Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios

Similar documents
Single Shooting and ESDIRK Methods for adjoint-based optimization of an oil reservoir

Matrix representation of a Neural Network

A Note on Powers in Finite Fields

Dynamic Effects of Diabatization in Distillation Columns

Modelling Salmonella transfer during grinding of meat

Benchmarking of optimization methods for topology optimization problems

An Equivalent Source Method for Modelling the Lithospheric Magnetic Field Using Satellite and Airborne Magnetic Data

Reducing Uncertainty of Near-shore wind resource Estimates (RUNE) using wind lidars and mesoscale models

Accelerating interior point methods with GPUs for smart grid systems

Numerical modeling of the conduction and radiation heating in precision glass moulding

A Trust-region-based Sequential Quadratic Programming Algorithm

Lidar calibration What s the problem?

Optimizing Reliability using BECAS - an Open-Source Cross Section Analysis Tool

Reflection of sound from finite-size plane and curved surfaces

Prediction of airfoil performance at high Reynolds numbers.

Reflection and absorption coefficients for use in room acoustic simulations

The Wien Bridge Oscillator Family

Design possibilities for impact noise insulation in lightweight floors A parameter study

Room Allocation Optimisation at the Technical University of Denmark

The dipole moment of a wall-charged void in a bulk dielectric

Berøringsløs optisk måling af gassammensætning ved UV og IR spektroskopi

Sound absorption properties of a perforated plate and membrane ceiling element Nilsson, Anders C.; Rasmussen, Birgit

Multiple Scenario Inversion of Reflection Seismic Prestack Data

Aalborg Universitet. Lecture 14 - Introduction to experimental work Kramer, Morten Mejlhede. Publication date: 2015

Optimal acid digestion for multi-element analysis of different waste matrices

Impact of the interfaces for wind and wave modeling - interpretation using COAWST, SAR and point measurements

Radioactivity in the Risø District January-June 2014

Aalborg Universitet. Bounds on information combining for parity-check equations Land, Ingmar Rüdiger; Hoeher, A.; Huber, Johannes

Validation of Boundary Layer Winds from WRF Mesoscale Forecasts over Denmark

Radioactivity in the Risø District July-December 2013

Validity of PEC Approximation for On-Body Propagation

Higher-order spectral modelling of the diffraction force around a vertical circular cylinder

The colpitts oscillator family

A systematic methodology for controller tuning in wastewater treatment plants

Design of Robust AMB Controllers for Rotors Subjected to Varying and Uncertain Seal Forces

Global Wind Atlas validation and uncertainty

Comparisons of winds from satellite SAR, WRF and SCADA to characterize coastal gradients and wind farm wake effects at Anholt wind farm

Aalborg Universitet. The number of independent sets in unicyclic graphs Pedersen, Anders Sune; Vestergaard, Preben Dahl. Publication date: 2005

Graphs with given diameter maximizing the spectral radius van Dam, Edwin

Crack Tip Flipping: A New Phenomenon yet to be Resolved in Ductile Plate Tearing

Wake decay constant for the infinite wind turbine array Application of asymptotic speed deficit concept to existing engineering wake model

Aalborg Universitet. Published in: IEEE International Conference on Acoustics, Speech, and Signal Processing. Creative Commons License Unspecified

Application of mesoscale models with wind farm parametrisations in EERA-DTOC

Kommerciel arbejde med WAsP

On a set of diophantine equations

Multi (building)physics modeling

Advantages and Challenges of Superconducting Wind Turbine Generators

On the Einstein-Stern model of rotational heat capacities

Exposure Buildup Factors for Heavy Metal Oxide Glass: A Radiation Shield

Potential solution for rain erosion of wind turbine blades

Steady State Comparisons HAWC2 v12.2 vs HAWCStab2 v2.12

Diffusion of sulfuric acid in protective organic coatings

Simulating wind energy resources with mesoscale models: Intercomparison of stateof-the-art

Estimation of Peak Wave Stresses in Slender Complex Concrete Armor Units

Aalborg Universitet. Land-use modelling by cellular automata Hansen, Henning Sten. Published in: NORDGI : Nordic Geographic Information

Battling Bluetongue and Schmallenberg virus Local scale behavior of transmitting vectors

The IEA Annex 20 Two-Dimensional Benchmark Test for CFD Predictions

On machine measurements of electrode wear in micro EDM milling

Realtime 3D stress measurement in curing epoxy packaging

Development of New Diesel Oxidation and NH3 Slip Catalysts

Resonant Inerter Based Absorbers for a Selected Global Mode

A beam theory fracture mechanics approach for strength analysis of beams with a hole

Determination of packaging induced 3D stress utilizing a piezocoefficient mapping device

CUSUM TEST FOR PARAMETER CHANGE IN TIME SERIES MODELS. Sangyeol Lee

Analytical Studies of the Influence of Regional Groundwater Flow by on the Performance of Borehole Heat Exchangers

Tilburg University. Strongly Regular Graphs with Maximal Energy Haemers, W. H. Publication date: Link to publication

Published in: Proceedings of the 21st Symposium on Mathematical Theory of Networks and Systems

Robustness of a cross contamination model describing transfer of pathogens during grinding of meat

On numerical evaluation of two-dimensional phase integrals

A Blue Lagoon Function

Alkali Release from Typical Danish Aggregates to Potential ASR Reactive Concrete

Space charge fields in DC cables

A note on non-periodic tilings of the plane

Determination of the minimum size of a statistical representative volume element from a fibre-reinforced composite based on point pattern statistics

Irregular Wave Forces on Monopile Foundations. Effect af Full Nonlinearity and Bed Slope

Validation and comparison of numerical wind atlas methods: the South African example

A zero-free interval for chromatic polynomials of graphs with 3-leaf spanning trees

Generating the optimal magnetic field for magnetic refrigeration

Measurements of the angular distribution of diffuse irradiance

Molecular orientation via a dynamically induced pulse-train: Wave packet dynamics of NaI in a static electric field

Solar radiation and thermal performance of solar collectors for Denmark

Geometry explains the large difference in the elastic properties of fcc and hcp crystals of hard spheres Sushko, N.; van der Schoot, P.P.A.M.

On Estimation of the CES Production Function - Revisited

Aalborg Universitet. Seawall Overtopping Tests sea erosion study : Sohar Cornice Frigaard, Peter. Publication date: 1990

Ph.D. Qualifying Exam Friday Saturday, January 6 7, 2017

A Procedure for Classification of Cup-Anemometers

Conceptual design of a thorium supplied thermal molten salt wasteburner

Ambiguity and Information Processing in a Model of Intermediary Asset Pricing

A comparison study of the two-bladed partial pitch turbine during normal operation and an extreme gust conditions

The M/G/1 FIFO queue with several customer classes

An optimization problem related to the storage of solar energy van der Wal, J.

Application of the wind atlas for Egypt

Resistivity survey at Stora Uppåkra, Sweden

Robustness of a cross contamination model describing transfer of pathogens during grinding of meat

Calculation of fission product decay heat

Characterization of the Airflow from a Bottom Hung Window under Natural Ventilation

Upper and Lower Bounds of Frequency Interval Gramians for a Class of Perturbed Linear Systems Shaker, Hamid Reza

University of Groningen. Life cycle behavior under uncertainty van Ooijen, Raun

Perturbative Approaches for Robust Intertemporal Optimal Portfolio Selection

Proving in the Isabelle Proof Assistant that the Set of Real Numbers is not Countable

Transcription:

Downloaded from orbit.dtu.dk on: Jan 22, 2019 Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios Nystrup, Peter Publication date: 2018 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Nystrup, P. (2018). Dynamic Asset Allocation - Identifying Regime Shifts in Financial Time Series to Build Robust Portfolios. DTU Compute. DTU Compute PHD-2017, Vol.. 465 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

(rt) (r 2 t )

t

t t

l 1 l 1 l 2 l 1 l 2

l 1

t

l 1

l 1

t

{S t : t N} t N (S t+1 S t,..., S 1 ) = (S t+1 S t ). (S u+t = j S u = i) = γ ij (t) u Γ (t) = {γ ij (t)} π πγ = π π = 1 π = δ δ δ i = (S 1 = i) {S t } m {X t : t N} m X (t) S (t) t ( S t S (t 1)) = (S t S t 1 ), t = 2, 3,..., ( X t X (t 1), S (t)) = (X t S t ), t N. S t X t S t X t S t {S t } {X t } X t = µ St + ε St, ε St N ( 0, σ 2 S t ),

µ St = { { µ 1, S t = 1, σ 2 [ µ 2, S t = 2, σ2 S t = 1, S t = 1, 1 σ2, 2 S t = 2, Γ = γ12 γ 12 γ 21 1 γ 21 k ρ Xt (k θ) = π 1 (1 π 1 ) (µ 1 µ 2 ) 2 σ 2 λ k, ρ X 2 t (k θ) = π 1 (1 π 1 ) ( µ 2 1 µ 2 2 + σ1 2 σ2 2 [Xt 4 θ] [Xt 2 θ] 2 λ k, θ σ 2 = [X t θ] λ = γ 11 + γ 22 1 Γ λ ) L T (θ) = (X (T ) = x (T ) θ = δ (x 1 ) Γ (x 2 ) Γ (x T ), (x) p i (x) = (X t = x S t = i) i {1, 2,..., m} X t ) 2 ].

( t i ) = γ t 1 ii (1 γ ii ). i d i (u) = (S t+u+1 i, S t+u v = i, v = 0,..., u 2 S t+1 = i, S t i) γ ij = (S t+1 = j S t+1 i, S t = i) i j γ ii = 0 j γ ij = 1 t p ij ( t) = (S (t + t) = j S (t) = i) t 0 p ij (0) = 0 i j (t) =. t 0

p ij ( t) p p ij ( t) p ij (0) ij (0) = t 0 t = t 0 = q ij (S (t + t) = j S (t) = i) t q ii = q i = j i q ij = {q ij } q ij q i π { π = π = 1. π (t) = {p ij (t)} (t) t (0) = = (t) (t) = e t (0) = e t. i q i > 0 j i q ij /q i δ (t) = e t = (1). q i γ ii q i = ˆγ ii.

q i q i 1 t p ij = o ( t), i j 2, p ii ( t) = 1 q i t + o ( t), p i,i 1 ( t) = w i q i t + o ( t), p i,i+1 ( t) = (1 w i ) q i t + o ( t), i {1, 2,..., m}, t 0 o( t) t = 0 m = m (m + 1) = i i + 2 i + 1 i i + 2 q 1 (1 w 1 ) q 1 0 0 w 1 q 1 w 2 q 2 q 2 (1 w 2 ) q 2 0 0 =. (1 w m ) q m 0 0 w m q m q m

r t = (P t ) (P t 1 ) P t t

rt r t JB [0.00001; 0.00068] [0.0116; 0.0127] [ 0.75; 0.30] [8.5; 14.1] [6356; 25803] JB = T ( ) 2 + ( 3)2 T 6 24

( rt θ) θ = 1 θ = 0.75 θ = 0.5 θ = 0.25 ( rt θ) θ = 1 θ = 1.25 θ = 1.5 θ = 1.75 N N t N N t N t t

10 3 10 3 10 3 10 3 N (2) N (2) t (2) N (3) N (3) t (3) N (3) N (4) N (4) t (4) N (4) k 0.95 (100 k) t t

r t [0.00001; 0.00068] [0.0116; 0.0127] [ 0.75; 0.30] [8.5; 14.1] N (2) N (2) t (2) N (3) N (3) t (3) N (3) N (4) N (4) t (4) N (4) N N t N N t N r t ± 4 σ

N (2) N (2) t (2) N (3) N (3) t (3) N (3) N (4) N (4) t (4) N (4) t = 2 L + p T T p = 2 L + 2p

( rt θ) θ = 1 θ = 0.75 θ = 0.5 θ = 0.25 ( rt θ) θ = 1 θ = 1.25 θ = 1.5 θ = 1.75

t

m Γ µ 10 4 σ 2 10 4 δ 0.990 0.010 8.3 0.52 1.0 (0.002) (1.1) (0.01) (0.2) 0.021 0.979 6.9 3.47 0.0 (0.004) (4.9) (0.14) 0.982 0.018 0.000 (0.004) (0.001) 0.015 0.978 0.006 (0.003) (0.002) 0.000 0.030 0.970 (0.003) (0.010) 10.1 (1.3) 0.5 (2.5) 12.4 (12.8) 0.32 (0.01) 1.28 (0.04) 7.08 (0.50) 1.0 (0.1) 0.0 (0.1) 0.0 0.979 0.021 0.000 0.000 (0.005) (0.006) (0.00) 0.020 0.970 0.009 0.001 (0.005) (0.003) (0.001) 0.000 0.017 0.976 0.007 (0.000) (0.006) (0.004) 0.000 0.000 0.049 0.951 (0.000) (0.002) (0.026) 10.8 (1.5) 3.3 (2.7) 2.9 (5.7) 29.9 (31.2) 0.29 (0.01) 0.96 (0.05) 2.39 (0.14) 12.16 (1.73) 1.0 (0.2) 0.0 (0.2) 0.0 (0.1) 0.0 m

m Γ 1 p r 10 µ 10 4 σ 2 10 4 δ 0 1 0.994 0.4 9.0 0.48 1.0 (0.002) (0.1) (1.3) (0.01) (0.4) 1 0 0.975 0.5 10.8 4.00 0.0 (0.010) (0.2) (5.7) (0.18) 0 1.000 0.000 (0.000) 0.972 0 0.028 (0.013) 0.000 1.000 0 (0.000) 0.993 (0.003) 0.945 (0.037) 0.983 (0.052) 0.3 (0.1) 1.7 (1.7) 5.5 (33.0) 10.5 (1.3) 1.0 (3.0) 14.3 (12.7) 0.31 (0.01) 1.51 (0.07) 7.26 (0.54) 1.0 (0.3) 0.0 (0.3) 0.0 0 1.000 0.000 0.000 (0.000) (0.000) 0.970 0 0.022 0.008 (0.022) (0.020) 0.000 0.675 0 0.325 (0.000) (0.161) 0.000 0.000 1.000 0 (0.000) (0.000) 0.985 (0.006) 0.965 (0.024) 0.937 (0.124) 0.977 (0.098) 0.5 (0.5) 1.0 (0.7) 31.2 (124.8) 4.2 (68.9) 11.6 (1.4) 2.1 (2.8) 2.4 (5.2) 30.6 (31.8) 0.25 (0.01) 1.05 (0.06) 2.38 (0.17) 11.81 (2.26) 1.0 (0.3) 0.0 (0.2) 0.0 (0.2) 0.0 m p r m Γ 1 p r 10 µ 10 4 σ 2 10 4 t δ 0 1 0.997 0.2 9.5 0.34 7.2 1.0 (0.002) (0.1) (1.2) (0.02) (1.2) (0.4) 1 0 0.984 0.5 6.0 2.10 5.6 0.0 (0.008) (0.2) (4.8) (0.17) (1.0) 0 1.000 0.000 (0.042) 0.630 0 0.370 (0.144) 0.000 1.000 0 (0.045) 0.990 (0.009) 0.979 (0.047) 0.983 (0.055) 7.4 (7.8) 10.5 (22.2) 5.2 (28.5) 10.5 (1.1) 1.3 (2.7) 12.2 (13.1) 0.25 (0.01) 1.16 (0.07) 4.96 (0.75) 6.7 (1.4) 22.4 (467.9) 7.2 (7.4) 1.0 (0.3) 0.0 (0.3) 0.0 0 1.000 0.000 0.000 (0.000) (0.000) 0.610 0 0.296 0.094 (0.103) (0.106) 0.000 0.724 0 0.276 (0.000) (0.148) 0.000 0.000 1.000 0 (0.000) (0.000) 0.987 (0.013) 0.957 (0.052) 0.931 (0.115) 0.981 (0.110) 8.9 (10.2) 18.6 (34.2) 34.3 (115.9) 3.9 (61.9) 10.6 (1.4) 4.1 (2.2) 1.9 (5.2) 29.3 (31.6) 0.23 (0.01) 0.86 (0.05) 2.22 (0.16) 9.56 (2.44) 6.8 (1.5) 24.8 (16.4) 49.0 (98.2) 13.8 (11968) 1.0 (0.2) 0.0 (0.2) 0.0 (0.0) 0.0 m t p r t t

m µ 10 4 σ 2 10 4 δ 0.014 0.014 0 0 10.6 0.32 1.0 (0.003) (1.4) (0.01) 0 0.020 0.020 0 0.8 1.29 0.0 (0.003) (2.5) (0.03) 0.048 0 0.068 0.020 0.8 1.29 0.0 (0.019) 0.005 0.019 0 0.024 14.6 7.12 0.0 (0.003) (0.003) (12.1) (0.26) 0.018 0.017 0 0.001 (0.005) (0.001) 0.015 0.020 0.005 0 (0.004) (0.002) 0 0.010 0.015 0.005 (0.003) (0.002) 0.005 0 0.029 0.034 (0.005) (0.013) 11.1 (1.6) 3.6 (2.6) 3.2 (5.2) 29.2 (25.9) 0.29 (0.01) 0.95 (0.03) 2.39 (0.10) 12.29 (0.82) 1.0 0.0 0.0 0.0 m N N t N N t N

r t [ 0.00002; 0.00063] [0.0113; 0.0123] [ 0.56; 0.24] [7.0; 10.9] N (2) N (2) t (2) N (3) N (3) t (3) N (4) N N t N N t N N (2) N (2) t (2) N (3) N (3) t (3) N (4)

t

t {S t : t N} t N (S t+1 S t,..., S 1 ) = (S t+1 S t ). (S u+t = j S u = i) = γ ij (t) u {S t } m {(S t, X t )} m S (t) X (t) t ( S t S (t 1)) = (S t S t 1 ), t = 2, 3,..., ( X t X (t 1), S (t)) = (X t S t ), t N.

S t X t S t {X t } {S t } {S t } {X t } X t = µ St + ε St, ε St N ( 0, σ 2 S t ), { µ 1, S t = 1, µ St = µ 2, S t = 2, { σs 2 σ 2 t = 1, S t = 1, σ2, 2 S t = 2, [ 1 γ12 γ Γ = 12 γ 21 1 γ 21 k ]. ρ Xt (k θ) = π 1 (1 π 1 ) (µ 1 µ 2 ) 2 σ 2 λ k ρ X 2 t (k θ) = π 1 (1 π 1 ) ( ) µ 2 1 µ 2 2 + σ1 2 σ2 2 2 [Xt 4 θ] [Xt 2 θ] 2 λ k, π 1 λ = γ 11 + γ 22 1 Γ λ Γ λ = 1

( t i ) = γ t 1 ii (1 γ ii ).

2 f f f = 10

ˆθ t = θ t n=1 ( ) X w n X (n 1) n, θ = l t (θ) θ w n = 1 w n = λ t n

0 < λ < 1 N = 1 1 λ. l t (θ) ˆθ t 1 θ ˆθ t ˆθ t = ˆθ )] 1 ) t 1 [ θθ lt (ˆθt 1 θ lt (ˆθt 1. ) t θθ lt (ˆθt 1 = θθ λ t n X (X (n 1) n, ˆθ ) t 1 = n=1 t λ t n X θθ (X (n 1) n, ˆθ ) t 1 n=1 t ( )) λ t n I t (ˆθt 1 n=1 = 1 λt 1 λ ˆθ t ˆθ t 1 + ( I t (ˆθt 1 )), A )] 1 ) [I t (ˆθt 1 θ lt (ˆθt 1, (t, N ) A

1 λ 1 λ t 1 (t,n ) N t t 0 > 0 [ θθ l t ] = [ θ l t θ l t] ) I t (ˆθ = 1 t t n=1 = t 1 t ) ) θ l n (ˆθ θ l n (ˆθ 1 t 1 { t 1 n=1 ) ) θ l n (ˆθ θ l n (ˆθ } ( X + θ X (t 1) t, ˆθ ) ( X θ X (t 1) t, ˆθ ) ) = I t 1 (ˆθ + 1 [ ( X θ X (t 1) t, t ˆθ ) ( X θ X (t 1) t, ˆθ ) (ˆθ) ] It 1. r t = (P t ) (P t 1 ) P t t

rt r t t 2.53 t t 22.9 r t ± 4 σ r t σ

(r 2 t ) (r 2 t ) (r 2 t ) r t ± 4 σ

t

µ1 µ2 σ 2 1 σ 2 2 γ11 γ22

µ1 µ2 σ 2 1 σ 2 2 γ11 γ22 ν t

t t t N = 250 t 0 = 250 A = 1.25

-0.02 µ2-0.004 0.000 µ1 0.00 Long memory and time-varying parameters 0.004 76 1940 1960 1980 2000 1940 1980 2000 Year 0.001 σ22 0.003 σ12 1e-04 3e-04 5e-04 Year 1960 2000 1940 1960 1980 Year 2000 1940 1960 1980 Year 2000 1940 1960 1980 Year 2000 γ22 0.2 0.4 0.6 0.8 1.0 1960 1980 Year γ11 0.2 0.4 0.6 0.8 1.0 1940 Figure 5: Parameters of a two-state Gaussian HMM estimated adaptively using an effective memory length Neff = 250. The dashed lines are the MLE for the full series and the gray areas are approximate 95% confidence intervals based on the profile likelihood functions.

(r 2 t ) (r 2 t ) r t ± 4 σ =1700 N =1700 Nt N=250 N ( ) N =250 N t ( =1700 ) Nt r t ± 4 σ

1:250 10 3 251:500 10 3 1:250 10 3 251:500 10 3 =1700 =1700 N Nt N =250 N t t t t

N Nt N =1700 =1700 Nt N =250 N t t t t θ t X t+1 t t + 1

N =1700 =1700 Nt N =250 N θ t t θ t t θ t

t t

t

{X t : t N} t N (X t+1 X t,..., X 1 ) = (X t+1 X t ). (X t+1 = j X t = i) = γ ij r t = (P t) (P t 1 ) P t t

Y t X t N ( µ Xt, σ 2 X t ), µ Xt = { { µ 1, X t = 1, σ 2 [ µ 2, X t = 2, σ2 X t = 1, X t = 1, 1 σ2, 2 X t = 2, Γ = γ12 γ 12 γ 21 1 γ 21 ]. X t Y t X t ( t i ) = γ t 1 ii (1 γ ii ).

t t t + 1 (γ ii 0.5) t + 1 t t + 1 t t + 1 t+1

t

r t = (P t) (P t 1 ) P t t

p = 0.5 1/N

25.0 33.3 12.5 5.0 6.7 2.5 10.0 13.3 5.0 5.0 60 6.7 80 2.5 5.0 6.7 2.5 5.0 6.7 2.5 5.0 6.7 2.5 10.0 10.0 20.0 40 5.0 5.0 10.0 20 17.5 17.5 35.0 30 70 p = 0.5 p = 0.5 p = 1 p X w (p, X) = p w (X) + (1 p) w w (X) = (25, 5, 10, 5, 5, 5, 5, 0, 0, 0) /60 (X) + (0, 0, 0, 0, 0, 0, 0, 10, 10, 20) /40 (X) (X) 1 X = (X) 0 X =

{X t : t N} t N (X t+1 X t,..., X 1 ) = (X t+1 X t ). (X t+1 = j X t = i) = γ ij Y t X t N ( µ Xt, σ 2 X t ), µ Xt = { { µ 1, X t = 1, σ 2 µ 2, X t = 2, σ2 X t = 1, X t = 1, σ2, 2 X t = 2, Γ = [ ] 1 γ12 γ 12. γ 21 1 γ 21 X t Y t Y t X t ( t i ) = γ t 1 ii (1 γ ii ).

{Y t : t 1, 2,..., T } 1 1/ T 0.9998 T

t = T = 1 T ( X t = i Y 1, Y 2,..., Y T ) i t T T i ( X t = i Y 1, Y 2,..., Y T ) > X t = i ( X t = i Y 1, Y 2,..., Y T ) t = t + 1 T = (t, T ) T = T + 1 t t (γ ii 0.5) t + 1 t

t + 1 t t + 1 t t T t T + 1 T t t + 1 t + 1 T T + 1 t + 2 T t t + 1

p p p p p = 0 p p p p

(p = 0.5) p = 0.5 p = 0.5

(p = 0.5) (p = 0.8) p = 0.5 p = 0.5 p = 0.8 p = 0.5 p = 0.8 p = 0.5 t

(p = 0.5) p = 0.5 t X ( f t [ = Xt 20, X t 19,..., X )] t, [ ] X t = i ( X t = i Y 1, Y 2,..., Y t)

t 1/N

t r r t t = 100 12 t i=t 20 (P i/p i 1 ) 2 P t t

t t+21 r t = (P t/p t 1 )

r t t r 0.24

τ X i { F 0 i < τ, F 1 i τ. F 0 t = τ F 1 x 1, x 2,... X 1, X 2,... X i τ t k < t k { F 0 i < k, H 0 : i X i F 0, H 1 : X i F 1 i k.

k D k,t D k,t t D k,t > h k,t h k,t k D k,t 1 < k < t D,t = D k,t, k t D,t > h t h t ˆτ k D k,t D k,t h t F 0 F 1 (x) = F 0 (x + δ) F 1 (x) = F 0 (δx) F 0 t F

n = n A + n B A B (n + 1) /2 M = (r (x i ) (n + 1) /2) 2, x i A r (x i ) x i µ M = n A ( n 2 1 ) /12, σ 2 M = n An B (n + 1) ( n 2 4 ) /180. M = (M µ M )/ σ M i t r (x i ) = t i j I (x i x j ), I

t r τ < t t

τ t t + 1 t + 1 t = λ t 1 + (1 λ) r 2 t. λ

100

l 1 l 2 l 0

x 1,..., x T R n t = 1,..., T x t x t N (µ t, Σ t ) µ t Σ t K T b 1,..., b K T K + 1 x t K b 1,..., b K µ (1),..., µ (K+1), Σ (1),..., Σ (K+1) K + 1 b 0 b K+1 1 = b 0 < b 1 < < b K < b K+1 = T + 1, (µ t, Σ t ) = (µ (i), Σ (i) ), b i 1 t < b i, i = 1,..., K. t t (i) b i x 1,..., x T x 1,..., x T l(b, µ, Σ) = = = T t=1 K+1 ( 1 2 (x t µ t ) T Σ 1 t (x t µ t ) 1 2 Σ t n 2 (2π) ) b i 1 i=1 t=b i 1 K+1 i=1 ( 1 2 (x t µ (i) ) T (Σ (i) ) 1 (x t µ (i) ) 1 2 Σ(i) n 2 (2π) ) l (i) (b i 1, b i, µ (i), Σ (i) ),

l (i) (b i 1, b i, µ (i), Σ (i) ) = b i 1 ( 1 2 (x t µ (i) ) T (Σ (i) ) 1 (x t µ (i) ) t=b i 1 1 2 Σ(i) n 2 (2π) ) b i 1 = 1 (x t µ (i) ) T (Σ (i) ) 1 (x t µ (i) ) 2 t=b i 1 b i b ( ) i 1 Σ (i) + n (2π) 2 i b = (b 1,..., b K ) µ = (µ (1),..., µ (K+1) ) Σ = (Σ (1),..., Σ (K+1) ) Σ Σ b i b i 1 i K b µ Σ K+1 ϕ(b, µ, Σ) = l(b, µ, Σ) λ (Σ (i) ) 1 = K+1 i=1 i=1 ( l (i) (b i 1, b i, µ (i), Σ (i) ) λ (Σ (i) ) 1), λ 0 K λ K ( ) T 1 K b 1,..., b K µ Σ λ = 0 λ > 0 b i

b i 1 µ (i) 1 = x t, b i b i 1 t=b i 1 i Σ (i) = S (i) + λ b i b i 1 I, S (i) b i 1 S (i) 1 = (x t µ (i) )(x t µ (i) ) T. b i b i 1 t=b i 1 S (i) b i b i 1 < n λ > 0 Σ (i) b b ϕ(b) = C 1 K+1 ( (b i b i 1 ) (S (i) λ + I) 2 b i=1 i b i 1 ) λ (S (i) λ + I) 1 b i b i 1 K+1 = C + ψ(b i 1, b i ), i=1 C = (T n/2)((2π) + 1) b ψ(b i 1, b i ) = 1 ( (b i b i 1 ) (S (i) λ + I) 2 b i b i 1 ) λ (S (i) λ + I) 1. b i b i 1 S (i) b i 1 b i λ = 0 ψ(b i 1, b i ) = 1 2 (b i b i 1 ) S (i).

K λ 1 K+1 ( (b i b i 1 ) (S (i) λ + I) 2 b i=1 i b i 1 ) λ (S (i) λ + I) 1, b i b i 1 b = (b 1,..., b K ) ( ) T 1 K bi S (i) b S (i) T n 2 K + 1 Kn 2 T n Kn T n S (i) i = 1,..., K + 1 ψ(b i 1, b i ) LL T = S (i) λ + I, b i b i 1 L n 3 n 2 n i=1 (L ii) n 3 L 1 2 F T n 2 + Kn 3 K + 1 T n K K < T T = Kn n K n T n 2 T = 1000 n = 100

(b i 1, b i ) b i 1 < b i T (T 1)/2 K (p, q) (q, r) n 3 KT 2 T T (b i 1, b i ) i t ψ(b i 1, t)+ψ(t, b i ) t b i 1 b i b i b i 1 > 1 i t = (b i 1, b i ) b i 1 b i ψ(b i 1, t) + ψ(t, b i ) ψ(b i 1, b i ) t t = (b i 1, b i ) b i 1 b i t

x bi 1,..., x bi µ Σ µ = 0 µ = µ Σ = λi Σ = Σ + λi t = b i 1 + 1,..., b i 1 µ µ Σ Σ ψ t = ψ(b i 1, t) + ψ(t, b i) t ψ t ψ t ψ(b i 1, b i) t x 1,..., x T K b 0 = 1 b 1 = T + 1 K = 0,..., K i = 1,..., K + 1 (t i, ψ ) (b i 1, b i) ψ K > 0 (b 1,..., b K) ψ () t i ψ 1 = b 0 < b 1 < < b K+1 < b K+2 = T + 1 i = 1,..., K (t i, l ) (b i 1, b i+1) t i b i b i = t i (b 1,..., b K) n 2 ψ t n 3 (b i b i 1 )n 3 K K = 1,..., K

K = 1,..., K (b i 1, b i+1 ) K K + 1 Kn 2 K KLn 3 T L Ln 3 T L K K = 1 K = K L (K ) 2 n 3 T K n 3 T K n 3 T 2 λ K K λ 0.9T K

K = (T /n)/3 3n T /n λ λ K l(x t ) = 1 2 (x t µ (i) ) T (Σ (i) ) 1 (x t µ (i) ) 1 2 Σ(i) n 2 (2π), t i 1 X X x l(x t X t) t λ K K λ K K = 0 K

O(K T n 3 ) O(T n 3 ) K 1 T 1 K M λ K t t T x T x 1 t = 1,..., 365

(Σ (i), µ (i) ) (Σ (i 1), µ (i 1) ) λ

n = 3 µ (i) Σ (i) n = 3 T = 4943 K = 30 λ = 10 4 K K = 8 K = 10 n

ϕ(b) λ = 10 4 K λ K λ λ K = K K K = 30 K λ λ = 10 4 K = 10 λ = 10 4 K λ K λ λ = 10 4 K = 10 t

λ = 10 6 λ = 10 5 λ = 10 4 λ = 10 3 λ K 30

λ = 10 4 K = 10 K = 10 λ = 10 4 K = 8 K = 11 K = 9

K K 309 4782 K = 10 K (K ) 2 LT n

ϕ(b) K = 10 λ = 10 4 K λ K n = 309 309 309 3 3 K = 3 λ = 5 10 2 8

λ = 5 10 3 λ = 10 2 λ = 5 10 2 λ = 10 1 λ λ K = 10

K = 3 λ = 5 10 2 300 1282 K = 4 λ = 10 3 λ 10 6 10 3

λ = 10 K = 9 Σ i = A (i) A (i)t, i = 1,..., 10 A (i) R 25 25 A (i) j,k K = 9 i Σ i 25 1000 K = 9 K + 1 = 10 λ λ = 10 λ = 10 λ λ 10 3 10 3 λ λ 10 3 10 3

[100, 200, 300, 400, 500, 600, 700, 800, 900] [100, 200, 300, 400, 500, 600, 663, 700, 800] n K T /(K + 1) K T /K n

t l 1

l 1

l 1

{S t : t N} t N (S t+1 S t,..., S 1 ) = (S t+1 S t ). (S t+1 = j S t = i) = γ ij Γ = {γ ij } π π T Γ = π T T π = 1 δ = π δ δ i = (S 1 = i) Y t S t N ( µ St, σ 2 S t ),

µ St = { { µ 1, S t = 1, σ 2 [ ] µ 2, S t = 2, σ2 S t = 1, S t = 1, 1 σ2, 2 S t = 2, Γ = γ12 γ 12. γ 21 1 γ 21 S t Y t S t ( t i ) = γ t 1 ii (1 γ ii ).

ˆθ t = θ t n=1 w n (Y n Y n 1,..., Y 1, θ ) = lt (θ) θ w n = 1 w n = f t n 0 < f < 1 N = 1 1 f. l t (θ) ˆθ t 1 θ ˆθ t ˆθ t = ˆθ )] 1 ) t 1 [ θθ lt (ˆθt 1 θ lt (ˆθt 1. I t (θ) = [ θθ l t ] = [ θ l t θ lt T ]. ˆθ t ˆθ )] 1 ) t 1 + A [I t (ˆθt 1 θ lt (ˆθt 1.

A A 1/N t > 1 t α T T T = δt 1 (y 1 ) T t=2 Γ t t (y t ( δ T T ), 1 (y 1 ) t=2 Γ t t (y t ) i ( α T T )i = (S T = i Y T,..., Y 1 ) t (y t ) p i (y t ) = (Y t = y t S t = i, θ t ) k α T T k α T T +k T = αt T T Γk T.

µ = σ 2 = m µ i α i i=1 m i=1 ( µ 2 i + σi 2 ) αi µ 2 α i r t (1 + r t ) N ( µ, σ 2), µ σ 2 [r t ] = ( µ + σ 2/ 2 ) 1 [r t ] = ( ( σ 2) 1 ) ( 2µ + σ 2). λ 2 = γ 11 + γ 22 1 λ 2

h t R n t (h t ) i i t (h t ) i < 0 i u t R n (u t ) i > 0 i t h + t = h t + u t, t = 0,..., T 1, t + 1 V t = T h t

V + t = T h + t V t h t h t /V t T u t + κ T u t = 0, t = 0,..., T 1, κ T u t κ T u t T u t + κ T u t 0, t = 0,..., T 1, u 0 u 1 u 2 r 1 r 2... h t+1 = ( + r t+1 ) h + t, t = 0,..., T 1, r t+1 R n t t + 1 t h 0 h + 0 h 1 h + 1 h 2 h + 2 t = 0 t = 1 t = 2 r t [ ] [r t ] = r t, (r t r t ) (r t r t ) T = Σ t, t = 1,..., T. ϕ t : R n R n u t = ϕ t (h t ), t = 0,..., T 1. C t R n C t h t u t h + t = h t + u t C t.

h + t u t h t r t h t h + t h t, h t h t h = 0 H t R n y t + V t + Ht, [ ] T 1 J = V T ψ t (h t, u t ), t=0 r 1,..., r T V T = T h T ψ t : R n R n R t r t ψ t h 0 ] ( ) h + T t Σt+1 h + t ψ t (h t, u t ) = γ [ V t+1 h + t V t + = γ V + t, γ 0 V t +

ψ t (u t ) = ρ T u t, ρ κ l 1 V t

u t ˆr τ τ = t+1,..., T. V T T 1 τ=t ψ τ (h τ, u τ ) h τ+1 = ( + ˆr τ+1 ) (h τ + u τ ), τ = t,..., T 1 h t+1,..., h T u t,..., u T 1 h t u t,..., u T 1 ϕ (h t ) = u t h t+1 r t u t,..., u T 1 t,..., T K

K u t,..., u t+k 1 u t t Vt+K (h t+k) t+k 1 τ=t ψ τ (h τ, u τ ) h τ+1 = ( + ˆr τ+1 ) (h τ + u τ ), τ = t,..., t + K 1 h t+1,..., h t+k u t,..., u t+k 1 K Vt+K K Vt+K (h t+k) V t+k = T h t+k K K t K u t,..., ut+k 1 K = 100

r t = (P t) (P t 1 ) P t t

µ1 µ2 σ 2 1 σ 2 2 γ11 γ22 N = 260 N = 260 A = 1/N

γ 11 γ 22 1/ (1 0.99) = 100 K γ = 0 γ = 2 K λ 2 = 1 γ 11 γ 22

(γ = 0, κ = 0) (γ = 2, κ = 0) (γ = 0, κ = 0.02) (St = 1) (St = 1) (St = 1) γ κ κ = 0.02 0.75 1 0.17 K = 100 κ = 0.001 (γ = 0, ρ = 0) γ = 2

(γ = 0, ρ = 0) (γ = 2, ρ = 0) (γ = 0, ρ = 0.02) γ (γ = 0, ρ = 0.02) ρ = 0.02 κ = 0.001 γ = 2

(γ = 0, κ = 0.001, ρ = 0) ut/vt ut/vt ut/vt (γ = 2, κ = 0.001, ρ = 0) (γ = 0, κ = 0.001, ρ = 0.02)

(γ = 0, ρ = 0) (γ = 0, ρ = 0.02) u 0 u 1 u 2 h 0 h + 0 r 1 h 1 h + 1 r 2 h 2 h + 2 t = 0 t = 1 t = 2... t t + 1

(γ = 0, κ = 0.001, ρ = 0) (κ = 0.001) (γ = 0, ρ = 0)

t

1/N

n t = 1,..., T t t t t + 1 n h t R n+1 t (h t ) i i t (h t ) i < 0 i i = 1,..., n (h t ) i 0 i = 1,..., n (h t ) n+1 (h t ) n+1 < 0 p t R n +

t (h t ) n+1 = 0 v t t v t = T h t v t > 0 (h t ) 1:n = ((h t ) 1,..., (h t ) n ) (h t ) 1:n 1 = (h t ) 1 + + (h t ) n, (h t ) 1:n 1 /v t w t R n+1 h t w t = h t /v t v t > 0 T w t = 1 (w t ) n+1 h t = v t w t w 1:n 1 l 1 u t R n (u t ) i > 0 i (u t ) i < 0 i t i = 1,..., n (u t ) n+1 z t = u t /v t w t h + t = h t + u t, t = 1,..., T.

t v + t = T h + t v + t v t = T h + t T h t = T u t. (u t ) 1:n R n l 1 (u t ) 1:n 1 /2 t (u t ) 1:n 1 /(2v t ) = z 1:n 1 /2 w t = h t /v t h + t /v t = w t + z t. ϕ t (u t ) ϕ t : R n+1 R ϕ t (u t ) n+1 ϕ t ((u t ) 1:n ) ϕ t (0) = 0 ϕ t (u t ) ϕ t ϕ t (x) = n i=1 (ϕ t ) i (x i ), (ϕ t ) i R R i t (ϕ t ) i x a x + bσ x 3/2 + cx, V 1/2 a b σ V c x a

b V x 3/2 /V 1/2 σ b b c c = 0 x c > 0 c > a i t 3/2 3/2 v t z i i t a i z i + b i σ i z i 3/2 (V i /v) 1/2 + c iz i. V i /v V i t ϕ t (z t ) ϕ t (z t ) v t

z i h + t t ϕ t (h + t ) ϕ t : R n+1 R (h + t ) n+1 ϕ t (h + t ) = s T t (h + t ), (s t ) i 0 t i (z) = { z, 0} z (s t ) n+1 = 0 (s t ) n+1 > 0 ϕ t (h + t )/v t = s T t (w t + z t ). ϕ t (w t + z t )

ϕ t h i ϕ t (w t + z t ) = s T t (w t + z t ) + f T t (w t + z t ), f t (f t ) i i i T u t + ϕ t (u t ) + ϕ t (h + t ) = 0. T u t v t + = v t ϕ t (u t ) ϕ t (h + t ) (u t ) n+1 (u t ) 1:n (u t ) n+1 = ( T (u t ) 1:n + ϕ t ((h t + u t ) 1:n ) + ϕ t ((u t ) 1:n ) ). n + 1 n (u t ) 1:n (u t ) n+1 (u t ) 1:n ϕ t

ϕ t v t T z t + ϕ t (v t z t )/v t + ϕ t (v t (w t + z t ))/v t = 0, u t = v t z t h + t = v t (w t + z t ) T z t + ϕ t (z t ) + ϕ t (w t + z t ) = 0, (z t ) n+1 (z t ) 1:n (z t ) n+1 = ( T (z t ) 1:n + ϕ t ((w t + z t ) 1:n ) + ϕ t ((z t ) 1:n ) ). h t+1 = h + t + r t h + t = ( + r t ) h + t, t = 1,..., T 1, r t R n+1 t t + 1 i t (r t ) i = (p t+1) i (p t ) i (p t ) i, i = 1,..., n, + r t 0 (p t+1) i (p t ) i = (1 + (r t ) i ), i = 1,..., n.

(r t ) n+1 (s t ) n+1 > 0 (u t ) 1:n (r t ) 1:n (r t ) n+1 v t+1 = T h t+1 = ( + r t ) T h + t = v t + r T t h t + ( + r t ) T u t = v t + rt T h t + rt T u t ϕ t (u t ) ϕ t (h + t ). t R t = v t+1 v t v t, R t = rt T w t + rt T z t ϕ t (z t ) ϕ t (w t + z t ). t r T t w t r T t z t ϕ t (z t ) ϕ t (w t + z t ) w t+1 w t z t r t 1 w t+1 = 1 + R ( + r t ) (w t + z t ). t T w t+1 = 1 w t+1 = w t + z t r t = 0 w t+1 w t + z t

d T t h t d t t h t+1 = ( + r t ) (h t + u t ) h t+1 = ( + r t ) h t + (1 θ t /2)( + r t ) u t, θ t θ t > 0 u t u t

t = 1,..., T h 1 R n+1 (u t ) 1:n (u t ) n+1 a t R n b t R n c t R n σ t R n V t R n s t R n r t R n+1 d t R n (u t ) 1:n

t = 1,..., T R = 1 T R t. T t=1

t G t = (v t+1 /v t ) = (1 + R t ). G t t = 1,..., T G t R t P P P 250 σ = ( 1 T ) 1/2 T (R t R ) 2. t=1 1/T 1/(T 1) R t (σ ) 2 1 T T (R t ) 2. t=1 P P wt R n+1 T wt = 1 wt wt = e n+1 t Rt = rt T wt (r t ) n+1

R t = R t R t. R t = R t (r t ) n+1. R R t Rt = R t Rt = rt T ( wt wt ) + r T t z t ϕ t (z t ) ϕ t (w t + z t ). z t = 0 w t = wt ϕ t (wt ) = 0 Rt σ σ σ R σ = R /σ. = R /σ. t (u t ) 1:n (z t ) 1:n (z t ) n+1

(z t ) 1:n r t ϕ t Z t (z t ) 1:n Ẑ ˆϕ t r t ˆr t Ẑ Z t r t ˆR t = ˆr T t w t + ˆr T t z t ˆϕ t (z t ) ˆϕ t (w t + z t ), r t ˆr t ˆR t = ˆr T t (w t w t ) + ˆr T t z t ˆϕ t (z t ) ˆϕ t (w t + z t ). ˆr T t z t ˆϕ t (z t ) ˆϕ t (w t + z t ),

z t ˆR t γ t ψ t (w t + z t ) z t Z t, w t + z t W t T z t + (z t ) + ˆϕ t ˆϕ t (w t + z t ) = 0, z t ψ t : R n+1 R γ t > 0 Z t W t w t v t ˆR t ˆR t ˆR t z t ˆr T t z t ˆϕ t (z t ) ˆϕ t (w t + z t ). ˆϕ t ˆr t T z t (z t ) z t Z t, w t + z t W t T z t + (z t ) + ˆϕ t ˆϕ t (w t + z t ) γ t ψ t (w t + z t ) ˆϕ t (w t + z t ) = 0, z t z t w t + z t (z t ) 1:n = (zt ) 1:n zt (u t ) 1:n = v t (zt ) 1:n (z t ) n+1 (zt ) 1:n (zt ) n+1 (z t ) n+1

(z t ) n+1 (z t ) n+1 (zt ) n+1 w t + zt W t w t + z t w t + zt (w t + zt ) 1:n T z t + ˆϕ t (z t ) + ˆϕ t (w t + z t ) = 0 T z t = 0 T z = 0 ˆϕ t ˆϕ t (w t + z t ) γ t ψ t (w t + z t ) ˆr t T z t (z t ) T z t = 0, z t Z t, w t + z t W t. zt (z t ) n+1 (w t + z t ) n+1 T z t = 0 w t + z t T (w t + z t ) = 1 T (w t + z t ) w t+1 = w t + z t ˆϕ t ˆϕ t (w t+1 ) γ t ψ t (w t+1 ) ˆr t T w t+1 (w t+1 w t ) T w t+1 = 1, w t+1 w t Z t, w t+1 W t,

w t+1 ψ t r t Σ t R (n+1) (n+1) R t [R t ] = (w t + z t ) T Σ t (w t + z t ). t ψ t (x) = x T Σ t x. Σ t (r t ) n+1 Σ t r t Σ t Rt [R t] = (w t + z t w t ) T Σ t (w t + z t w t ). ψ t (x) = (x w t ) T Σ t (x w t ). x T Σ t x Σ t γ t γ t = 1/2 r t w R t = w T r t [(1 + R t )] T w = 1 w 0

(1 + a) a (1/2)a 2 [(1 + R t )] [ R t (1/2)(R t ) 2] = µ T w (1/2)w T (Σ + µµ T )w, µ = [r t ] Σ = [(r t µ)(r t µ) T ] r t µµ T Σ µ T w (1/2)w T Σw γ t = 1/2 γ t 1/2 n Σ t Σ t = F t Σ tft T + D t, F t R (n+1) k Σ t R k k F T r t D t R (n+1) (n+1) k n (F t ) ij i j D t O(n 3 ) O(nk 2 ) O((n/k) 2 ) n k

ψ t (x) = φ((x w t ) T Σ t (x w t )), φ : R R φ(x) = (x a) + a a φ(x) = (x/η) η > 0 η x ψ t (x) = (x i=1,...,m w t ) T Σ (i) t (x wt ). Σ (i) i = 1,..., M M i M Σ (i) M Σ (i)

ˆr ˆr + δ δ ρ ρ R n ρ ˆr i ρ i ρ i 6 ± 2 4 8 (ˆr t + δ t ) T (w t + z t ) δ ρ δ ˆr i + ρ i ˆr i ρ i ˆR t = ˆr T t (w t + z t w t ) ρ T w t + z t w t. δ ψ t (x) = ρ T x w t. l 1

Σ Σ = Σ +, ij κ (Σ ii Σ jj ) 1/2, κ [0, 1) κ κ κ κ = 0.02 0.05 v = x w t v T (Σ )v = v T (Σ + )v ij κ(σ iiσ jj) 1/2 ij κ(σ iiσ jj) 1/2 = v T Σv + ij κ(σ iiσ jj) 1/2 = v T Σv + κ v i v j (Σ ii Σ jj ) 1/2 ij ( 2 = v T Σv + κ Σ 1/2 ii v i ). i ij v i v j ij ψ t (x) = (x w t ) T Σ(x w t ) + κ ( σ T x w t ) 2, σ = (Σ 1/2 11,..., Σ1/2 nn ) l 1 w t +z t w t+1

w t+1 w t + z t w t + z t w t+1 w t+1 w t + z t w t + z t w t w t + z t w t + z t 0. (w t +z t ) 1:n 0 w t + z t ( + r t ) (h t + z t ) + r t 0 (w t + z t ) 1:n 1 L, L L C t (w t + z t ) i δ C t /v t, δ 0 / i δ i w w t + z t w, w w w = w = (0.05)

c (w t + z t ) n+1 c /v t. i i (w t + z t ) i = 0. β β R R Σ t [r t ] w t + z t β (w t ) T Σ t (w t + z t ) = 0. σi i ( ) σ 2 i = (wt + z t ) T (F t ) i (Σ t) ii (F t ) T i (w t + z t ). i σi (F t ) T i (w t + z t ) = 0. = 0 1,..., K i c i c i i i c T i (w t + z t ) R, i R R i

T h + T ˆϕ (w t + z t )/T δ T ˆϕ t ((w t + z t )/T ) δ. T ω K K (w t + z t ) [i] ω, i=1 a [i] i a K K = 20 ω = 0.4 40 20 K z t (z t ) 1:n (z t ) n+1 t (z t ) 1:n 1 /2 δ (z t ) 1:n 1 /2 δ. δ V t (z t ) 1:n δ(v t /v t ),

i (z t ) i 0, (z t ) i 0. h(x) = 0 x γ h(x) 1 γ > 0 γ T h(x) γ h(x) h(x) 0 γ T (h(x)) + γ > 0 F T t (w t + z t ) = 0 γ F T t (w t + z t ) 1 γ > 0 γ F T t (w t + z t ) = 0 T z t + T z t + ˆϕ t (z t ) + ˆϕ t (w t + z t ) = 0, ˆϕ t (z t ) + ˆϕ t (w t + z t ) 0. T z t = 0

O(nk 2 ) n k k n 3/2 12 100 O(nk 2 )

(z t ) i (z t ) i ϵ ϵ > 0 (z t ) i ϵ (z t ) i 0 z z (z t ) i = 0 ( z t ) i = 0 (z t ) i 0 ( z t ) i > 0 (z t ) i 0 ( z t ) i < 0

K l 1 K ϕ t γ 1/γ a t 3/2 3/2

γ γ κ T (w t +z t ) 2 κ 0 ( ˆr t T z t γt ˆϕ t (z t ) ) γt ˆϕ t (w t + z t ) γt ψ t (w t + z t ) T z t = 0, z t Z t, w t + z t W t. γt γt γt

L V t z t H t, t + 1,..., t + H 1. H = 1 t, t + 1,..., t + H 1 t Z Ẑτ t Z τ t τ t Ẑτ t = Z τ Z τ ˆr t t t t ˆr t ˆr t+2 t t t + 2 z t, z t+1,..., z t+h 1 t+h 1 τ=t ( ˆr T τ t (w τ + z τ ) γ τ ψ τ (w τ + z τ ) ) ˆϕ τ (w τ + z τ ) ˆϕ τ (z τ ).

w t w t+1,..., w t+h z t,..., z t+h 1 1 w t+1 = 1 + R ( + r t ) (w t + z t ), t T w t = 1 T w t+1 = 1 γ τ ψ t (w τ +z τ ) γ τ ψ τ (w τ + z τ ) w t z t w t+1 R t = 0 r t = 0 w t+1 = w t + z t T z t = 0 T w τ = 1 τ = t + 1,..., t + H T z τ = 0, τ = t + 1,..., t + H 1. w t T w t = 1 T w τ = 1 τ = t + 1,..., t + H ( t+h 1 τ=t ˆr τ t T (w τ + z τ ) γ τ ψ τ (w τ + z τ ) ˆϕ τ (w τ + z τ ) ˆϕ τ (z τ ) T z τ = 0, z τ Z τ, w τ + z τ W τ, w τ+1 = w τ + z τ, τ = t,..., t + H 1, z t, z t+1,..., z t+h 1 w t+1,..., w t+h w t H = 1 ˆr T t t w t

w τ+1 = w τ + z τ z τ ( t+h τ=t+1 ˆr τ t T w τ γ τ ψ τ (w τ ) ) ˆϕ τ (w τ ) ˆϕ τ (w τ w τ 1 ) T w τ = 1, w τ w τ 1 Z τ, w τ W τ, τ = t + 1,..., t + H, w t+1,..., w t+h H H z t z t+1,..., z t+h 1 z t 1 w t+1 = 1 + R ( + r t ) (w t + z t ) t w t+1 = w t + z t r t = 0

T z τ = 0 τ = t + 1,..., t + H 1 z τ T z τ = ϕ τ (z τ ) ϕ τ (w τ +z τ ) w t+h = w w t + H w = e n+1 H w t+h w t w t+1,..., w t+h 1 Hn H H H H = 100

H H H w t+h = w z τ 0 τ = t, τ = t + T, τ = t + T, τ = t + H 1, 1 < T < T < H 1. z = z t z = z t+t z = z t+t z t+h 1 T = 5 T = 21 H = 100 w = w t + z, w = w + z, w = w + z. z τ t + H 1

t ˆr t t t (w t + z t ) T Σ t (w t + z t ) Σ t R (n+1) (n+1) Σ t

w t v t z t t

r t V t (σ t ) i = (p t ) i (p t ) i (p t ) i ) i i t (p t a t = 0.05 s t = 0.01 b t = 1 c t = 0 d t = 0 w = ( /n, 0) w 1 = w z t = w w t t z t = 0 R σ 250 T T t=1 ϕ t (z t ), 250 T T t=1 (z t) 1:n 1 /2

0.07 0.07 0.12 0.11 0.10 0.36 0.25 0.19 0.20 0.17 0.13 0.36 v 1 = $100 w 1 = ( /n, 0) L = 3 t t M Σ = 1 t 1 M τ=t M r τ rτ T Σ = n i=1 λ iq i qi T λ i F = [q 1 q k ], Σ = (λ,..., λ ), = = + λ ( ) ( ), k = 15 D F Σ F T + D Σ

(ˆr t ) n+1 = (r t ) n+1 t t (ˆr t ) 1:n = α ((r t ) 1:n + ϵ t ), ϵ t N (0, σ 2 ϵ I) σ 2 ϵ = 0.02 α [((ˆr t ) 1:n (r t ) 1:n ) 2 ] r t σ r α = σ 2 r/(σ 2 r + σ 2 ϵ ) σ 2 r = 0.0005 α = 0.024 ±0.3 α 0.15

t i ( ˆV t ) i = 1 10 10 τ=1 (V t τ ) i γ γ γ γ = 0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000, γ = 1, 2, 5, 10, 20, γ = 1, R σ γ γ γ γ γ γ γ = 4, 5, 6, 7, 8, γ γ γ = 6

γ = 0.1, 0.178, 0.316, 0.562, 1, 2, 3, 6, 10, 18, 32, 56, 100, 178, 316, 562, 1000, γ = 5.5, 6, 6.5, 7, 7.5, 8, γ = 0.1, 1, 10, 100, 1000, γ = 1

γ γ γ H = 2 H = 2 H = 1

v 1 = $100 w 1 = ( /n, 0) L = 3 ˆr t t = ˆr t, ˆr t+1 t = ˆr t+1, ˆr t ˆr t+1 ˆr t+1 = ˆr t+1 t = ˆr t+1 t+1 ˆr t+1 t ˆr t+1 t+1 γ γ γ γ = 0.1, 0.3, 1, 3, 10, 30, 100, 300, 1000, γ = 1, 2, 5, 10, 20, γ = 1, R σ γ γ = 10 γ = 1, 2, 3, 6, 10, 18, 32, 56, 100, 178, 316, 562, 1000, γ = 7, 8, 9, 10, 11, 12, γ = 0.1, 1, 10, 100, 1000,

3/2

1/N

w t R n+1 t (w t ) i V t i (w t ) i < 0 i (w t ) n+1 T w t = 1 T [ T 1 η t+1 ( rt+1w T t+1 γ t+1 ψ t+1 (w t+1 ) ) t=0 η t ( ϕ t (w t+1 w t ) + ϕ t (w t+1 ) )], r 1,..., r T R n+1 ψ t : R n+1 R γ t ϕ t : R n+1 R

ϕ t : R n+1 R η (0, 1) H ˆµ τ t τ = t+1,..., t+h ˆµ τ t t τ t+h τ=t+1 ( ˆµ T τ t w τ ˆϕ τ t (w τ w τ 1 ) ˆϕ τ t (w τ ) γ τ ˆψτ t (w τ ) T w τ = 1, τ = t + 1,..., t + H, w t+1,..., w t+h w t ˆϕ ˆϕ wt+1,..., wt+h H wt+1 w t w t+1 H T

H wt+1,..., wt+h w t w t+1 w t H = 15 n = 10

ψ t (w t ) = w T t Σ t w t. Σ t q q H = 1

V t t M t = V τ, τ t t D t = 1 V t M t. t D D t D (0, 1) γ 0 D t = 0 V t = M t V 0 = M 0 D t = D D γ t = γ 0 D. D t (D D t, ϵ) ϵ γ τ γ τ = γ t τ = t + 1,..., t + H

γ t γ 0 D γ 0 ϕ t (w t w t 1 ) = κ T 1 w t w t 1 + κ T 2 (w t w t 1 ) 2, κ 1 κ 2 l 1 l 2 l 1 l 2 l 1 l 2

w t w t 1 3/2 (w t w t 1 ) T Σ t (w t w t 1 ) w t t ϕ t (w t ) = s T t (w t ), (s t ) i 0 i t (w) = { w, 0} w (s t ) n+1 > 0 ϕ t (w t ) = ρ T 1 w t + ρ T 2 w 2 t, ρ 1 ρ 2 l 1 l 2 l 1 l 2

w w t w, w w w = 0 (w t ) 1:n 1 L, L k

{s t : t N} t N (s t+1 s 1,..., s t ) = (s t+1 s t ). (s t+1 = j s t = i) = γ ij Γ = {γ ij } π π T Γ = π T T π = 1 o t s t N (µ st, Σ st ). s t o t s t α t o 1,..., o t i S t (α t ) i = (s t = i, o 1,..., o t ), i S. (α 1 ) i = (δ) i (o 1 s 1 = i), i S, δ (δ) i = (s 1 = i) α j S [ ] (α t ) j = (α t 1 ) i γ ij (o t s t = j), j S. i S

i S t (ξ t ) i = (s t = i o 1,..., o t ) = (s t = i, o 1,..., o t ) (o 1,..., o t ) = (α t) i T α t. i j (ζ t ) ij = (s t 1 = i, s t = j o 1,..., o t ) = (s t 1 = i, o 1,..., o t 1 ) (s t = j s t 1 = i) (o t s t = j) (o 1,..., o t ) = (α t 1) i γ ij (o t s t = j) T α t. t ξ t ζ t i, j S ˆγ t ij = = ˆµ t i = t τ=2 (s τ 1 = i, s τ = j o 1,..., o τ ) t τ=2 (ξ τ ) i t 1 τ=2 (ξ τ ) i t τ=2 (ξ τ ) i ˆγ t 1 ij + (ζ t ) ij t τ=2 (ξ τ ) i t τ=1 (ξ t 1 τ ) i o τ τ=1 t τ=1 (ξ = (ξ τ ) i t τ ) i τ=1 (ξ ˆµ t 1 i + (ξ t) i o t t τ ) i τ=1 (ξ τ ) i t ˆΣ t τ=1 i = (ξ τ ) i (o τ ˆµ t i ) (o τ ˆµ t i )T t τ=1 (ξ τ ) i t 1 τ=1 = (ξ τ ) i ˆΣt 1 t τ=1 (ξ i + (ξ t) i (o t ˆµ t i ) (o t ˆµ t i )T t τ ) i τ=1 (ξ. τ ) i t = 1

t τ=1 ξ τ S ξ t S ξ t = λs ξ t 1 + (1 λ) ξ t, λ (0, 1) τ λ τ T = 1/ (1 λ) = (1 ν i ) ˆΣ ) i + ν i (ˆΣi n 1 I n, ˆΣ i ν i [0, 1] I n n n

ξ t h ˆξ t t h ˆξ t+h t T = ˆξ t t T Γh t. µ = (ξ) i µ i, i S Σ = (ξ) i Σ i + (ξ) i (µ i µ) (µ i µ) T, i S i S (ξ) i r t ( + r t ) N ( µ s t, Σ ) s t, µ s t Σ s t r t (µ s ) i = (Σ s ) ij = { { (µ ) s { (µ s i + 1 2 )i + ( µ s { (Σ ) s ij } ( ) Σ s 1, ii ) } 1 j + 1 2 }. { (Σ s )ii + ( Σ s ) jj } } i j s

γ = 5 γ = 5 1/n

T = 65, 130, 260, ν i = 0.1, 0.2,..., 0.5

H = 10, 15,..., 30 w = 0.2, 0.3,..., 0.5 w = 0.2 w = 0.4 (κ 1 ) 1:n = 0.0005, 0.001,..., 0.0055 (κ 1 ) n+1 = 0 κ T 1 w t w t 1 κ T 2 (w t w t 1 ) 2 (κ 1 ) 1:n = 0.004 ρ 2 = 0, 0.0005,..., 0.002 ρ T 2 wt 2 ρ 2 (ρ 2 ) n+1 = 0 ρ 2 = 0.0005 l 1 ρ T 1 w t γ 0 = 5 γ 0 = 5 γ 0

285 1.0 4 Empirical results 0.6 0.4 0.0 0.2 Asset weight 0.8 TBill IFL bonds CORP bonds GVT bonds EM HY bonds DM HY bonds Oil Gold Real estate EM stocks DM stocks 2000 2002 2004 2006 2008 2010 2012 2014 2016 Year 1.0 TBill IFL bonds CORP bonds GVT bonds EM HY bonds DM HY bonds Oil Gold Real estate EM stocks DM stocks 0.0-1.0 Asset weight 2.0 (a) γ = 5, (κ1 )1:n = 0.004, ρ2 = 0.0005, (wmax )1:n = 0.4, (wmax )n+1 = 1. 2000 2002 2004 2006 2008 2010 2012 2014 2016 Year ) ) ( ( (b) γ = 5, (κ1 )1:n = 0.004, ρ2 = 0.0005, wmin 1:n = (wmax )1:n = 0.4, wmin n+1 = (wmax )n+1 = 1, Lmax = 2. Figure 3: Asset weights over time for a long-only and a long short portfolio. mentioned in the figure captions are equal to zero. The portfolios always include multiple assets at a time due to the imposed maximum holding (wmax )1:n = 0.4. The allocations change quite a bit over the test period, especially in the LS portfolio. Leverage is primarily used between 2003 and mid-2006 and again from 2010 until mid-2013. With the exception of these two periods, the four portfolios include holdings in the risk-free asset most of the time in addition to some short positions in the LS portfolio. The impact of drawdown control on the allocation is most

Multi-period portfolio selection with drawdown control 1.0 TBill IFL bonds CORP bonds GVT bonds EM HY bonds DM HY bonds Oil Gold Real estate EM stocks DM stocks 0.0-1.0 Asset weight 2.0 286 2000 2002 2004 2006 2008 2010 2012 2014 2016 Year 1.0 TBill IFL bonds CORP bonds GVT bonds EM HY bonds DM HY bonds Oil Gold Real estate EM stocks DM stocks 0.0-1.0 Asset weight 2.0 ) ( (a) γ = 5, (κ1 )1:n = 0.004, ρ2 = 0.0005, (wmax )1:n = 0.4, wmin n+1 = (wmax )n+1 = 1. 2000 2002 2004 2006 2008 2010 2012 2014 2016 Year ) ( (b) γ0 = 5, (κ1 )1:n = 0.004, ρ2 = 0.0005, (wmax )1:n = 0.4, wmin n+1 = (wmax )n+1 = 1, Dmax = 0.1. Figure 4: Asset weights over time for a leveraged long-only portfolio with and without drawdown control.

D =0.1 1/n γ 0 = 5 1/n 1/n γ 0 = 5 (1/n) 1/n 1/n L = 2 γ 0 = 5 D = 0.1

D =0.1 1/n γ 0 = 5 1/n

γ 0 D 1/n 1/n (w ) 1:n = 0.4 1/n 1/n D γ 0 = 1 γ 0 γ 0 3 D = 0.1

D =0.15 D =0.1 1/n D =0.15 D =0.1 1/n D γ 0 = 1, 3, 5, 10, 15, 25

D =0.15 D =0.1 1/n D =0.15 D =0.1 1/n D γ 0 = 1, 3, 5, 10, 15, 25

γ 0 D γ 0 D 1/n ( w ) 1:n = (w ) 1:n = 0.4 L = 2 γ 0

1/N