Dense gas really matters.

Similar documents
Probing the Chemistry of Luminous IR Galaxies

MALATANG THOMAS R. GREVE UNIVERSITY COLLEGE LONDON. MApping the dense molecular gas in The strongest star-forming Galaxies

HerCULES. Paul van der Werf. Leiden Observatory. Lorentz Centre February 28, 2012

Understanding Submillimetre Galaxies: Lessons from Low Redshifts

CS (5 4) survey towards nearby infrared bright galaxies

NEARBY GALAXIES AND ALMA

Fingerprinting (ultra)luminous infrared galaxies

Fingerprinting (ultra)luminous infrared galaxies

Chris Pearson: RAL Space. Chris Pearson: April

MOLECULES IN THE CIRCUMNUCLEAR DISK OF THE GALACTIC CENTER

David T. Frayer (NRAO-GB), A. Harris, A. Baker, M. Negrello, R. Ivison, I. Smail, M. Swinbank, D. Windemuth, S. Stierwalt, H-ATLAS and GOALS Teams

Molecules at High Redshift (CO in Spitzer and Herschel-selected High-z Samples) David T. Frayer (NRAO), H-ATLAS, GOODS-H, FIDEL, and Zpectrometer

The Excited and Exciting ISM in Galaxies: PDRs, XDRs and Shocks as Probes and Triggers

The Unbearable Lightness of Chemistry

A Formaldehyde Deep Field with the EVLA:

Compact Obscured Nuclei in the ALMA era

Quantifying the Relationship between Dense Gas and Star Formation in Nearby Galaxies

The Evolution of Molecular Tracers Jürgen Ott New World New Horizons, Santa Fe 8 March Molecular Gas Tracers in Galaxies. Juergen Ott (NRAO)

Dense Gas and Star Formation in Nearby Galaxies EMIR Multi-line Probe of the ISM Regulating Galaxy Evolution (EMPIRE)

Galaxies of Many Colours: Star Formation Across Cosmic Time. z=0, t= /-0.037x10 9 years (Now)

The Interstellar Medium

Luminous Infrared Galaxies

Molecular line survey observations toward nearby galaxies with IRAM 30 m

High density tracers of molecular gas in earlytype

Massive Star Formation in the LMC Resolved at Clump Scales

Multi-wavelength ISM diagnostics in high redshift galaxies

Searching for the dominant mode of galaxy growth! from deep extragalactic Herschel surveys! D.Elbaz (CEA Saclay)

Challenges for the Study of Hot Cores with ALMA: NGC 6334I

arxiv: v1 [astro-ph] 30 Sep 2007

wsma for Nearby Galaxies

Far-infrared Herschel SPIRE spectroscopy reveals physical conditions of ionised gas in high-redshift lensed starbursts

Towards a Complete Census of Extreme Starbursts in the Early Universe

arxiv:astro-ph/ v3 7 Mar 2004

Lecture 23 Internal Structure of Molecular Clouds

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2

Warm Molecular Hydrogen at high redshift with JWST

AGN winds and outflows

Galaxy Simulators Star Formation for Dummies ^

68 Star Formation Laws in LITTLE THINGS Dwarfs: The case of DDO133 and DDO168. Dana Ficut-Vicas

Galaxy Formation: The Radio Decade (Dense Gas History of the Universe) Chris Carilli (NRAO) Santa Fe, March 2011

Multi-Phase Outflows in ULIRGs

Feeding and Feedback in nearby AGN:

H I in Galactic Disks

THE STAR FORMATION RATE AND DENSE MOLECULAR GAS IN GALAXIES

The main sequence from stars to galaxies pc kpc Mpc. Questions

Insights from the Galactic center

University of Groningen. Chemical fingerprints of star forming regions and active galaxies Pérez-Beaupuits, Juan-Pablo

Studying Galaxy Evolution with FIRI. A Far-InfraRed Interferometer for ESA. Dimitra Rigopoulou Oxford/RAL-STFC

arxiv: v3 [astro-ph.ga] 20 Mar 2018

Dominik A. Riechers Cornell University

Resolved studies of gas in high-z galaxies

The Role of the CMB in Redshift Related Departures from the Gao Solomon Relation

Dust in dwarf galaxies: The case of NGC 4214

A search for gravitationally lensed water masers

Cold Clouds in Cool Cores

Carbon in the ISM of z=4 dusty starburst galaxies

arxiv: v1 [astro-ph.ga] 30 Nov 2015

The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud Thomas G. Bisbas

Molecular properties of (U)LIRGs: CO, HCN, HNC and HCO +

arxiv: v2 [astro-ph] 20 Aug 2008

Fine-structure line diagnostics of the SFR and ISM conditions

ngvla: Galaxy Assembly through Cosmic Time

VLBI observations of OH megamaser galaxies (A research plan introduction)

Disk Building Processes in the local Massive HI LIRG HIZOA J A prototype for disk galaxies at z=1?

Cinthya Herrera (NAOJ)

Massive molecular outflows from ULIRGs - Dynamics and Energetics - E. Sturm for the SHINING and QUEST Team

the Solar Neighborhood

Extragalactic SMA. Sergio Martín Ruiz. European Southern Observatory

ALMA! Fabian Walter MPIA

Star Formation Theory: Connecting the Local to the Extra- Galactic

Probing the embedded phase of star formation with JWST spectroscopy

Outflows in local ULIRGS: [CII] 158 Broad Components and OH outflows

arxiv: v1 [astro-ph.ga] 2 Apr 2018

Star formation relations and co spectral line energy distributions across the J-ladder and redshift

Physical Properties of Molecular Gas in Nearby Barred Spiral Galaxies

AGN-driven turbulence revealed by extreme [CII]158µm line cooling in radio-galaxies

Low mass star formation. Mark Thompson (with contributions from Jennifer Hatchell, Derek Ward-Thompson, Jane Greaves, Larry Morgan...

Extinction law variations and dust excitation in the spiral galaxy NGC 300

Observable Constituents: Gas and Dust

The molecular gas in Luminous Infrared Galaxies II: extreme physical conditions, and their effects on the X co factor

Lecture 26 Clouds, Clumps and Cores. Review of Molecular Clouds

SOFIA/GREAT [CII] observations in nearby clouds near the lines of

15m James Clerk Maxwell Telescope (JCMT) Surface accuracy : 24 micron Pointing accuracy : 2 arcsec in Azimuth and Elevation

Accretion-Disk-outflow System in High Mass Star Formation. Yuefang Wu Astronomy Department Peking University, China

Massive Neutral and Molecular Winds in Nearby Galaxies

AMMONIA THERMOMETRY OF STAR FORMING GALAXIES

arxiv: v1 [astro-ph] 27 Jun 2007

EVLA + ALMA represent > 10x improvement in observational capabilities from 1GHz to 1 THz

X-raying galactic feedback in nearby disk galaxies. Q. Daniel Wang University of Massachusetts

Gas and Star Formation in the Circinus Galaxy

Feeding and Feedback in U/LIRGs: ALMA Case Studies

Earliest phases of high mass star formation in the Galactic Plane

GMC as a site of high-mass star formation

within entire molecular cloud complexes

arxiv: v1 [astro-ph.co] 29 Nov 2011

Molecular Clouds and Star Formation. James Di Francesco September 21, 2015 NRC Herzberg Programs in Astronomy & Astrophysics

The gas and dust properties of NGC 891 with Herschel

Lecture 19 CO Observations of Molecular Clouds

SOFIA follow-ups of high-mass clumps from the ATLASGAL galactic plane survey

Far-IR cooling in massive star-forming regions: a case study of G

Transcription:

Dense gas tracers and star formation laws: Multiple transition CS survey in nearby active star-forming galaxies Zhi-Yu Zhang U. Edinburgh/ESO! Dense gas really matters. Collaborators: 19 Dec. 2014, Guangzhou, Zhi-Yu Zhang Yu Gao (PMO) Padelis Papadopoulos (Cardiff) Thomas Greve (UCL) Christian Henkel (MPIfR) Junzhi Wang (SHAO) Yinghe Zhao (PMO/IPAC) Manolis Xilouris (NOA) Rob Ivison (ROE/ESO) Karl Menten (MPIfR) et al.

Outline Background Gas tracers and Star formation Star formation laws! Surveys and Results Multiple-J CS surveys in galaxies Star formation vs. dense gas emission!! MALATANG and more. Summary

Which gases are forming stars? IC 342 HI (atomic gas) THINGS 1 kpc

Which gases are forming stars? IC 342 HI (atomic gas) 12 CO J=1-0 (molecular gas) THINGS NRAO 12m 1 kpc

Which gases are forming stars? IC 342 HI (atomic gas) 12 CO J=1-0 (molecular gas) THINGS NRAO 12m Spitzer 70um IR emission (star formation) 1 kpc On kpc scales, SFR is more related to H2 gas, rather than to HI.

Which gases are forming stars? IC 342 HI (atomic gas) 12 CO J=1-0 (molecular gas) THINGS NRAO 12m Spitzer 70um IR emission (star formation) GRS 13 CO Galactic Ring Survey (GRS) 13 CO J=1-0 1 kpc On kpc scales, SFR is related to H2 gas,rather than HI

Which gases are forming stars? - Galactic view GRS 13 CO J=1-0 Extended on ~ 10 pc scales Low volume density ~ 10 2-10 3 cm -3 10 pc

Which gases are forming stars? - Galactic view MSX 20 μm Compact on ~ sub-pc scales 10 pc

Which gases are forming stars? - Galactic view GRS CS J=2-1 Compact on ~ sub-pc scales High volume density ~10 4-10 6 cm -3 10 pc

Star Formation Laws: Gas - SFR relations SFR N=1.4 N=1.0 N=1.0 Which tracers are tracing the star forming gas? HI+H2 Mgas/tff H2(dense) Gas Mass Kennicutt 1998 Krumholz et al. 2012 Gao & Solomon 2004

Tracers of Physical Conditions in Molecular Clouds High excitations Shocks, XDR etc. GMCs Dense Cores Genzel 1992

ense gas tracers When n(h2) > ncrit: ncrit > 10 4 cm -3 ncrit(hcn) : 10 4 ~10 7 cm -3 Collisional excitation dominant. Easily be thermalised. ncrit(hco + ) : 10 4 ~10 6 cm -3 ncrit(co) : 10 2 ~10 5 cm -3 ncrit(cs) : 10 4 ~10 6 cm -3 HCN : IR-pumping, XDR, chemistry on Tkin. e.g. Weiss et al. 2008; Graci-Carpio et al. 2006; Lintott & Viti 2006; Baan et al. 2008 HCO + : Shock, ionisation fields, etc. e.g. Dickinson et al. 1980; Dickmann et al. 1992; Papadopolous et al. 2007 High-J CO: Warm gas. CS : Weak (~1/4 of HCN intensity), chemically stable? e.g. Charnley 1997; Martín et al. 2008;2009

Simulations of star formation laws higher transitions/densities have lower slope indices? Slope Juneau09 Transition Aul/Cul Narayanan et al. 2008 Juneau et al. 2009

L gas-lir correlations -- CO 1-0 (ncrit~ 4 x10 2 cm -3 ) Slope~1.4 Gao & Solomon 2004 L gas -- Mgas LIR -- SFR

L gas-lir correlations -- HCN 1-0 (ncrit~ 2 x10 5 cm -3 ) Slope=1 Gao & Solomon 2004 L gas -- Mgas LIR -- SFR

L gas-lir correlations -- HCO + 3-2 (ncrit~ 1 x10 6 cm -3 ) Slope=0.8 Juneau et al. 2009 Juneau et al. 2008 L gas -- Mgas LIR -- SFR

L gas-lir correlations -- HCN 3-2 (ncrit~ 5 x10 6 cm -3 ) N~0.7 Bussmann et al. 2008 L gas -- Mgas LIR -- SFR

Galactic CS & HCN studies 1.03(0.05) 1.17(0.06) 0.88(0.06) 1.05(0.05) 0.81(0.04) 1.03(0.05) 1.05(0.05) 0.81(0.04) Wu et al. 2010

Issues in observational results IR pumping? Chemistry? Stable tracers need. IR size > beamsize Either to map gas emission or to match IR with beam Bussmann et al. 2008 To test the above models in galaxies, multiple transition surveys of chemically clean dense tracers, e.g. CS lines, are needed.

Sample Selection: 1. IRAS Revised Bright Galaxies sample (IRAS RBGs, Sanders 2003). Flux cutoff: F100um >100 Jy, F60um >50 Jy.! 2. Rich detections of CO and HCN lines.! 3. A large range of LIR, and galaxy types: Nearby normal galaxies, starburst, LIRGs, and ULIRGs. ~ 50 galaxies are selected

Multiple-J CS survey ~ 280 hours in total Multiple transitions (J=1-0 to 7-6) of CS lines towards ~ 40 nearby normal galaxies, starburst, and (U)LIRGs CS J= 2-1/3-2/5-4 IRAM 30m CS J= 5-4 SMT(HHT) 10m CS J= 5-4/7-6 APEX 12m 80 hours 50 hours 40 hours 2009 ~ 2011 2009 2011 CS J= 1-0 GBT and the EVLA 60 hours ~40 hours 2012-2014 2012-2014

Samples and Detections CS J=1-0 : 20/24 galaxies CS J=2-1 : 41/47 galaxies CS J=3-2 : 30/41 galaxies CS J=5-4 : 21/40 galaxies + CS detections in literatures CS J=7-6 : 11/20 galaxies HCN/HCO + J=4-3 simultaneously C 34 S J=2-1: 5 detections Mrk 231 NGC 4418 NGC 1068

L gas-lir (small targets) CS J=1-0 ncrit~ 1x10 4 cm -3

L gas-lir (small targets) CS J=1-0 to J=5-4 N=0.95 N=1.02 N=1.04 N=0.96

Beam matching photometry for extended targets NGC 891 Beam Whole Herschel 100 μm Bussmann et al. 2008 LSD = RSD LTIR(IRAS) RSD=Fbeam/Ftotal varies at different bands Assuming whole galaxy share one IR SED.

L cs-lir correlations Beam matching correction All linearly correlated

L cs-lir correlations ~ 8 orders of magnitude N=1 galaxies ncrit~ 1x10 5 cm -3 Wu et al. 2010 Galactic cores

L cs-lir correlations ~ 8 orders of magnitude N=1 galaxies ncrit~ 2x10 6 cm -3 Wu et al. 2010 Galactic cores

L cs-lir correlations ~ 8 orders of magnitude N=1 galaxies ncrit~ 5x10 6 cm -3 Wu et al. 2010 Galactic cores Zhang et al. 2014

HCO + J=4-3 -- observed simultaneously with CS J=7-6 ncrit~ 2x10 6 cm -3 Zhang et al. 2014 Zhang et al. 2014

HCO + J=4-3 -- observed simultaneously with CS J=7-6 Slightly Super-Linear! N~0.5 prediction ncrit~ 2x10 6 cm -3 Zhang et al. 2014 Zhang et al. 2014

HCN J=4-3 -- observed simultaneously with CS J=7-6 ncrit~ 1x10 7 cm -3 Zhang et al. 2014 Zhang et al. 2014

HCN J=4-3 -- the highest ncrit tracer N~0.5 ncrit~ 1x10 7 cm -3 Narayanan s prediction Zhang et al. 2014 Zhang et al. 2014

Dense gas tracers with ncrit ~10 4-10 8 cm -3 CS 1-0 2-1 3-2 5-4 7-6 Slope HCO + 4-3 HCN 4- Juneau et al. 2009 Aul/Cul Dense gas tracers have linear correlations irrespective to ncrit, universally over 8 orders of luminosity magnitudes.

Does time scale matter? -- For Dense gas: probably No. SFR fh2 : H2 fraction ϵff : constant, dimensionless measure of SFR Krumholz et al. 2012 Mgas/tff If LIR = (L dense) N /tff, N will decrease with ncrit. This will be contradictory to our observed results.

Short summary 1) Dense molecular gas (n(h2)~> 10 4 cm -3 ) is the star-forming gas.! 2) How much dense gas, how much star-formation linear correlations.! 3) L dense-lir universally stays linear from Galactic cores to galaxies, irrespective to critical density, once it is > 10 4 cm -3.!

The other half of the story Either to map gas emission or to match IR with beam Bussmann et al. 2008

MALATANG co-pi: Yu Gao, Zhiyu Zhang,Thomas Greve JCMT 390 hrs large program! Mapping HCN/HCO+ J=4-3 in ~20 nearby star-forming galaxies.! Synergy with Herschel FTS high-j CO and excitation modelling.! Characterising the physical/chemical conditions and excitations of the SF units probed by HCN/HCO+

Dense gas emission on disks and arms.

Different mode of star formation on disks? galactic centres M33 M51 M31 Chen et al. 2015 Usero et al. 2015 MALATANG will give the answers.

Synergy the HCN/HCO+ SLEDs with CO Papadopoulos + 2014

Thank you!

Background: Gymnastic music ALMA will be helpful!

Stars are forming in dense molecular gas cores Diffuse atomic gas HI, the gas reservoir for molecular clouds, And the supply for future star formation. PDRs GMCs: n(h2) ~ 10 2-10 3 cm -3 Tkin ~ 10-20 K D ~ 10-100 pc Dense cores: n(h2) ~ 10 4-10 6 cm -3 Tkin D ~ 15-100 K ~ 0.1-0.3 pc self-gravity bound from Y. Gao s talk

Backup Slides

LVG+ML/Bayesian Modelling with dense gas tracers and CO Papadopoulos + 2014

Model high-j CO using LVG results of HCN (NGC 6240) ~60-70% of the molecular gas is in dense gas phase. The thermal state of molecular gases can not be maintained by FUV from PDRs. Detailed LVG analysis will be done for the whole sample.

Caveats L dense is a first order approximation of Mdense. Detections of high ncrit lines do not necessarily mean that the gas densities are above ncrit, because they can be subthermally excited.! Analysis on excitation conditions is needed.

Surface density correlation of HCN -10

HCO + J=1-0 Ma et al. 2013

Fitting results Intercept vs. J CS 7-6 CS1-0 sub-linear slope indices for uncorrected targets linear correlations for point targets and beam matched targets

Aperture Correction -- beams are small : Parameters of the photometry. CS2-1 (25 ) CS 3-2 (17 ) Source name 24Ratio 24Apercor 70Ratio 70Apercor 24Ratio 24Apercor 70Ratio 70Apercor MAFFEI2 0.246 1.17 0.060 1.819 0.184 1.53 0.033 2.67 IC342 0.292 1.17 0.042 1.819 0.208 1.53 0.022 2.67 NGC891 0.082 1.17 0.048 1.819 0.052 1.53 0.025 M83 0.260 1.17 0.053 1.819 0.157 1.53 0.028 2.67Aperture NGC2903 0.183 1.17 0.099 1.819 0.104 1.53 0.055 2.67 Convolution Photometry NGC4631 0.106 1.17 0.040 1.819 0.057 1.53 0.020 2.67 NGC2146 0.596 1.17 0.252 1.819 0.394 1.53 0.133 2.67 correction Final flux NGC1068 0.499 1.17 0.148 1.819 0.247 1.53 0.077 2.67 NGC3628 0.390 1.17 0.146 1.819 0.299 1.53 0.081 2.67 NGC3079 0.068 1.17 0.182 1.819 0.052 1.53 0.103 2.67 NGC0520 0.763 1.17 0.359 1.819 0.600 1.53 0.206 2.67 NGC7479 0.697 1.17 0.228 1.819 0.550 1.53 0.134 2.67 NGC1530 1. 1. 1. 1. 1. 1. 1. 1. NGC7771 0.465 1.17 0.201 1.819 0.364 1.53 0.110 2.67 NGC7469 1. 1. 1. 1. 1. 1. 1. 1. NGC1614 1. 1. 1. 1. 1. 1. 1. 1. NGC828 0.740 1.17 0.373 1.819 0.530 1.53 0.213 2.67 ARP193 1. 1. 1. 1. 1. 1. 1. 1. UGC02369 1. 1. 1. 1. 1. 1. 1. 1. NGC0695 1. 1. 1. 1. 1. 1. 1. 1. MCG+07 1. 1. 1. 1. 1. 1. 1. 1. MRK273 1. 1. 1. 1. 1. 1. 1. 1. UGC05101 1. 1. 1. 1. 1. 1. 1. 1. Fluxbeam=Ftotal x Rbeam/total x Apercorr UGC04881 1. 1. 1. 1. 1. 1. 1. 1. Mrk231 1. 1. 1. 1. 1. 1. 1. 1. IRAS05189 1. 1. 1. 1. 1. 1. 1. 1. IRAS17208 1. 1. 1. 1. 1. 1. 1. 1. IRAS10565 1. 1. 1. 1. 1. 1. 1. 1. VIIZW31 1. 1. 1. 1. 1. 1. 1. 1. IRAS23365 1. 1. 1. 1. 1. 1. 1. 1. 50K blackbody PSF

Star Formation Law (Units) L IR (Mʘ yr -1 pc 2 ) Σ SFR SFR (Mʘ IR (Mʘ Σ yr SFR/tdyn luminosity yr -1-1 ) pc (Mʘ -2 ) yr -1 pc -2 yr -1 ) Global SFL SFR Surface Density without size measurement The one we want. Gao & Solomon 2004 Bussmann Kennicutt Kennicutt et 1998 1998 al. 2008 Krumholz Graciá-Carpio Bigiel et et al. al. et 2008 2011 al. 2008 Wang et al. 2011 Schruba et al. 2011 Σ M L gas/tdyn Gas (K (Mʘ) kms (Mʘ pc -1-2 pc pc ) -2 Surface 2 ) yr -1 ) Density Gas luminosity

Extended CS emission on the disk MAFFEI 2 Spitzer 24 μm CS 2-1(IRAM 30m)

ense gas tracers Critical Density: Rotational transitions of heavy molecules HCN, HCO+, CS, high-j CO etc. Dense gas tracer: ncrit >10 4 cm -3 Dense Cores CO 1-0 CO 2-1 CO 3-2 CO 5-4 CO 4-3 Giant Molecular Clouds hot cores XDR etc. Except for abundance and excitation,! molecular emissions can be influenced by:! radiative pumping, chemistry, electron density, shock dissociation, etc.

HCO + deficient in extreme conditions?? Higher slopes for HCO + (only) in galaxies. Gracia - Carpio et al. 2006, 2008; Imanishi et al. 2007 Linear in Galactic cores, e.g., Ma et al. 2013 HCO + is an ionic molecule. HCO + + e CO + H High radiation fields in ULIRGs X-ray / Cosmic Rays => high n(e) Papadopoulos et al. 2007 Shock environment Shocks produce electron-rich outer layers Xie et al. 1995

Why slopes matter? Different SFE Which gases are forming stars? 22 N=1.5 100 SFR N=1.0 50 50 N=0.5 10 50 Gas Mass

LIR-LCO relations ULIRGs low/high-z Greve+14

LIR-LCO relations ULIRGs low/high-z Greve+14

Theoretical works 1) Krumholz et al. (2007): ncrit < nave: slope ~ 1.5 e.g., CO 1-0 ncrit > nave: slope ~ 1 e.g., HCN 1-0 2) Narayanan et al. (2008): Sub-thermal excitation. Slope decreases with ncrit. slope nave slope ncrit N=1 N=1 3) Lada et al. (2012): Linear slope for lines with ncrit > 10 4 cm -3 SFR is only related to Mdense. K-S law slope is related to Mdense fraction. slope ncrit 10 4 cm -3 ncrit N=1

Low-J CO: gas not all forming stars. mid-&high-j CO: Mid-J CO: star forming gas. High-J CO: extra heating mechanism. Greve et al. 2014 Lu et al. 2014

Slope (α) vs. J Greve+14

Slope (α) vs. J Dense and cold gas tracers have linear correlations irrespective to ncrit. This is valid universally over 8 orders of luminosity magnitudes. Excitation conditions next step Greve+14

DeMoGas http://demogas.astro.noa.gr/!! HerCULES sample Full CO ladders (from J=1-0 to 13-12) 13 CO ladders Multiple molecules (HCN/HCO+/CS/etc.) Multiple transitions The most complete dataset of dense gas tracers in nearby U/LIRGs. Manolis Xilouris Ioanna Leonidaki Padelis Papadopoulos Paul van der Werf Thomas Greve Zhi-Yu Zhang Panos Boumis Alceste Bonanos