HiggsSignals. Testing BSM physics with LHC Higgs precision data. Tim Stefaniak. Deutsches Elektronen-Synchrotron DESY, Hamburg

Similar documents
Higgs couplings Beyond the Standard Model

ATLAS+CMS Higgs run 1 Combinations

Beyond the Standard Model Higgs boson searches using the ATLAS etector

CMS Higgs Results Adi Bornheim Caltech

Measurements of the Higgs Boson at the LHC and Tevatron

Measurements of Fermionic Couplings of the Standard Model Higgs Boson using the bb, ττ and µµ Decay Channels with the ATLAS Detector

Understanding the Higgs Boson: Where We Are, Where We re Going, and How To Get There

Higgs Coupling Measurements!

Higgs and New Physics at ATLAS and CMS

LHC Run1 Higgs Results. Quentin Buat - Simon Fraser University On behalf of the ATLAS and CMS collaborations

tth searches at ATLAS and CMS Thomas CALVET for the ATLAS and CMS collaborations Stony Brook University Apr 11 th, 2018

HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC

BSM Higgs Searches at ATLAS

ATLAS Di-fermion Results. Koji Nakamura (KEK) on behalf of ATLAS Collaboration

HIGGS Bosons at the LHC

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Higgs couplings and mass measurements with ATLAS. Krisztian Peters CERN On behalf of the ATLAS Collaboration

Discussion: SUSY via searches for additional Higgs(inos)

Pseudoscalar Higgs boson signatures at the LHC

D0 Higgs Results and Tevatron Higgs Combination

Higgs Searches at CMS

Higgs quantum numbers and couplings. E. Pianori University Of Warwick On behalf of the ATLAS and CMS collaborations

[ ] Search for tth and th production (not including H bb) at the LHC. !!!!! Top2015 Ischia. Josh McFayden

Introduction to HiggsBounds

Georges Aad For the ATLAS and CMS Collaboration CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

Higgs Boson Measurements from ATLAS and CMS. Giacinto Piacquadio on behalf of the ATLAS and CMS Collaborations. ICHEP Seoul July 10th, 2018

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor

The Higgs boson discovery. Kern-und Teilchenphysik II Prof. Nicola Serra Dr. Annapaola de Cosa Dr. Marcin Chrzaszcz

Two Higgs Doublets Model

ATLAS+CMS Higgs combination: what have we learned? SM physics: what have we learned?

Sven Heinemeyer WIN (Heidelberg),

Search for Fermionic Higgs Boson Decays in pp Collisions at ATLAS and CMS

Sven Heinemeyer GK Seminar, University of Freiburg,

Recent ATLAS measurements in Higgs to diboson channels

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Higgs boson(s) in the NMSSM

Higgs Signals and Implications for MSSM

ATLAS NOTE ATLAS-CONF th March 2015

Higgs boson properties (ATLAS and CMS)

CMS (Higgs) Results. Begoña de la Cruz (CIEMAT, Madrid) APC IFT/UAM (Oct 21st, 2013) On behalf of CMS Collaboration

BSM Higgs searches with the ATLAS experiment

Higgs Boson Searches in ATLAS

Overview of the Higgs boson property studies at the LHC

Detector Requirements for Precision Higgs Boson Physics

Tevatron Physics Prospects. Paul Grannis, for the CDF and DØ collaborations ICFA Seminar, Oct

Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS2014, 04/28/2014

Higgs Property Measurement with ATLAS

Measurements of the Higgs Boson Couplings and Other Properties at the LHC

Search for a new spin-zero resonance in diboson channels at 13 TeV with the CMS experiment

Introducing SModelS - with an application to light neutralino DM

Higgs searches in CMS

Summer plans and prospects on Higgs searches at DZero Yuji Enari D0 France meeting 1

ATLAS Discovery Potential of the Standard Model Higgs Boson

Searches for SM H ττ at the LHC

Higgs Prospects for future (HL)LHC runs

Higgs Candidate Property Measurements with the Compact Muon Solenoid. Andrew Whitbeck * for the CMS Collaboration. Johns Hopkins University

Looking through the Higgs portal with exotic Higgs decays

mh = 125 GeV and SUSY naturalness

SEARCH FOR RARE & EXOTIC HIGGS DECAY AND PRODUCTION: STATUS AND PERSPECTIVES

Search for Higgs beyond the Standard Model with the ATLAS & CMS Detectors Rencontres du Vietnam, Quy Nhon Nikolina Ilic on behalf of the ATLAS and

Pedro Teixeira-Dias. Higgs Overview

ATLAS-CONF CMS-PAS-HIG th September 2015

Higgs in the light of Hadron Collider limits: impact on a 4th generation

The production of additional bosons and the impact on the Large Hadron Collider

Higgs Boson in Lepton Decay Modes at the CMS Experiment

Higgs search in WW * and ZZ *

Observation of the Higgs boson production in association with top quarks

Constraining EFT parameters with simplified template cross sections

Evidence for Higgs Boson Decays to a Pair of τ-leptons

Searching for the Higgs at the LHC

Junichi TANAKA ICEPP, the University of Tokyo. 13 Feb, 2013 in Japan

Search for BSM Higgs bosons in fermion decay modes with ATLAS

Search for Invisible Decay of Higgs boson at LHC

Searching for additional Higgs bosons at the CERN Large Hadron Collider

The Tevatron s Search for High Mass Higgs Bosons

Review of Higgs results at LHC (ATLAS and CMS results)

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

Combination of Higgs boson searches at ATLAS

Higgs Search with the CMS detector at LHC. Satyaki Bhattacharya

Higgs Production at LHC

Higgs Boson at the CMS experiment

Higgs decaying into bosons

ATLAS Run 2 Higgs Prospects

Highlights of Higgs Physics at LEP

BSM Higgs in ATLAS and CMS

Standard Model and New Physics in the Higgs Sector: The New Precision Era

Higgs Boson Searches at ATLAS

Qi Li On behalf of the analysis team IHEP, Beijing Sunday, December 11, 2016 HGam micro-workshop

Higgs search prospects at LHC

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Search for HIGGS Bosons in ATLAS

Higgs Boson Physics at the Tevatron

Higgs Searches with taus in the final state in ATLAS

Search for a Standard Model Higgs boson in the H ZZ ( ) * decay channel with the ATLAS Experiment at CERN

Higgs properties from experiments. Bruno Mansoulié (CEA-IRFU-Saclay)

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004

Higgs Searches at Hadron Colliders

Diagnosing the Nature of the GeV LHC Higgs-like signal

Higgs boson measurements at ATLAS

Transcription:

HiggsSignals Testing BSM physics with LHC Higgs precision data Tim Stefaniak Deutsches Elektronen-Synchrotron DESY, Hamburg in collaboration with P. Bechtle, D. Dercks, S. Heinemeyer, T. Klingl, G. Weiglein Higgs Couplings 207, Heidelberg November 8th, 207 http://higgsbounds.hepforge.org Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 / 8

A common question... BSM theorist: Is my model consistent with the Higgs data? Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 2 / 8

A common question... BSM theorist: Is my model consistent with the Higgs data? To-Do List: Calculate masses, total decay widths, cross sections and decay rates for all neutral and charged Higgs bosons in the model; Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 2 / 8

A common question... BSM theorist: Is my model consistent with the Higgs data? To-Do List: Calculate masses, total decay widths, cross sections and decay rates for all neutral and charged Higgs bosons in the model; 2 Select and implement all relevant exclusion limits from LEP, Tevatron, LHC; 3 Select and implement all relevant Higgs signal measurements from the LHC; Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 2 / 8

A common question... BSM theorist: Is my model consistent with the Higgs data? To-Do List: Calculate masses, total decay widths, cross sections and decay rates for all neutral and charged Higgs bosons in the model; 2 Select and implement all relevant exclusion limits from LEP, Tevatron, LHC; 3 Select and implement all relevant Higgs signal measurements from the LHC; 4 Validate your implementation; Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 2 / 8

A common question... BSM theorist: Is my model consistent with the Higgs data? To-Do List: Calculate masses, total decay widths, cross sections and decay rates for all neutral and charged Higgs bosons in the model; 2 Select and implement all relevant exclusion limits from LEP, Tevatron, LHC; 3 Select and implement all relevant Higgs signal measurements from the LHC; 4 Validate your implementation; 5 Test your model against them in a statistically well-defined way; Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 2 / 8

A common question... BSM theorist: Is my model consistent with the Higgs data? To-Do List: Calculate masses, total decay widths, cross sections and decay rates for all neutral and charged Higgs bosons in the model; 2 Select and implement all relevant exclusion limits from LEP, Tevatron, LHC; 3 Select and implement all relevant Higgs signal measurements from the LHC; 4 Validate your implementation; 5 Test your model against them in a statistically well-defined way; 6 Interpret your result (95% C.L. allowed/excluded or χ 2 ). Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 2 / 8

A common question... BSM theorist: Is my model consistent with the Higgs data? To-Do List: Calculate masses, total decay widths, cross sections and decay rates for all neutral and charged Higgs bosons in the model; Run HiggsBounds and HiggsSignals. 6 Interpret your result (95% C.L. allowed/excluded or χ 2 ). Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 2 / 8

HiggsBounds and HiggsSignals: Code overview Team: P. Bechtle, D. Dercks, S. Heinemeyer, T. Klingl, TS, G. Weiglein http://higgsbounds.hepforge.org HiggsBounds Confronts BSM Higgs sectors with exclusion limits from LEP, Tevatron and LHC Higgs searches excluded/allowed at 95% C.L. HiggsSignals Confronts BSM Higgs sectors with LHC (& Tevatron) Higgs signal rate and mass measurements χ 2 (sep. for rates and mass) Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 3 / 8

HiggsSignals: The basic idea Take model-predictions for physical quantities of given Higgs sector: m k, Γ tot k, σ i(pp H k ), BR(H k XX ), with k =,..., N, i {ggh, VBF, WH, ZH, t th,... } for N neutral Higgs bosons as the program s user input. Optional input: Theo. uncertainties for mass, cross sections and BR s. 2 Calculate the predicted signal strength µ for every observable, µ H XX = i ɛi model [σ i(pp H) BR(H XX )] model i ɛi SM [σ i(pp H) BR(H XX )] SM. (narrow width approximation assumed) 3 Perform a χ 2 test of model predictions against all available signal rate and mass measurements from Tevatron and LHC. Try to be as model-independent and precise as possible. Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 4 / 8

Theoretical Input Model-predictions for physical quantities of given Higgs sector, m k, Γ tot k, σ i(pp H k ), BR(H k XX ), with k =,..., N, i {ggh, VBF, WH, ZH, t th,... }. σ, BR given via effective couplings or at hadronic level using the HiggsBounds framework: SLHA (requires two HiggsBounds specific Blocks), HiggsBounds specific input data-files, or Fortran 90 subroutines. Input for specific models can be provided by other tools, e.g., FeynHiggs, CPsuperH, 2HDMC, SARAH/SPheno, NMSSMTools,... Many example programs provided. Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 5 / 8

Experimental input Signal strength measurements: i µ H XX = ɛi model [σ i(pp H) BR(H XX )] model i ɛi SM [σ, i(pp H) BR(H XX )] SM with i {ggh, VBF, WH, ZH, t th} and efficiencies ɛ i. Examples: experimental categories pure signal channels [CMS-PAS-HIG-6-040] [ATLAS+CMS 7/8 TeV, 606.02266] + 20 20 correlation matrix Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 6 / 8

Signal efficiencies Valuable information! Is included in HiggsSignals if available. Event Categories SM 25 GeV Higgs boson expected signal Total ggh VBF tth bbh thq thw WH lep ZH lep Untagged 0 45.83 80.9 %.75 %.83 % 0.40 % 0.47 % 0.22 % 0.4 % 0.9 % Untagged 480.56 86.8 % 7.73 % 0.56 %.5 % 0.3 % 0.02 % 0.47 % 0.27 % Untagged 2 670.45 89.76 % 5.48 % 0.44 %.8 % 0.08 % 0.0 % 0.5 % 0.34 % Untagged 3 60.07 9.3 % 4.5 % 0.48 %.07 % 0.07 % 0.0 % 0.55 % 0.30 % VBF 0 0.0 2.69 % 77.09 % 0.34 % 0.35 % 0.29 % 0.03 % 0.03 % % VBF 8.64 33.58 % 64.64 % 0.39 % 0.52 % 0.36 % 0.04 % 0.3 % 0.03 % VBF 2 27.76 50.4 % 46.46 % 0.8 % 0.73 % 0.53 % 0.07 % 0.20 % 0.06 % tth Hadronic 5.85 0.99 % 0.70 % 77.54 % 2.02 % 4.3 % 2.02 % 0.09 % 0.05 % tth Leptonic 3.8.90 % 0.05 % 87.48 % 0.08 % 4.73 % 3.04 %.53 %.5 % ZH Leptonic 0.49 % % 2.56 % % 0.02 % 0.3 % % 97.30 % WH Leptonic 3.6.26 % 0.59 % 5.8 % 0.8 % 3.03 % 0.73 % 84.48 % 4.33 % VH LeptonicLoose 2.75 9.6 % 2.70 % 2.34 % 0.57 %.8 % 0.3 % 63.62 % 8.87 % VH Hadronic 9.69 57.38 % 3.68 % 3.6 % 0.35 %.39 % 0.27 % 0.7 % 0.42 % VH Met 4.25 23.63 % 2.46 % 4.45 % 0.4 % 2.00 %.4 % 25.7 % 28.60 % Total 883.77 86.96 % 7.09 %.00 %.09 % 0.5 % 0.04 % 0.8 % 0.42 % It is possible to insert relative efficiency scale factors ζ i ɛ i model /ɛi SM per tested parameter point and measurement. Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 7 / 8

The χ 2 evaluation for the signal rates The global χ 2 for the signal rate measurements is given by χ 2 µ = (ˆµ µ) T (Cov) (ˆµ µ). Include correlations of major systematic uncertainties (if publicly known): σ theo i, BR(H k XX ) theo, L,... Cov (assume inclusive rate uncertainties given by the LHC Higgs XS WG) [LHC HXSWG, YR4, 60.07922] Ideally, correlation matrices are provided directly by the experiment, which can then be easily inserted in HiggsSignals. Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 8 / 8

Validation with LHC Run (7/8 TeV) data [ATLAS+CMS 7/8 TeV, 606.02266] Try to reproduce 7 or 8-dimensional κ-fit of ATLAS+CMS Run combination with HiggsSignals, using two different experimental inputs: Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 9 / 8

Validation with LHC Run (7/8 TeV) data [ATLAS+CMS 7/8 TeV, 606.02266] Try to reproduce 7 or 8-dimensional κ-fit of ATLAS+CMS Run combination with HiggsSignals, using two different experimental inputs: tth ZH WH VBF 0.0 0.03 0.0 0.26 0.0 0.0 γγ 0.25 0.0 0.0 0.0 ZZ 0.0 0.26 0.0 0.02 0.02 0.02 0.02 0.0 0.6 0.0 0.02 0.02 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.05 0.04 0.0 0.07 0.03 0.0 0.64 0.03 0.2 0.2 0.0 0.0 0.0 0.02 0.25 0.05 0.2 bb γγ 0.4 0.02 0.02 0.0 0.64 0.0 0.07 0. WW 0.0 0.07 0.0 0.2 0.02 ττ 0.0 0.0 0.2 0.04 0.0 0.02 0.05 0.05 0.0 bb 0.07 γγ 0.0 0.0 0.03 0. WW 0.0 0.03 0.0 γγ 0.0 0.02 0.02 0.04 0.0 0.37 0.02 0.02 0.03 ττ 0.0 0.0 0.0 0.0 0.08 0.02 0.02 0.0 0.2 0.0 0.0 0.0 0.37 0.03 0.25 ττ WW 0.0 0.0 0.0 0.6 0.07 0.02 0.07 0.0 0.0 WW LHC Run 0.0 0.25 0.0 0.03 0.4 0.03 ττ 0.0 0.08 0.0 0.04 0.0 0.0 0.0 0.0 ττ 0.02 0.0 0.47 bb 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.47 0.0 0.0 γ γ ZZ WW ττ γ γ ZZ WW ττ γ γ WW ττ bb γ γ WW ττ bb γ γ WW ττ bb ggf Tim Stefaniak (DESY) HiggsSignals VBF WH ZH 0.8 0.6 i σj Bk ggf ATLAS and CMS γγ ZZ WW ρ(σ Bf, σj Bk) ) Run- combination input 0.4 0.2 0 0.2 0.4 0.6 0.8 tth σi Bf Higgs Couplings 207 9 / 8

Validation with LHC Run (7/8 TeV) data [ATLAS+CMS 7/8 TeV, 606.02266] Try to reproduce 7 or 8-dimensional κ-fit of ATLAS+CMS Run combination with HiggsSignals, using two different experimental inputs: ) Run- combination input σi BRf measurements tth ZH WH VBF 0.0 0.03 0.0 0.26 0.0 0.0 ZZ 0.0 0.26 0.0 0.0 0.0 0.37 0.03 0.25 0.0 0.02 0.02 0.02 0.02 0.0 0.6 0.0 0.02 0.02 0.0 0.37 0.02 0.02 0.03 0.03 0.0 0.02 0.25 0.05 0.2 0.0 γγ 0.4 0.02 0.02 0.0 0.0 0.64 0.0 0.0 0. 0.0 0.07 0.0 0.2 0.02 0.0 0.0 0.2 0.04 0.0 0.02 0.05 0.05 0.0 0.07 γγ 0.0 0.0 0.03 0. 0.0 0.08 0.0 0.04 0.07 bb WW 0.0 0.2 0.2 0.0 bb ττ 0.0 0.64 0.03 WW 0.0 0.05 0.04 0.0 0.07 0.03 0.0 0.0 0.0 0.2 0.03 0.0 ττ ττ 0.0 0.0 0.0 0.0 0.08 0.02 0.02 0.0 0.0 0.02 0.02 0.04 γγ WW 0.0 0.0 0.0 0.6 0.07 0.02 0.07 0.0 0.0 0.25 0.0 0.0 0.0 WW LHC Run 0.0 0.25 0.0 0.03 0.4 0.03 ττ γγ 0.0 0.0 0.0 0.0 ττ 0.02 0.0 0.47 bb 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.47 0.0 0.0 γ γ ZZ WW ττ γ γ ZZ WW ττ γ γ WW ττ bb γ γ WW ττ bb γ γ WW ττ bb ggf Tim Stefaniak (DESY) VBF WH ZH 0.8 0.6 i σj Bk ggf ATLAS and CMS γγ ZZ WW ρ(σ Bf, σj Bk) 20 20 correlation matrix 0.4 0.2 0 0.2 0.4 0.6 0.8 tth σi Bf HiggsSignals Higgs Couplings 207 9 / 8

Validation with LHC Run (7/8 TeV) data [ATLAS+CMS 7/8 TeV, 606.02266] Try to reproduce 7 or 8-dimensional κ-fit of ATLAS+CMS Run combination with HiggsSignals, using two different experimental inputs: 2) All individual µ measurements (total: 76) ) Run- combination input σi BRf measurements tth ZH WH VBF 0.0 0.03 0.0 0.26 0.0 0.0 ZZ 0.0 0.26 0.0 0.0 0.0 0.37 0.03 0.25 0.0 0.02 0.02 0.02 0.02 0.0 0.6 0.0 0.02 0.02 0.0 0.37 0.02 0.02 0.03 0.03 0.0 0.02 0.25 0.05 0.2 0.0 γγ 0.4 0.02 0.02 0.0 0.0 0.64 0.0 0.0 0. 0.0 0.07 0.0 0.2 0.02 0.0 0.0 0.2 0.04 0.0 0.02 0.05 0.05 0.0 0.07 γγ 0.0 0.0 0.03 0. 0.0 0.08 0.0 0.04 0.07 bb WW 0.0 0.2 0.2 0.0 bb ττ 0.0 0.64 0.03 WW 0.0 0.05 0.04 0.0 0.07 0.03 0.0 0.0 0.0 0.2 0.03 0.0 ττ ττ 0.0 0.0 0.0 0.0 0.08 0.02 0.02 0.0 0.0 0.02 0.02 0.04 γγ WW 0.0 0.0 0.0 0.6 0.07 0.02 0.07 0.0 0.0 0.25 0.0 0.0 0.0 WW LHC Run 0.0 0.25 0.0 0.03 0.4 0.03 ττ γγ 0.0 0.0 0.0 0.0 ττ 0.02 0.0 0.47 bb 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.47 0.0 0.0 γ γ ZZ WW ττ γ γ ZZ WW ττ γ γ WW ττ bb γ γ WW ττ bb γ γ WW ττ bb ggf Tim Stefaniak (DESY) VBF WH ZH 0.8 0.6 i σj Bk ggf ATLAS and CMS γγ ZZ WW ρ(σ Bf, σj Bk) 20 20 correlation matrix 0.4 0.2 0 0.2 0.4 0.6 0.8 tth σi Bf HiggsSignals Higgs Couplings 207 9 / 8

Validation with LHC Run (7/8 TeV) data assumption: no new Higgs decay modes, BR(H NP) = 0. Both HiggsSignals results are well consistent with official ATLAS+CMS results; Official σ and 2σ intervals are slightly tighter in all parameters. Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 0 / 8

Validation with LHC Run (7/8 TeV) data assumption: upper limit on Higgs-vector boson coupling scale factors: κ V (V = W, Z) Both HiggsSignals results are well consistent with official ATLAS+CMS results; Official σ and 2σ intervals are slightly tighter in all parameters. ATLAS+CMS find tighter constraints on BR(H NP). Possible explanation: HiggsSignals assumes Gaussian uncertainties. Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 0 / 8

Complications with multiple neutral Higgs bosons Any neutral Higgs boson could be responsible for the observed signal. Higgs boson i is assigned to the observable α, if its mass is close enough to observed signal position: m i ˆm α Λ ( m i ) 2 + ( ˆm α ) 2 Higgs i assigned with tuning parameter Λ (assignment range). If multiple Higgs bosons are assigned, their signal strengths are added incoherently: µ α = i µ α,i. In case of a mass measurement, a signal-strength weighted mass average is used in the χ 2 m evaluation. If no Higgs boson is assigned to an observable α, its χ 2 contribution is evaluated for zero predicted signal strength, µ α = 0. Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 / 8

Mass dependence of total χ 2 for a SM-like Higgs boson HiggsSignals provides three different probability distribution functions (pdfs) for the Higgs mass: box-shaped, Gaussian, box-theo.+gaussian-exp. Example: SM Higgs boson with m = 2 GeV (and Λ = ) χ 2 200 80 60 40 20 00 80 60 0 0 5 20 25 30 35 40 m H [GeV] box Gaussian box+gaussian Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 2 / 8 90 80 70 60 50 40 30 20 0 Number of assignments

Example: Real Higgs singlet extension of the SM consider SM extended by a real Higgs singlet with vev 0. doublet-singlet mixing to physical states (h, H) g hxx = cos θ g SM HXX, g HXX = sin θ g SM HXX 0.8 m = 25. GeV HiggsBounds-4.2.0 + HiggsSignals-.3.0 68.3% C.L. 95.5% C.L. 99.7% C.L. LEP excl. (95% C.L.) LHC excl. (95% C.L.) χ 2 20 5 0.6 sinα 0.4 0 5 0.2 0 0 80 00 20 40 60 80 [T. Robens, TS, arxiv:50.02234] m [GeV] Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 3 / 8

Example: pmssm [P. Bechtle, H. Haber, S. Heinemeyer, O. Stål, TS, G. Weiglein, L. Zeune, 608.00638] Combine HiggsSignals χ 2 with other constraints (b sγ, B s µµ, B u τν, (g 2) µ, M W ; Higgs & SUSY limits) Study pmssm with 8 parameters (relevant for Higgs sector) disfavored by H/A τ + τ searches All points HiggsBounds allowed χ 2 < 2.30 χ 2 < 5.99 Best fit point only Higgs data all observables SM: χ 2 /ndf = 70.2/86 83.7/9 MSSM: χ 2 /ndf = 67.9/86 68.5/9 Found allowed points in decoupling limit and in alignment without decoupling region. Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 4 / 8

Current status Current versions, HiggsBounds-5..beta and HiggsSignals-2..0beta, contain the 3 TeV LHC results, extended input quantities and several new features. New documentation for each code is in work (hence, the beta ). Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 5 / 8

Current status Current versions, HiggsBounds-5..beta and HiggsSignals-2..0beta, contain the 3 TeV LHC results, extended input quantities and several new features. New documentation for each code is in work (hence, the beta ). Some new developments und future directions: Possibility to insert signal rates directly [e.g. σ(gg φ f f )] without assumption of narrow width approximation (i.e. factorization of XS and BR). Possible to account for non-trivial rate modifications (e.g. interferences). Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 5 / 8

Current status Current versions, HiggsBounds-5..beta and HiggsSignals-2..0beta, contain the 3 TeV LHC results, extended input quantities and several new features. New documentation for each code is in work (hence, the beta ). Some new developments und future directions: Possibility to insert signal rates directly [e.g. σ(gg φ f f )] without assumption of narrow width approximation (i.e. factorization of XS and BR). Possible to account for non-trivial rate modifications (e.g. interferences). Enable & transition to new form of experimental input: Simplified Template Cross Sections (STXS): maximize model discrimination power while minimizing model-dependence; σ and BR ratio parameters: cancellation of theoretical uncertainties; σ(gg H ZZ), σ VBF /σ ggf,... BR WW /BR ZZ,... Note: This experimental input is useless unless it comes with a correlation matrix! Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 5 / 8

Simplified Template Cross Sections (STXS) 438 III.2.. Overview [LHC HXSWG, YR4, 60.07922] low p T t ratios of ZZ WW b b ( Z µµ ) H! high p T t VBF loose (MVA) VBF tight (MVA) VH leptonic t th leptonic H! ZZ H! WW H! b b = 0-jet = -jet 2-jet VBF cuts MVA low p T (V ) MVA high p T (V ) (ggf) (VBF) (VH) = 0-jet -jet 2-jet VBF cuts Rest 2-jet VBF cuts high-q 2 BSM low p V T high p V T very high p V T ' 2-jet & 3-jet = 0-jet -jet µ i, apple i g k EFT coeffs specific BSM H! (t th) (b bh) (th) Tim Stefaniak Figure (DESY) 27: Schematic overview of HiggsSignals the simplified template cross sectionhiggs framework. Couplings 207 6 / 8

j H T H T j T H T H H H j STXS performance of ATLAS H γγ 3 TeV results [ATLAS-CONF-207-045] ATLAS presented 9 STXS together with a correlation matrix. Use with HiggsSignals and compare with official fit results! ATLAS Preliminary ggh ( jet, 60 ggh ( jet, 20 qq H ggh ( jet, p T H p T H p T Hqq (p T ggh (0 jet) < 60 GeV) < 20 GeV) < 200 GeV) ggh ( 2 jet) < 200 GeV) ggh + qq Hqq (BSM-like) SM prediction VH (leptonic) top - s=3 TeV, 36. fb H γγ, m =25.09 GeV H 0.5 0 0.5.5 2 2.5 Measured σ BR normalized to SM re 5: Summary plot of the measured simplified template cross sections times the Higgs to diphoton branching. For illustration purposes the central values have been divided by their SM expectations but no additional uncertainties have been folded into the measurement. The uncertainties on the SM predicted cross-sections Figure are 6: Observed correlations between the measured simplified template cross sections with respect to the total n in grey in the plot. The definition of the measured regions can be found in Table. The fitted value of (top) uncertainties. The colour indicates the size of the correlation. esponds to the sum of t th, thq b, and thw production cross sections under the assumption that their relative qq ggh ( jet, p ggh ( jet, 60 p ggh ( jet, 20 p Hqq (p ggh (0 jet) < 60 GeV) < 20 GeV) < 200 GeV) ggh ( 2 jet) < 200 GeV) ggh + qq Hqq (BSM-like) ggh - qq Hqq (BSM-like) VH (leptonic) top -0.22 ggh (0 jet) 0.6-0.08 < 60 GeV) T ggh ( jet, p 0.3-0.22 0.08-0.4 0.7-0.6-0.2-0.07-0.08-0. -0.58 < 20 GeV) ggh ( jet, 60 p ATLAS Preliminary 0.06-0.08 0.0 0.07-0.04-0. 0.08-0.07-0.02-0.02 0.05-0. 0.02 < 200 GeV) ggh ( jet, 20 p - s=3 TeV, 36. fb H γγ, m =25.09 GeV H -0.02-0.0-0.03-0.02 0.0-0.03 - -0.05-0.0 0.04-0.05 - - 0.04 Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 7 / 8 ggh ( 2 jet) < 200 GeV) T Hqq (p qq ggh + qq Hqq (BSM-like) ggh - qq Hqq (BSM-like) VH (leptonic) top 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 ρ(x,y)

STXS performance of ATLAS H γγ 3 TeV results [ATLAS-CONF-207-045] ATLAS presented 9 STXS together with a correlation matrix. Use with HiggsSignals and compare with official fit results! 4.5 σv H, σtth profiled.6.4 4.0 3.5.4.2.0 σvbf/σsm 3.0 2.5 2.0 κγ.2.0 κf 0.8 0.6.5.0 0.8 0.4 0.2 0.5 0.2 0.4 0.6 0.8.0.2.4 σggf/σsm 0.6 0.4 0.6 0.8.0.2.4 κg 0.0 0.6 0.7 0.8 0.9.0..2 κv Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 7 / 8

STXS performance of ATLAS H γγ 3 TeV results [ATLAS-CONF-207-045] ATLAS presented 9 STXS together with a correlation matrix. Use with HiggsSignals and compare with official fit results! 4.5 σv H, σtth profiled.6.4 4.0 3.5.4.2.0 σvbf/σsm 3.0 2.5 2.0 κγ.2.0 κf 0.8 0.6.5.0 0.8 0.4 0.2 0.5 0.2 0.4 0.6 0.8.0.2.4 σggf/σsm 0.6 0.4 0.6 0.8.0.2.4 κg 0.0 0.6 0.7 0.8 0.9.0..2 κv Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 7 / 8

STXS performance of ATLAS H γγ 3 TeV results [ATLAS-CONF-207-045] ATLAS presented 9 STXS together with a correlation matrix. Use with HiggsSignals and compare with official fit results! 4.5 σv H, σtth profiled.6.4 4.0 3.5.4.2.0 σvbf/σsm 3.0 2.5 2.0 κγ.2.0 κf 0.8 0.6.5.0 0.8 0.4 0.2 0.5 0.6 0.2 0.4 0.6 0.8.0.2.4 σggf/σsm without correlation matrix κg 0.4 0.6 0.8.0.2.4 4.5.6 σv H, σtth profiled 4.0.4 3.5 0.0 0.6 0.7 0.8 0.9.0..2 κv.4.2.0 σvbf/σsm 3.0 2.5 2.0.5.0 κγ.2.0 0.8 κf 0.8 0.6 0.4 0.2 0.5 0.2 0.4 0.6 0.8.0.2.4 σggf/σsm 0.6 0.4 0.6 0.8.0.2.4 κg 0.0 0.6 0.7 0.8 0.9.0..2 κv Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 7 / 8

STXS performance of ATLAS H γγ 3 TeV results [ATLAS-CONF-207-045] ATLAS presented 9 STXS together with a correlation matrix. Use with HiggsSignals and compare with official fit results! 4.5 σv H, σtth profiled.6.4 4.0 3.5.4.2.0 σvbf/σsm 3.0 2.5 2.0 κγ.2.0 κf 0.8 0.6.5.0 0.4 0.8 0.2 First tests with STXS in HiggsSignals very successful! 0.5 0.6 0.0 0.2 0.4 0.6 0.8.0.2.4 0.4 0.6 0.8.0.2.4 0.6 0.7 0.8 0.9.0..2 σggf/σsm κg κv without correlation matrix 4.5.6.4 But: σv H, σtth profiled Correlations need to be included! 4.0.2.4 3.5.0 σvbf/σsm 3.0 2.5 2.0.5.0 κγ.2.0 0.8 κf 0.8 0.6 0.4 0.2 0.5 0.2 0.4 0.6 0.8.0.2.4 σggf/σsm 0.6 0.4 0.6 0.8.0.2.4 κg 0.0 0.6 0.7 0.8 0.9.0..2 κv Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 7 / 8

Summary HiggsBounds and HiggsSignals provide an interface between experiment and theory. They test the compatibility of BSM theories with latest Higgs data: accurate and validated tool for testing your model, works well also for extended Higgs sectors, requires physical quantities as input (almost) model-independent, interfaces to many model building tools exist, complete information on rate measurements is crucial for implementation: signal efficiencies, correlation matrices,... new experimental input (STXS, σ and BR-ratios) is being implemented and first results look promising. Available at http://higgsbounds.hepforge.org! (Sign up on mailing list!) Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 8 / 8

Summary HiggsBounds and HiggsSignals provide an interface between experiment and theory. They test the compatibility of BSM theories with latest Higgs data: accurate and validated tool for testing your model, works well also for extended Higgs sectors, requires physical quantities as input (almost) model-independent, interfaces to many model building tools exist, complete information on rate measurements is crucial for implementation: signal efficiencies, correlation matrices,... new experimental input (STXS, σ and BR-ratios) is being implemented and first results look promising. Available at http://higgsbounds.hepforge.org! (Sign up on mailing list!) Thanks for your attention! Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 8 / 8

Backup Slides Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 / 5

Observables included in HiggsSignals-.4.0 in total: 85 signal rate + 4 mass measurements (July 205) h W W lνlν (ggf) [8 TeV] ATLAS h W W lνlν (VBF) [8 TeV] h ZZ 4l (ggh like) [8 TeV] h ZZ 4l (VBF/VH like) [8 TeV] h γγ (central, high pt ) [8 TeV] h γγ (central, low pt ) [8 TeV] h γγ (forward, high pt ) [8 TeV] h γγ (forward, low pt ) [8 TeV] h γγ (tth, had.) [8 TeV] h γγ (VBF, loose) [8 TeV] h γγ (VBF, tight) [8 TeV] h γγ (VH, ET miss ) [8 TeV] h γγ (VH, dijet) [8 TeV] h γγ (VH, l) [8 TeV] h γγ (tth, lep.) [8 TeV] h τhτh (VBF) [8 TeV] h τhτh (boosted) [8 TeV] h τlτh (VBF) [8 TeV] h τlτh (boosted) [8 TeV] h τlτl (VBF) [8 TeV] h τlτl (boosted) [8 TeV] V h V bb (0l) [8 TeV] V h V bb (l) [8 TeV] V h V bb (2l) [8 TeV] V h V W W (2l) [8 TeV] V h V W W (3l) [8 TeV] V h V W W (4l) [8 TeV] 9.6 tth multilepton (l2τh) [8 TeV] tth multilepton (2l0τh) [8 TeV] tth multilepton (2lτh) [8 TeV] tth multilepton (3l) [8 TeV] tth multilepton (4l) [8 TeV] tth tt(bb) [8 TeV] h W W DØ h γγ h ττ h bb h W W h γγ h ττ V h V (bb) tth tt(bb) CDF 0 2 3 4.9 4.2 7.8 9.49 CMS 4.7 0 2 3 [8 TeV] h W W 2l2ν (0/ jet) [8 TeV] h W W 2l2ν (VBF) [8 TeV] h W W 2l2ν (VH) [8 TeV] h ZZ 4l (0/ jet) [8 TeV] h ZZ 4l (2 jet) [8 TeV] h γγ (untagged 0) [8 TeV] h γγ (untagged ) [8 TeV] h γγ (untagged 2) [8 TeV] h γγ (untagged 3) [8 TeV] h γγ (untagged 4) [8 TeV] h γγ (VBF, dijet 0) [8 TeV] h γγ (VBF, dijet ) [8 TeV] h γγ (VBF, dijet 2) [8 TeV] h γγ (VH, ET miss ) [8 TeV] h γγ (VH, dijet) [8 TeV] h γγ (VH, loose) [8 TeV] h γγ (VH, tight) [8 TeV] h γγ (tth, multijet) [8 TeV] h γγ (tth, lepton) [7 TeV] h γγ (untagged 0) [7 TeV] h γγ (untagged ) [7 TeV] h γγ (untagged 2) [7 TeV] h γγ (untagged 3) 4.85 [7 TeV] h γγ (VBF, dijet 0) [7 TeV] h γγ (VBF, dijet ) 4.32 [7 TeV] h γγ (VH, ET miss ) 7.86 [7 TeV] h γγ (VH, dijet) [7 TeV] h γγ (VH, loose) [7 TeV] h γγ (tth tags) [8 TeV] h ττ (0jet) [8 TeV] h ττ (jet) [8 TeV] h ττ (VBF) [8 TeV] h µµ [8 TeV] V h V W W (had.) [8 TeV] W h W W W 3l3ν [8 TeV] V h V bb [8 TeV] V h ττ 5.3 [8 TeV] tth 2l (same sign) [8 TeV] tth 3l [8 TeV] tth 4l [8 TeV] tth tt(bb) [8 TeV] tth tt(γγ) [8 TeV] tth tt(ττ) ˆµ Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 2 / 5

Global fit of the pmssm: The setup Perform a random scan over 8 MSSM parameters ( 0 7 points): M A, tan β, µ, M q3, M l3, M l,2, A t = A b = A τ, M 2 = 2M, (+ m top ) using FeynHiggs and SuperIso for MSSM predictions. (fix other parameters, e.g. m q,2 = m g =.5 TeV) Observables and limits: χ 2 total = (M h/h ˆM) 2 σ 2 M + χ 2 HS + (O i Ô i ) 2 σ 2 i 2 ln L limits Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 3 / 5

Global fit of the pmssm: The setup Perform a random scan over 8 MSSM parameters ( 0 7 points): M A, tan β, µ, M q3, M l3, M l,2, A t = A b = A τ, M 2 = 2M, (+ m top ) using FeynHiggs and SuperIso for MSSM predictions. (fix other parameters, e.g. m q,2 = m g =.5 TeV) Observables and limits: χ 2 total = (M h/h ˆM) 2 σ 2 M Higgs mass (σm theo = 3 GeV) + χ 2 HS + (O i Ô i ) 2 σ 2 i 2 ln L limits Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 3 / 5

Global fit of the pmssm: The setup Perform a random scan over 8 MSSM parameters ( 0 7 points): M A, tan β, µ, M q3, M l3, M l,2, A t = A b = A τ, M 2 = 2M, (+ m top ) using FeynHiggs and SuperIso for MSSM predictions. (fix other parameters, e.g. m q,2 = m g =.5 TeV) Observables and limits: χ 2 total = (M h/h ˆM) 2 σ 2 M Higgs signal rates (HiggsSignals) + χ 2 HS + (O i Ô i ) 2 σ 2 i 2 ln L limits Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 3 / 5

Global fit of the pmssm: The setup Perform a random scan over 8 MSSM parameters ( 0 7 points): M A, tan β, µ, M q3, M l3, M l,2, A t = A b = A τ, M 2 = 2M, (+ m top ) using FeynHiggs and SuperIso for MSSM predictions. (fix other parameters, e.g. m q,2 = m g =.5 TeV) Observables and limits: χ 2 total = (M h/h ˆM) 2 σ 2 M + χ 2 HS + (O i Ô i ) 2 σ 2 i 2 ln L limits Low energy observables (LEO) O i {b sγ, B s µµ, B u τν τ, (g 2) µ, M W } Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 3 / 5

Global fit of the pmssm: The setup Perform a random scan over 8 MSSM parameters ( 0 7 points): M A, tan β, µ, M q3, M l3, M l,2, A t = A b = A τ, M 2 = 2M, (+ m top ) using FeynHiggs and SuperIso for MSSM predictions. (fix other parameters, e.g. m q,2 = m g =.5 TeV) Observables and limits: χ 2 total = (M h/h ˆM) 2 σ 2 M + χ 2 HS + (O i Ô i ) 2 σ 2 i Higgs exclusion likelihoods (LEP, h/h/a τ + τ ) 2 ln L limits Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 3 / 5

Global fit of the pmssm: The setup Perform a random scan over 8 MSSM parameters ( 0 7 points): M A, tan β, µ, M q3, M l3, M l,2, A t = A b = A τ, M 2 = 2M, (+ m top ) using FeynHiggs and SuperIso for MSSM predictions. (fix other parameters, e.g. m q,2 = m g =.5 TeV) Observables and limits: χ 2 total = (M h/h ˆM) 2 σ 2 M Hard cuts: + χ 2 HS + (O i Ô i ) 2 σ 2 i + 95% CL limits from Higgs searches (HiggsBounds) 2 ln L limits + Limits from LHC SUSY searches (Herwig++/CheckMATE) + require neutral lightest supersymmetric particle (LSP) Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 3 / 5

Best-fit points Higgs data Higgs data + LEO χ 2 /ν χ 2 ν P χ 2 /ν χ 2 ν P SM (m h = 25. GeV) 70.2/86 0.82 0.89 83.7/9 0.92 0.69 MSSM light Higgs h 67.9/79 0.86 0.8 68.5/84 0.82 0.89 MSSM heavy Higgs H 70.0/80 0.88 0.78 73.7/85 0.87 0.80 number degrees of freedom: ν = n obs n param SM and both MSSM cases provide similar fit to the Higgs data. Including LEOs, SM fit becomes worse, mainly due to (g 2) µ. M A tan β µ A 0 M q3 M l 3 M l,2 M 2 (GeV) (GeV) (GeV) (GeV) (GeV) (GeV) (GeV) MSSM h 929 2.0 755 438 2957 698 436 358 MSSM H 72 6.6 4503 7 564 953 262 293 Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 4 / 5

Favored parameter regions disfavored by H/A τ + τ searches Bulk of favored points have M A 350 GeV decoupling limit. points with M A 200 GeV possible alignment w/o decoupling. Recall: alignment condition tan β [ ( µat A 2 t MS 2 MS 2 6 )] Alignment occurs at small tan β values if µa t /MS 2 is large. Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 5 / 5

The κ-framework What is the compatibility of the present data with the SM? Are there tendencies for deviations from the SM prediction? What is the allowed range for possible deviations? Strategy: Profile likelihood fits of simplified models with scale factors (κ) parametrizing the relevant Higgs couplings. [LHC Higgs XS WG, 307.347] κ u, κ d, κ l, κ W, κ Z, κ g, κ γ,... Partial widths and cross sections are scaled with relevant scale factor. E.g.: κ 2 V = σ VBF σ SM VBF = σ VH σ SM VH = Γ H VV Γ SM, H VV κ 2 g = σ ggf σ SM ggf = Γ H gg Γ SM H gg Loop-induced coupling scale factors (κ g, κ γ ) either derived or free parameters. We can allow additional decay modes to new physics : BR(H NP) Tim Stefaniak (DESY) HiggsSignals Higgs Couplings 207 6 / 5