hydrolysis. Which of the following salts will produce a solution with the highest ph?

Fe = Fe + e MnO + 8H + 5e = Mn

DIRECT CURRENT CIRCUITS

Physics 1402: Lecture 7 Today s Agenda

Supporting Information. Electrochemical Valorization of Furfural to Maleic Acid

Supporting Information

EIS in Fuel Cell Science

Lecture 6: Diffusion and Reaction kinetics

UNIVERSITY OF MALTA DEPARTMENT OF CHEMISTRY. CH237 - Chemical Thermodynamics and Kinetics. Tutorial Sheet VIII

Chemistry Department. The Islamic University of Gaza. General Chemistry B.(CHEMB 1301) Time:2 hours الرقم الجامعي... اسم المدرس...

AN IMPROVED SMALL CLOSED DRIFT THRUSTER WITH BOTH CONDUCTING AND DIELECT RIC CHANNELS

Psychrometric Applications

Physics 202, Lecture 10. Basic Circuit Components

Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems

7/19/2011. Models of Solution Chemistry- III Acids and Bases

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory 2. Diffusion-Controlled Reaction

Relaxation Impedance

The Predom module. Predom calculates and plots isothermal 1-, 2- and 3-metal predominance area diagrams. Predom accesses only compound databases.

Fundamentals of Electrical Circuits - Chapter 3

Theory and Application of Porous Electrodes in Fuel Cell Characterization. Dr. Norbert Wagner DLR, Institut für Technische Thermodynamik, Stuttgart

Energy (kcal mol -1 ) Force (kcal mol -1 Å -1 ) Pore axis (Å) Mixed Mo-only S-only Graphene

Chemistry 163B W2014 Lectures Electrochemistry Quickie

Hydronium or hydroxide ions can also be produced by a reaction of certain substances with water:

Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization

Polymer graphite composite anodes for Li-ion batteries

Measuring Electron Work Function in Metal

4. CHEMICAL KINETICS

Physics 24 Exam 1 February 18, 2014

Identification of Dynamic Model Parameters for. Lithium-Ion Batteries used in Hybrid Electric Vehicles

Reading from Young & Freedman: For this topic, read the introduction to chapter 24 and sections 24.1 to 24.5.

Rates of chemical reactions

Coalescence of Ag 2 S and Au Nanocrystals at Room Temperature

Hints for Exercise 1 on: Current and Resistance

Lecture 5 Capacitance Ch. 25

Motion of Electrons in Electric and Magnetic Fields & Measurement of the Charge to Mass Ratio of Electrons

Thermal Stability of Ti-C-Ni-Cr and Ti-C-Ni-Cr-Al-Si Nanocomposite Coatings

Section 20.1 Electric Charge and Static Electricity (pages )

Module 2: Rate Law & Stoichiomtery (Chapter 3, Fogler)

Lecture 5. Selected aspects of thermodynamics for adsorption, diffusion and desorption

Potential Changes Around a Circuit. You must be able to calculate potential changes around a closed loop.

Enhanced Photocatalytic CO 2 -Reduction Activity of Anatase TiO 2 by Coexposed {001} and {101} Facets

CAPACITORS AND DIELECTRICS

Factors affecting the phonation threshold pressure and frequency

3.2.2 Kinetics. Maxwell Boltzmann distribution. 128 minutes. 128 marks. Page 1 of 12

AQA Chemistry Paper 2

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B

Fundamentals of Analytical Chemistry

INVESTIGATION OF BURSA, ESKIKARAAGAC USING VERTICAL ELECTRICAL SOUNDING METHOD

Harman Outline 1A1 Integral Calculus CENG 5131

Physics 3323, Fall 2016 Problem Set 7 due Oct 14, 2016

Electronic Supplementary Information

MATH 3795 Lecture 18. Numerical Solution of Ordinary Differential Equations.

Rugby High School Physical Science I Can & Evidence Statements

Using air lines as references for VNA phase measurements

ADVANCEMENT OF THE CLOSELY COUPLED PROBES POTENTIAL DROP TECHNIQUE FOR NDE OF SURFACE CRACKS

The Thermodynamics of Aqueous Electrolyte Solutions

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes

Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for. Flexible Zn-Air Batteries

XX-th ARS SEPARATORIA Szklarska Poręba, Poland 2005

CHAPTER 08: MONOPROTIC ACID-BASE EQUILIBRIA

University of Alabama Department of Physics and Astronomy. PH126: Exam 1

Problem 22: Buffer solutions 1. The equilibrium, which governs the concentration of H + within the solution is HCOOH! HCOO + H + + Hence K

Flow in porous media

Solutions to Mock IIT Advanced/Test - 2[Paper-1]/2013

Designing Information Devices and Systems I Spring 2018 Homework 8

Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications. Pfaffenwaldring 6, Stuttgart, Germany

Effects of Surface Chemistry of Carbon on Hydrogen Evolution Reaction in Lead Carbon Electrodes

Vibrational Relaxation of HF (v=3) + CO

Some parameters of varicaps with gradient base area based on Shottky barrier

Synthesis of Oxidized Graphene Anchored Porous. Manganese Sulfide Nanocrystal via the Nanoscale Kirkendall Effect. for supercapacitor

Lecture 6. Thermodynamics and Kinetics for Adsorption, Diffusion and Desorption

AMPERE CONGRESS AMPERE on Magnetic Resonance and Related Phenomena. Under the auspices of The GROUPEMENT AMPERE

Phys102 General Physics II

A solid oxide fuel cell micro-scale modeling with spherical particle shaped electrodes

Estimation of the particle concentration in hydraulic liquid by the in-line automatic particle counter based on the CMOS image sensor

temperature is known as ionic product of water. It is designated as K w. Value of K w

Version 001 HW#6 - Electromagnetism arts (00224) 1

Problem Solving 7: Faraday s Law Solution

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Potential Formulation Lunch with UCR Engr 12:20 1:00

Physics Lecture 14: MON 29 SEP

EFFECT OF NITRIC AND SULFURIC ACIDS ON NO X AND SO X ABSORPTION INTO OXIDO-ACIDIC SOLUTIONS

Designing Information Devices and Systems I Spring 2018 Homework 7

Modelling of chemical vapour deposition of carbon based on detailed surface chemistry

Flexible Beam. Objectives

Minimum Energy State of Plasmas with an Internal Transport Barrier

The Influence of Interface and Semiconductor Bulk Traps Generated Under HEFS on MOSFET`s Electrical Characteristics

Space Charge Limited Currents Calculations in Coaxial Cylindrical Diodes Using Particle-in-Cell Simulations

Morphology characterization. (a), SEM image of PS template nanospheres showing

Chapter E - Problems

Deriving hydraulic conductivity function from soil column tests

Numerical simulation of ohmic heating in idealized thin-layer electrodeposition cells

Transcription:

www.dlr.de Chrt 1 10. EIA, Borovetz 2014, Norert Wgner Production nd Chrcteriztion of cron-free ifunctionl cthodes for the use in lithium-ir tteries with n queous lkline electrolyte Norert Wgner, Dennis Wittmier, K. Andres Friedrich Germn Aerospce Center (DLR) Pfffenwldring 38-49, 70569 Stuttgrt, Germny

www.dlr.de Chrt 2 10. EIA, Borovetz 2014, Norert Wgner Presenttion outline Appliction of EIS in ttery reserch t DLR Motivtion Li-ir tteries Electrode production techniques t the DLR Cthode for the Li-ir ttery Ctlyst screening of ifunctionl cthodes (ORR nd OER) Conclusion nd outlook

Activities of the Btterietechnik tem Production nd Chrcteristion of cthodes for Lithium-Sulfur nd Lithium-ir tteries Chrcteristion of Li-ion tteries with in-situ nd ex-situ-methods Source: N AT U R E VO L 5 0 7 6 M A R C H 2 0 1 4

EIS mesurement t different SOC Dischrge t 1C (NMC 2,25 Ah) (LiFePO 4 1,1Ah)

Discrimintion of SOC nd SOH of seril connected tteries Seril connection V2 Z01 U=3,25V SoH100 Z02 U=3,25V SoH100 Z07 U=3,25V SoH60 i totl (t) Z01 Z02 Z07 Impednce Z / mω Frequency f / Hz Phse ngle ϕ / Z01 Impednce Z Z01 Phse ϕ Z02 Impednce Z Z02 Phse ϕ Z03 Impednce Z Z03 Phse ϕ Z07 Impednce Z Z07 Phse ϕ I Sens01 02 07 û Z01 û Z02 û Z07 î Z01 î Z02 î Z07 Voltge U / mv Current I / ma Frequency f / Hz

In-situ XRD nd EIS mesurements during dischrging Li-S tteries N. A. Cñs, S. Wolf, N. Wgner, K. A. Friedrich. J. of Power Sources, 226 (2013) 313-319.

www.dlr.de Chrt 7 Presenttion August 2013 Electrochemicl Model of Li-S Bttery Equivlent circuit Model R 0 R 1 -CPE 1 R 2 -CPE 2 Chemicl nd physicl cuse Ohmic resistnce Anode chrge trnsfer Cthode process: chrge trnsfer of sulfur intermedites R 3 -CPE 3 Cthode process: rection nd formtion of S 8 nd Li 2 S R 4 -CPE 4 Diffusion 7

www.dlr.de Chrt 8 10. EIA, Borovetz 2014, Norert Wgner Motivtion Why Li-ir tteries? Highest theoreticl specific energy density (11.425 Wh/kg) Cthodic rectnt, O 2 from ir, does not hve to e stored Environmentl friendliness Higher sfety thn Li-ion tteries (only one of the rectnts contined in the ttery) Potentilly longer cycle nd shelf lives

www.dlr.de Chrt 9 10. EIA, Borovetz 2014, Norert Wgner Motivtion Why Li-ir tteries? Highest theoreticl specific energy density (11.425 Wh/kg). Cthodic rectnt, O 2 from ir, does not hve to e stored Environmentl friendliness Higher sfety thn Li-ion tteries (only one of the rectnts contined in the ttery) Potentilly longer cycle nd shelf lives G. Girishkumr et l., J. Phys. Chem. Lett., 2010, 1, 2193 2203

www.dlr.de Chrt 10 10. EIA, Borovetz 2014, Norert Wgner Schemticlly representtion of Li-ir ttery

www.dlr.de Chrt 11 10. EIA, Borovetz 2014, Norert Wgner Architectures of Li-ir Btteries Non-queous electrolyte: 2Li + + O 2 + 2e Li 2 O 2 E rev = 2,959 V 2Li + +2e + (1/2) O 2 Li 2 O E rev = 2,913 V Aqueous electrolyte: 4Li + O 2 + 2H 2 O 4LiOH (lkline medi) E rev = 3,446 V 4Li + O 2 + 4H + 2H 2 O + 4Li + (cidic medi) E rev = 4,274 V

www.dlr.de Chrt 12 10. EIA, Borovetz 2014, Norert Wgner Schemticlly representtion of Lithium-Air Bttery with Aqueous Electrolyte Interlyer Lithium Festkörper Solid Li + -conductor Li + -Leiter Rektions Rection - produkte products Aqueous Welectroyte ässrige Elektrolyt solution - lösung O 2 -Reduktion -Reduction Rection eqution (lkline Electrolyte): 4Li + O 2 + 2H 2 O 4LiOH; E = 3,45 V

Bi-functionl Oxygen-Electrodes: Design Bi-functionl Oxygen-Electrodes = ctlizes ORR nd OER Ctlyst Depending on mnufctoring process every electrode consists of: Ctlyst(s) Conductive gent (C, Grphit ) Binder (PTFE, PVdF ) Sustrte (Metl mesh, ) Design Porestructure Function BOE Electrolyte Active Surfce Cond. gent Different mnufctoring processes used t DLR: Dry Powder Sprying, Rective Rolling n Mixing, Pressing nd APS

www.dlr.de Chrt 14 10. EIA, Borovetz 2014, Norert Wgner Production Techniques -Dry Sprying Technique -Wet Sprying Techniquen - Rective Mixing nd Rolling (RMR) -Screen printing - Rective Mixing Addi t ives C t l yst s M etl net GDE

www.dlr.de Chrt 15 10. EIA, Borovetz 2014, Norert Wgner Production Techniques -Dry Sprying Technique -Wet Sprying Techniquen - Rective Mixing nd Rolling (RMR) -Screen printing - Rective Mixing Addi t ives C t l yst s M etl net GDE

www.dlr.de Chrt 16 10. EIA, Borovetz 2014, Norert Wgner Dry Powder Sprying Technique memrne roller RMR (Sustrt) Dry spryed lyer coting nozzle powder supporter ctlyst dditive Top view Nitrog en N. Wgner, T. Kz, DE 101 12 232 A1, 2002

www.dlr.de Chrt 17 10. EIA, Borovetz 2014, Norert Wgner

www.dlr.de Chrt 18 10. EIA, Borovetz 2014, Norert Wgner Electricl Circuit e - NOH 30% (H 2 O) Cl 2 O 2 O 2 O O O O e - e - e - O e - Net O H O -2 OH - Ag Silver GDE (ODC) H OH - NOH 2 H 2 O 4 NOH NOH N + N + N + N + Memrne NOH 32% Anode Cl - N + e - NCl solution (Brine)

www.dlr.de Chrt 19 10. EIA, Borovetz 2014, Norert Wgner Chlorine production with ODC (Oxygen Depolrised Cthode) Chlorine production unit with ODC technique t Byer in Ürdingen (20,000 t/y) since My 2011

CT picture of Silver gs diffusion electrode

FIB-TEM picture of Silver gs diffusion electrode

www.dlr.de Chrt 22 10. EIA, Borovetz 2014, Norert Wgner Possile production options for multilyer electrodes Li + conducting Memrne Ctlyst lyer 1 (Chnged composition, production conditions nd techniques) Ctlyst Lyer 2 hydrophoic rrier lyer (C PTFE) Ctlyst lyer 1 (Chnged composition, production conditions nd techniques) Ctlyst lyer 2 hydrophoic rrier lyer Composition: chemicl composition (metls nd metl oxides) structure electr. contct O 2 (metl net, fom, porous sustrte, etc.)

www.dlr.de Chrt 23 10. EIA, Borovetz 2014, Norert Wgner PTFE-ounded Cron Powder: SEM- picture

www.dlr.de Chrt 24 10. EIA, Borovetz 2014, Norert Wgner VPS coted cthode for Li-ir ttery Cro Fer net cotedonesidewith Ag+LSCF other side with C+PTFE

www.dlr.de Chrt 25 10. EIA, Borovetz 2014, Norert Wgner Picture of APS-coted porous sustrte with 50 vol. % Ag+50 vol. % LSCF, gs side C/PTFE (dry spryed)

www.dlr.de Chrt 26 10. EIA, Borovetz 2014, Norert Wgner CV: with Ag+LSCF (APS, electrolyte side) nd PTFE+C (Dry Powder Sprying, gs side) coted Rhodius-Net in 1 N LiOH, Reference electrode: Hg/HgO Current / ma 20 CV 1 mv/s Air, RT CV 1 mv/s O 2, RT 0-20 -40-600 -400-200 0 200 400 600 800 Potentil / mv

www.dlr.de Chrt 27 10. EIA, Borovetz 2014, Norert Wgner Atmospheric Plsm Sprying (APS) 0.3M nitrte solution for injection SEM of ctlyst lyer nd cross section plsm spryed t DLR P. Fuchis, J. Phys. D: Appl. Phys. 37 (2004) R86 R108

www.dlr.de Chrt 28 10. EIA, Borovetz 2014, Norert Wgner Mnufctoring of ifunctionl gs diffusion electrodes Oxide ctlysts (L 0.6 C 0.4 CoO 3 ) cn e spryed on for exmple Rhodius sustrte with APS Ctlyst lyer Rhodius sustrte Electrodes with nole metl nd other ctlysts cn e mde with dry power sprying technique Ctlyst lyer = ctlyst+cron/ grphite+inder Grphite GDE sustrte or y pressing the ctlyst lyer on for exmple Sigrcet GDL 35 DC with hydrulic press Ctlyst lyer = ctlyst+cron/ grphite+inder Sigrcet GDL35 DC

www.dlr.de Chrt 29 10. EIA, Borovetz 2014, Norert Wgner Screening of ifunctionl ctlysts Experimentl Thin ctlyst lyers reduce the influence of the electrode structure Cyclic Voltmmetrie ws crried out t hlf cell with 1M LiOH (q.) nd 25 C nd 50 C Gs O 2, pltinum counter electrode (CE), reversile hydrogen reference electrode (RE) Potentil rnge 0.1V - 1.8V vs. RHE Nole metl ctlyst configurtion Oxide ctlyst configurtion 80 wt % grphite + 20 wt % PTFE + ctlyst Gs 100 wt % ctlyst Gs Electrode Electrode + Sigrcet GDL35 DC

www.dlr.de Chrt 30 10. EIA, Borovetz 2014, Norert Wgner Experimentl results Polriztion curves with 1mV s -1 Nole metl ctlysts show good ctivity towrds oxygen reduction rection (ORR) ut poor ctivity towrds oxygen evolution rection (OER) Incresing the temperture shows significnt improvment of ctivity

www.dlr.de Chrt 31 10. EIA, Borovetz 2014, Norert Wgner Experimentl results Polriztion curves with 1mV s -1 Oxide ctlysts show more lnced chrcteristics towrds ORR nd OER thn nole metl ctlysts. Compred to their ctivity in ORR they show high ctivity in OER. Incresing the temperture shows significnt improvment of ctivity

www.dlr.de Chrt 32 10. EIA, Borovetz 2014, Norert Wgner Impednce Mesurements during ORR in 10 N NOH, on Silver Electrodes t Different Current Densities, i< -50 macm -2 5 2 1.5 1 500m Z / 453 5 ma 453 10 ma 453 15 ma 453 20 ma 453 25 ma 453 30 ma 453 35 ma 453 40 ma 453 45 ma 453 50 ma phse / o 90 75 60 45 30 15-3.5-3 -2.5-2 -1.5-1 -0.5 0 0.5 1 Z' / 15 ma 50 ma 25 ma 20mA 30 ma 35 ma 40 ma 45 ma 10 ma 5 ma Z'' / 0 100m 1 3 10 30 100 1K 3K 10K 100K frequency / Hz Bode representtion 1.5 1 2 3 4 5 Nyquist representtion

www.dlr.de Chrt 33 10. EIA, Borovetz 2014, Norert Wgner 2 Z / Impednce Mesurements during ORR in 10 N NOH, on Silver Electrodes t Different Current Densities, i> -50 macm -2 453 50 ma phse / o 90-1 Z' / 453 100 ma 75 1.5 453 150 ma 60-0.5 1 800m 600m 453 200 ma 453 250 ma 453 300 ma 453 350 ma 453 400 ma 453 450 ma 453 500 ma 0 100m 1 3 10 30 100 1K 3K 10K 100K frequency / Hz 45 30 15 0 0.5 500 ma 150 ma 100 ma 50 ma 200 ma 250 ma 300 ma 350 ma 400 ma 450 ma 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Z'' /

www.dlr.de Chrt 34 10. EIA, Borovetz 2014, Norert Wgner Electrode Model with cylindricl, homogeneous pores nd complex Frdy-impednce Zq=

www.dlr.de Chrt 35 10. EIA, Borovetz 2014, Norert Wgner Evlution of EIS mesured during ORR Equivlent circuit nd R d = f(i) R / 6 L Rel 4 Rct Rpor Rd Cd Cdl 2 0-100 -80-60 -40-20 current/ma

www.dlr.de Chrt 36 10. EIA, Borovetz 2014, Norert Wgner Current density dependency of the chrge trnsfer resitnce R ct 1.6 Rct / 1.4 1.2 1 0.8 0.6-100 -80-60 -40-20 current/ma

www.dlr.de Chrt 37 10. EIA, Borovetz 2014, Norert Wgner Current density dependency of electrolyte resistnce inside the pore 2.5 pore electrolyte res. / 2 1.5 1-500 -450-400 -350-300 -250-200 -150-100 -50 current/ma

www.dlr.de Chrt 38 10. EIA, Borovetz 2014, Norert Wgner U-i chrcteristic nd current density dependency of impednce elements R d nd R ct ir-corr. Potentil vs. NHE / V 1,1 1,08 1,06 1,04 1,02 1 0,98 0,96 0,94 0,92 8,00 7,00 6,00 5,00 4,00 3,00 2,00 1,00 Rd; Rct / Ohm 0,9 0,00-0,10-0,08-0,06-0,04-0,02 0,00 Current density / Acm -2

www.dlr.de Chrt 39 10. EIA, Borovetz 2014, Norert Wgner Current density dependency of k d, R d nd R ct, determined from EIS evlution 8 80 7 k d =1/C d R d 70 Rd; Rct / Ohm 6 5 4 3 2 1 60 50 40 30 20 10 Rection rte constnte / s -1 0 0-0.100-0.080-0.060-0.040-0.020 0.000 Current density / Acm -2

www.dlr.de Chrt 40 10. EIA, Borovetz 2014, Norert Wgner Influence of compcting pressure: Evlution of EIS mesured during OCR, 100 ma, 80 C, 10 N NOH Z' / Z / phse / o -500 0 49 100 ma 48 100 ma Z'' / m 1.5 1 800m 48 100 ma 49 100 ma 135 90 45 600m 0.6 0.8 1 1.2 1.4 1.6 1.8 0 100m 1 3 10 30 100 300 1K 3K 10K frequency / Hz Smple R ct R por R el 48 (High pressure) 940 287m 524m 49 (Low pressure) 534 727m 577m

www.dlr.de Chrt 41 10. EIA, Borovetz 2014, Norert Wgner Overview EIS mesurement points nd CV with 1 mv/s t RT, 1 N LiOH, Ag-GDE 0,15 Current density / A cm -2 0,1 0,05 0-0,05-0,1-0,15-0,2 EIS mesurement point Electrode 1 (high pressure) 25c Electrode 1 (high pressure) 50c Electrode 2 (high pressure) 25c Electrode 2 (low pressure) 50c -0,25-0,3 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 Potentil vs. RHE / V

www.dlr.de Chrt 42 10. EIA, Borovetz 2014, Norert Wgner Impednce mesurements during Oxygen evolution on Ag-GDE (high pressure), 1 N LiOH, 25 C Z / 50 20 15 10 5 c d c d OCV+500 mv OCV+700 mv OCV+300 mv c d c d cd d d c d d d c d d OCV+100 mv c d c d c d c d c d c d c d c d d c c d c d d d d c d d d d c c c d d d d d d c ddddddddd d d c c d c c d c d d c d c c c d c c c c c c c d c c ccc c c c c c c c c c c c c c d d cd cd cd c d c d d d c d c c c c c c c c c c c c c c c c c c c c c c c c c c c ddd d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d 1 100 10K frequency / Hz 90 75 60 45 30 15 0 phse / o Z'' / -30-20 -10 0 10 ccc dddd OCV+500 mv c c c c c c ddd d ddd d OCV+100 mv OCV+700 mv 10 20 30 40 50 Z' / OCV+300 mv

www.dlr.de Chrt 43 10. EIA, Borovetz 2014, Norert Wgner Equivlent circuit used for evlution of EIS during OCR nd OER t different electrodes for Lithium-Air tteries

www.dlr.de Chrt 44 10. EIA, Borovetz 2014, Norert Wgner Potentil dependency of totl resistnce during ORR t different electrodes, 1 N LiOH 100 Resistnce / Ω 10 R totl ORR Electrode 1 (high pressure) 25c Electrode 1 (high pressure) 50c Electrode 2 (low pressure) 25c Electrode 2 (low pressure) 50c 1 0 200 400 600 800 1000 Potentil OCV minus x / mv

www.dlr.de Chrt 45 10. EIA, Borovetz 2014, Norert Wgner Potentil dependency of chrge trnsfer resistnce during OER 100 Resistnce / Ω 10 1 0,1 R 2 OER (chrge trnsfer) Electrode 1 (high pressure) 25c Electrode 1 (high pressure) 50c Electrode 2 (high pressure) 25c Electrode 2 (low pressure) 50c 0,01 100 200 300 400 500 600 700 800 Potentil OCV plus x / mv

www.dlr.de Chrt 46 10. EIA, Borovetz 2014, Norert Wgner Potentil dependency of chrge trnsfer resistnce in oxide lyer potentil region (OER) 4 Resistnce / Ω 3,5 3 2,5 2 1,5 1 0,5 R 5 OER (oxide lyer) Electrode 1 (high pressure) 25c Electrode 1 (high pressure) 50c Electrode 2 (high pressure) 25c Electrode 2 (low pressure) 50c 0 100 200 300 400 500 600 700 800 Potentil OCV plus x / mv

www.dlr.de Chrt 47 10. EIA, Borovetz 2014, Norert Wgner CV of polished Ag electrode, 25% KOH, O 2 st.

www.dlr.de Folie 48 Bi-functionl Oxygen-Electrodes: IrO 2 /- nd Co 3 O 4 /Agelectrodes mx. overpotentil 1.5V CV s electrodes 20 wt. % ctlyst (IrO 2, Co 3 O 4 Improved cycling performnce due to use of IrO 2 nd Co 3 O 4 compred to pure Ag Current density @ 2.6V vs. Li/Li + [ma cm -2 ] IrO 2 /Ag 99,7 Co 3 O 4 /Ag 107 Current density [ma cm -2 ] 100 50 0-50 -100-150 Co 3 O 4 /Ag IrO 2 /Ag Ag No IR corr. 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2.6V vs. Li/Li + Voltge vs. RHE [V] N. Wgner et l., Germn Ptent Appliction, 2014

www.dlr.de Chrt 49 10. EIA, Borovetz 2014, Norert Wgner Conclusion From the ctlyst screening, new ifunctionll ctlysts system for the cthode of Li-ir ttery ws found From the evlution of the mesured impednce spectr one cn propose rection mechnism for the ORR: Adsorptions- / heterogeneous rections nd chrge trnsfer rection re consecutive rections Rection mechnism nd rte determining step is chnging t higher current densities t c. 20 macm -2 Production prmeters, composition nd structure hve strong influence on electrode rectivity Chnge of rection zone with current density Silver electrodes re not stle during OER

www.dlr.de Chrt 50 10. EIA, Borovetz 2014, Norert Wgner Thnk you for your Attention! Acknowledgment

www.dlr.de Chrt 51 10. EIA, Borovetz 2014, Norert Wgner Rections pthwys for the cthodic oxygen reduction in lkline solution Direct-X 4e - -pth: 2H 2 O + O 2 + 4e - 4OH - O 2 + 2M 2M O 2 (M O + e - MO - ) 2 (MO - + H 2 O MOH + OH - ) 2 (MOH + e - OH - + M) Peroxid - Pth: H 2 O + O 2 + 2e - HO 2- + OH - O 2 + M M O 2 M O 2 + e - MO 2 - MO 2- + H 2 O MHO 2 + OH - MHO 2 + e - HO 2- + M Peroxid-Reduction: HO 2- + H 2 O + 2e - 3OH - HO 2- + M MHO 2 - MHO 2- + H 2 O MH 2 O 2 + OH - MH 2 O 2 + e - MOH + OH - MOH + e - M + OH - Ctlyticlly Peroxid-decomposition: 2HO 2- O 2 + 2OH - HO 2- + M MHO 2 - MHO 2- MO + OH - MO + HO 2- O 2 + OH - + M

www.dlr.de Chrt 52 10. EIA, Borovetz 2014, Norert Wgner SEM pictures of Ag-GDE, produced y the RMR technique (Ag 2 O+PTFE) Ag-GDE, unused prt Ag-GDE, used