(Un)known (un)knowns for the effective action of stringy partic. in the era of alternative facts

Similar documents
String Phenomenology ???

arxiv: v2 [hep-th] 2 Sep 2015 Michael Blaszczyk, Gabriele Honecker and Isabel Koltermann

Instantons in string theory via F-theory

Gauge Threshold Corrections for Local String Models

Heterotic Brane World

Anomalies and Remnant Symmetries in Heterotic Constructions. Christoph Lüdeling

Anomalous discrete symmetries in D-brane models

Branes in Flux Backgrounds and Dualities

Heterotic Torsional Backgrounds, from Supergravity to CFT

Predictions from F-theory GUTs. (High vs. low-scale SUSY; proton decay)

Light hidden U(1)s in LARGE volume string compactifications

Quantum Orientifold Effective Actions

Theory and phenomenology of hidden U(1)s from string compactifications

Phenomenological Aspects of Local String Models

Supersymmetric Standard Models in String Theory

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications

Novel potentials for string axion inflation

D-brane instantons in Type II orientifolds

Flux Compactification of Type IIB Supergravity

D-BRANE MODEL BUILDING, PART I

Fitting fermion masses in F-theory

Grand Unification and Strings:

Calabi-Yau Fourfolds with non-trivial Three-Form Cohomology

Some Issues in F-Theory Geometry

Stringy Corrections, SUSY Breaking and the Stabilization of (all) Kähler moduli

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications

Think Globally, Act Locally

Alternatives to the GUT Seesaw

Crosschecks for Unification

String Theory. A general overview & current hot topics. Benjamin Jurke. Würzburg January 8th, 2009

Candidates for Inflation in Type IIB/F-theory Flux Compactifications

Instanton effective action in - background and D3/D(-1)-brane system in R-R background

Pablo G. Cámara. with L. E. Ibáñez and F. Marchesano, arxiv: [hep-th].

Stringy Origins of Cosmic Structure

Towards Realistic Models! in String Theory! with D-branes. Noriaki Kitazawa! Tokyo Metropolitan University

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications

Geography on Heterotic Orbifolds

Theory III: String Theory. presented by Dieter Lüst, MPI and LMU-München

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Stringy Instantons, Backreaction and Dimers.

Soft Supersymmetry Breaking Terms in String Compactifications

Phenomenological Aspects of LARGE Volume Models

Open String Wavefunctions in Flux Compactifications. Fernando Marchesano

Coupling Selection Rules in Heterotic Orbifold Compactifications

of Local Moduli in Local Models

String-Theory: Open-closed String Moduli Spaces

String Theory Compactifications with Background Fluxes

Fabio Riccioni. 17th July 2018 New Frontiers in String Theory 2018 Yukawa Institute for Theoretical Physics, Kyoto

N = 2 CHERN-SIMONS MATTER THEORIES: RG FLOWS AND IR BEHAVIOR. Silvia Penati. Perugia, 25/6/2010

Heterotic Supersymmetry

Solution Set 8 Worldsheet perspective on CY compactification

F-theory effective physics via M-theory. Thomas W. Grimm!! Max Planck Institute for Physics (Werner-Heisenberg-Institut)! Munich

Heterotic String Compactication with Gauged Linear Sigma Models

Generalized N = 1 orientifold compactifications

Yet Another Alternative to Compactification

E 6 Yukawa couplings in F-theory as D-brane instanton effects

Complete classification of Minkowski vacua in generalised flux models

Non-Supersymmetric Seiberg duality Beyond the Planar Limit

String cosmology and the index of the Dirac operator

Supersymmetry Breaking

Introduction to AdS/CFT

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/

Deformations of calibrated D-branes in flux generalized complex manifolds

Up-type quark masses in SU(5) F-theory models

Hidden Sector Baryogenesis. Jason Kumar (Texas A&M University) w/ Bhaskar Dutta (hep-th/ ) and w/ B.D and Louis Leblond (hepth/ )

Think Globally, Act Locally

Inflation in String Theory. mobile D3-brane

Quantization of gravity, giants and sound waves p.1/12

Non-Geometric Calabi- Yau Backgrounds

GRAVITY DUALS OF 2D SUSY GAUGE THEORIES

THE MASTER SPACE OF N=1 GAUGE THEORIES

On Flux Quantization in F-Theory

Received: October 22, 2018, Accepted: Intersecting Brane Models of Particle Physics and the Higgs Mechanism

The LARGE Volume Scenario: a status report

Chiral matter wavefunctions in warped compactifications

Realistic D-Brane Models on Warped Throats: Fluxes, Hierarchies and Moduli Stabilization

E 6 Spectra at the TeV Scale

arxiv: v1 [hep-th] 15 Oct 2018

David R. Morrison. String Phenomenology 2008 University of Pennsylvania 31 May 2008

Entropy of asymptotically flat black holes in gauged supergravit

arxiv:hep-th/ v3 11 Oct 2004

BACKREACTION OF HEAVY MODULI FIELDS IN INFLATIONARY MODELS

New Aspects of Heterotic Geometry and Phenomenology

New Toric Swiss Cheese Solutions

D-term Dynamical SUSY Breaking. Nobuhito Maru (Keio University)

Yukawa hierarchies at the point of E 8 in F-theory

Brane world scenarios

An up-date on Brane Inflation. Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI für Physik, München

Axion-Like Particles from Strings. Andreas Ringwald (DESY)

ASPECTS OF FREE FERMIONIC HETEROTIC-STRING MODELS. Alon E. Faraggi

Mirror symmetry for G 2 manifolds

Hierarchy Problems in String Theory: An Overview of the Large Volume Scenario

Instantonic effects in N=1 local models from magnetized branes

String Moduli Stabilization and Large Field Inflation

Chiral matter wavefunctions in warped compactifications

Discussing string extensions of the Standard Model in D brane world

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

Anomaly and gaugino mediation

Magdalena Larfors

arxiv: v1 [hep-th] 6 Mar 2014

Transcription:

(Un)known (un)knowns for the effective action of stringy particle physics models in the era of alternative facts Cluster of Excellence PRISMA & Institut für Physik, JG U Mainz based on JHEP 1704 (2017) 023 [arxiv:1702.08424 [hep-th]] with Isabel Koltermann & Wieland Staessens StringPheno 2017, Virginia Tech, 3 July 2017

Motivation: String Phenomenology Status quo: string pheno (roughly)? Cosmology many compact CY and T 6 /Γ models with SM-like spectrum dimensional reduction of SUGRA & DBI actions provides some tree-level results: 4D R, 4D trf 2 ( local models ) already Yukawas challenging - non-holomorphic results only for some (too) simple T 6 /Γ not known for realistic N = 1 models string cosmo (roughly) assume that local models of particle physics work choose CY geometry globally to explain inflation dial term(s) (e.g. specific instanton) for moduli stabilization string-inspired field theory?? = stringy low-energy effective action... why should this hold?

Add stringy ingredients...... incompletely &/or at gusto and evaluate:

Motivation cont d: 2 Steps towards the Effective Action 1.) Moduli stabilization: scalars from closed & open string sector mix (& axions) F-term potential for some open string moduli Marchesano, Regalado, Zoccarato 14 in the absence of open string moduli (Wilson lines & displacements) Blaszczyk, G.H., Koltermann 15; G.H., Koltermann, Staessens 17 DBI action couples D-branes to closed strings (IIA/ΩR: cplx.str.) ΩR-even ΩR-odd flat direction D-term SO/USp(2N) U(N) partial (closed) moduli stabilization before fluxes & instantons no direct couplings to (some) flat directions (cplx.str.) flat directions in φ, (some) Kähler & (some) cplx.str. moduli allow tuning of M string, 1 /g 2 to pheno. allowed values G {SU(3),SU(2),Y...}

Motivation cont d: 2 Steps towards the Effective Action 2.) 1-loop corrections to 1 /g 2 G {SU(3),SU(2),Y...} : naively @ tree-level: 1 g 2 a M Planck Vol(Π a) M string Vol(CY3 ) (cplx.str.) in IIA/ΩR Mstring M Planck for LARGE (cplx.str.) volume ( seemingly ) expect additional moduli dependences via field redefinitions mixing closed/open strings - omnipresent, e.g. Stückelberg mechanism for U(1) massive 1-loop corrections to 1/g 2 a D6a SU(N a) SU(N a) D6 b D6a O6 depend on tower of KK & winding modes Kähler moduli: δ 1 g v a 2 i 1 LARGE volume: g a 2 G.H., Koltermann, Staessens 17 Control perturbative action before dialing e.g. instanton(s)!

Outline Motivation & punch line Deformations & moduli stabilization @ orbifold point Constraints (not only on LARGE volumes) from 1-loop Conclusions & Outlook

Deformations & Moduli Stabilization @ Orbifold Point

Deformations: Hypersurface Technique for T 6 /(Z 2 Z 2M ) use P 2 112 with coord. (x i, v i, y i ) to describe T 2 (i) yi 2 + F i (x i, v i ) =! 0 F i (x i, v i ) = 4v i xi 3 g (i) 2 v i 3 x i g (i) 3 v i 4 g (i) 3 = 0: square torus g (i) 2 = 0: hexagonal lattice Z take product and impose Z 2 Z 2 symmetry: y 2 i yi (T 2 ) 3 /(Z 2 Z 2 ) { y 2 + F 1 F 2 F 3 = 0} with y y 1 y 2 y 3 deform fixed points αβ T(i) 4 T 2 (j) T 2 : (k) y 2 + F 1 F 2 F 3 + ε (i) αβ F i δf (α) j i j k i αβ δf (β) k! = 0 with δf (α) j (x j, v j ) also polynomials of degree 4 deformation method based on Vafa, Witten 95

Deformations con t: slags on T 6 /(Z 2 Z 2M ΩR) Blaszczyk, G.H., Koltermann 14-15 & G.H., Koltermann, Staessens 17 slags: probe Re Π a Ω 3 > 0 and Im Π a Ω 3 = 0 specify calibration via anti-holomorphic involution σ R in general too complicated concentrate on anti-linear maps ) ( ) x i A, y i e iβ v i s.t. AA = 1I, σ R(F i(x i, v i)) = e 2iβ F (x i, v i) v i v i ( xi two different calibrations β and β + π per given A integration path Π a specified by (A a, β a) impose SUSY products of one-cycles @ orbifold point Z 3 ΩR symmetry: M = 3 favourable for 3 generation particle physics Z 3 : need for hexagonal tori & identification of Z 2 Z 2 deformations ε (i) αβ under Z 3 ΩR-invariance: only real deformation parameters

G.H., Koltermann, Staessens 17

Moduli Stabilization @ Orbifold Point of Z 2 Z 6 ΩR General considerations: Blaszczyk, G.H., Koltermann 14-15 (i) Π frac = Πbulk + i ΠZ 2 4 couples to (some) twisted moduli N D6-branes U(N) U(1) D-term vanishes Π frac is slag related twisted moduli stabilised FI term for ζj 0 not all couplings generate D-term: e.g. USp(2N) or SO(2N) no D-term Π frac is slag for any deformation Orientifold symmetry: IIA requires anti-holomorphic involution R: (h+ 11, h 11 ) = (4 Z, 3 bulk + 8 Z3 + 4 6 Z ) for T 6 /(Z 2 Z 6 ΩR) w/ discrete torsion 6 - one Z 6 sector does not have any scalars that could resolve the singularities (h 21 + 1) ΩR-even/-odd 3-cycles Z 2 deformation SUSY only ΩR-even contribution to Π Z(i) 2 h 21 = 1 bulk + [6 + 2 4] Z2 + [2 + 2] Z3 +Z 6 for T 6 /(Z 2 Z 6 ΩR) w/ d.t.

Deformations cont d: Examples on Z 2 Z 6 Backgrd. Ecker, G.H., Staessens 14-15 extensive computer scans boil down to prototypes SU(3) a USp(2) b U(1) Y SU(4) h Z 3 { Z 3 I SU(3) a USp(2) b USp(2) c Ũ(1) B L II { SU(6) I SU(4) a USp(2) b USp(2) c SU(2) II U(3) a USp(2) b U(1) c U(1) d U(4) h U(3) a USp(2) b USp(2) c U(h) 2 U(4) a USp(2) b USp(2) c U(h) equivalent @ orbifold point: closed & open string spectrum gauge couplings (tree + 1-loop) Counting of stabilised complex structure moduli & flat directions with 1/g 2 D6x,x {a,b,c,d,h 1,2 } dependence Z 2 Z 6 ϱ ε (1) 0,1,2 ε (1) 3 ε (1) 4+5 ε (1) 4 5 MSSM none a, c, h [b, d] flat c, d none a, d, h none 6 L-R I none h 1,2 a, d, h 1,2 a, d [b, c] flat h 1,2 none a, d none 9 L-R II none h 1,2 a, d, h 1,2 a, d [b, c] flat [a, b, c, d, h 1,2 ] flat none a, d, h 1,2 none 7 L-R IIb none h 1,2 a, d, h 1,2 a, d [b, c] flat [a, b, c, d] flat [h 1,2 ] flat a, d h 1,2 9 L-R IIc none a, d a, d [b, c, h 1,2 ] flat h 1 h 2 a, d, h 1 h 2 10 PS I none a, h [b, c] flat [a, b, c, h] flat none a, h none 4 PS II none h a, h a [b, c] flat [a, b, c, h] flat none a, h none 7 ε (2) 1,2 ε (2) 3,4 ε (3) 1,2 ε (3) 3,4 # stab

Deformations: Flat Direction of MSSM Example G.H., Koltermann, Staessens 17 USp(2) b and U(1) d U(1) Y feel flat direction ε (1) 4 5 < 0 ( ) Π frac b = 3ρ1 ɛ (1) 4 ɛ(1) 5 4 Π frac ( ) d = 3ρ1+ ɛ (1) 4 ɛ(1) 5 weak interaction on b slightly stronger for ε (1) a 5 0 hypercharge slightly weaker remember Caveat on stabilised moduli: compensation by charged matter vev in D-terms only bifundamentals under U(N) U(N) (cd ( ) ) MSSM only if string derived field theory couplings exist 4 1 g 2 x Vol(Π frac x )... need for new CFT computations [no results for Z 2 Z 2M w/ discrete torsion available]

Constraints from 1-Loop

1-Loop Corrections to Gauge Couplings @ Orbifold Point Why? deformations by twisted moduli change couplings @ tree-level untwisted moduli enter 1-loop corrections only known at orbifold point independent of absolute choice of Z 2 Z 2 eigenvalues can - in principle - contribute to hierarchy M string M GUT Unusual feature here: net O6-plane charge along one direction on T 2 (1) Einstein-Hilbert M2 Planck M 2 string DBI action 8π 2 g 2 SU(3)a/SU(4) h,tree = 4π g 2 string = π 2 6 G.H., Ripka, Staessens 12 v 1 v 2 v 3 with v 1 = R (1) 1 R(1) 2 R (1) 1 M Planck R (1) M string 2 M string M Planck can be compensated by R (1) 2 R (1) 1... spoilt by 1-loop effects??

Constraints on Kähler Moduli Kähler moduli v i enter via parallel D6-branes Λ τ,σ(v) 1 ( 4π ln e πσ2 v 4 Λ 0,0(v) 1 v ln(η(iv)) v 4π 48 ϑ 1( τ iσv 2, iv) η(iv) ) v [ 3(1 σ) 2 1 ] v sign depends on discrete brane data (τ, σ) A+M,MSSM SU(3) a 2 48 v 1 2π v 1 + π ( v 2 + c 1 ( ) ) 2 3 1,1 v2 v 3 ln (KK & windings) δ σ,0 ln[2 sin( πτ 2 )] 4π sum over sector-by-sector (Annulus + Möbius strip) e.g. ( ( (1) R 1 A+M,MSSM SU(4) h 2 v 1 2π v 1 + π ( v 2 + c 1 ( ) ) 2 3 1,1 v2 v 3 ln R (1) 2 v 1 ) 6v2 ) 12 ( ( ) R1 6v 1 v 1 2 R 2 v1 1 disfavoured by 1 /g 2 a O(1) R (1) 1 R (1) 2 LARGE vol. for v 2 1, SU(4) h more strongly coupled than SU(3) a for v1 1 and v 2 = v 3 6: M string M GUT, A+M,MSSM SU(3) a < 0 ) G.H., Koltermann, Staessens 17 7

Conclusions & Outlook more closed string moduli stabilized by D-branes than usually assumed - others without direct coupling to particle physics very limited knowledge about stringy effective action: T 6 results do not carry over to T 6 /(Z 2 Z 2M ) w/ d.t. But: not even Möbius strip contributions to G complete e.g. N = 2 vanishing argument on some Yukawas e.g. vanishing 1-loop corrections to Kähler metrics by Berg, Haack, Kang (Sjörs) 11 ( 14) not valid for 3 generation particle physics models urgent need to develop (CFT) computational tools simultaneously field theoretical studies of pheno/cosmo potential pressing need for reliable results: string-inspired field theory stringy low-energy effective action in the era of precision in phenomenology & cosmology

Appendix

Ex: MSSM on rigid D6-branes on T 6 /(Z 2 Z 6 ΩR) Ecker, G.H., Staessens 15 D6-brane configuration of a global 5-stack MSSM model on the aaa lattice Angle wrapping # π Z (i) 2 eigenv. ( τ) ( σ) gauge gr. a (1, 0; 1, 0; 1, 0) (0, 0, 0) (+ + +) (0, 1, 1) (0, 1, 1) U(3) b (1, 0; 1, 2; 1, 2) (0, 1 2, 1 2 ) ( +) (0, 1, 0) (0, 1, 0) USp(2) c (1, 0; 1, 2; 1, 2) (0, 1 2, 1 2 ) ( + ) (0, 1, 1) (0, 1, 1) U(1) d (1, 0; 1, 2; 1, 2) (0, 1 2, 1 2 ) (+ ) (0, 0, 1) (0, 0, 1) U(1) h (1, 0; 1, 0; 1, 0) (0, 0, 0) ( +) (0, 1, 1) (0, 1, 1) U(4) Green-Schwarz mech.: x {a,c,d,h} U(1) x U(1) Y Z 3 perturbatively U(1) 3 massive U(1) PQ = U(1) c U(1) d non-pert. only: SU(3) SU(2) U(1)Y Z 3 SU(4) hidden

Ex: MSSM spectrum on T 6 /(Z 2 Z 6 ΩR) Ecker, G.H., Staessens 15 MSSM matter of (SU(3) a USp(2) b SU(4) h ) (U(1) PQ),Z 3 U(1) Y : 3 [ (3, 2, 1) (0),0 ] 1/6 + 2 (3, 1, 1)(1),1 1/3 + (3, 1, 1)(1),1 1/3 +(3, 1, 1)(1),1 2/3 }{{} + 3 [ (1, 2, 1) (1),1 1/2 + 2 (1, 2, 1)(1),1 1/2 +(1, 1, 1)( 2),1 0 + (1, 1, 1) (0),0 ] 1 }{{} = 3 [ Q L + {}}{ ] [{}}{ ] 2 d R + d R +u R + 3 H u/l + 2 L + ν R + e R [ ] [ ] Higgses: 3 (1, 2, 1) (1),1 1/2 + h.c. + 2 (1, 2, 1) ( 1),2 1/2 + h.c. [ ] axions: 3 [Σ cd + Σ cd ] = 3 (1, 1, 1) ( 2),1 0 + h.c. SM vector-like states: (5 Antib + 4 Adjc + 5 Adjd ) (1, 1, 1) (0),0 [ ] + 2 (3, 1, 4) (0),1 + (3, 1, 4)(0),2 + 2 (3 1/6 1/6 A, 1, 1) (0),0 + h.c. 1/3 [ ] + 3 (1, 1, 1) (0),0 1 + (1, 1, 1) ( 2),1 1 + 2 (1, 1, 6 A ) (0),1 0 + h.c. + 3 (1, 2, 4) (0),2 0 + 6 (1, 1, 4) ( 1),0 1/2 0 + + 3 (1, 1, 4)( 1),0 + 3 (1, 1, 4) ( 1),1 1/2 1/2