Regular expressions, Finite Automata, transition graphs are all the same!!

Similar documents
CSCI 340: Computational Models. Kleene s Theorem. Department of Computer Science

CSCI 340: Computational Models. Transition Graphs. Department of Computer Science

Chapter 2 Finite Automata

Lecture 08: Feb. 08, 2019

AUTOMATA AND LANGUAGES. Definition 1.5: Finite Automaton

CHAPTER 1 Regular Languages. Contents

CMSC 330: Organization of Programming Languages

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb.

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. Comparing DFAs and NFAs (cont.) Finite Automata 2

Deterministic Finite Automata

Minimal DFA. minimal DFA for L starting from any other

Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Kleene-*

Kleene s Theorem. Kleene s Theorem. Kleene s Theorem. Kleene s Theorem. Kleene s Theorem. Kleene s Theorem 2/16/15

Thoery of Automata CS402

Table of contents: Lecture N Summary... 3 What does automata mean?... 3 Introduction to languages... 3 Alphabets... 3 Strings...

Chapter Five: Nondeterministic Finite Automata. Formal Language, chapter 5, slide 1

1 Nondeterministic Finite Automata

Formal Languages and Automata

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.)

CS 301. Lecture 04 Regular Expressions. Stephen Checkoway. January 29, 2018

Fundamentals of Computer Science

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers

Non-Deterministic Finite Automata. Fall 2018 Costas Busch - RPI 1

Worked out examples Finite Automata

CS375: Logic and Theory of Computing

CISC 4090 Theory of Computation

Finite Automata-cont d

Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama

Designing finite automata II

Non Deterministic Automata. Linz: Nondeterministic Finite Accepters, page 51

CHAPTER 1 Regular Languages. Contents. definitions, examples, designing, regular operations. Non-deterministic Finite Automata (NFA)

Let's start with an example:

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University

Converting Regular Expressions to Discrete Finite Automata: A Tutorial

Convert the NFA into DFA

Non-deterministic Finite Automata

Automata Theory 101. Introduction. Outline. Introduction Finite Automata Regular Expressions ω-automata. Ralf Huuck.

Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true.

Some Theory of Computation Exercises Week 1

Lexical Analysis Finite Automate

Theory of Computation Regular Languages

Java II Finite Automata I

First Midterm Examination

Homework 3 Solutions

Formal Language and Automata Theory (CS21004)

5. (±±) Λ = fw j w is string of even lengthg [ 00 = f11,00g 7. (11 [ 00)± Λ = fw j w egins with either 11 or 00g 8. (0 [ ffl)1 Λ = 01 Λ [ 1 Λ 9.

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers. Mehryar Mohri Courant Institute and Google Research

NFAs and Regular Expressions. NFA-ε, continued. Recall. Last class: Today: Fun:

I. Theory of Automata II. Theory of Formal Languages III. Theory of Turing Machines

NFA DFA Example 3 CMSC 330: Organization of Programming Languages. Equivalence of DFAs and NFAs. Equivalence of DFAs and NFAs (cont.

Finite-State Automata: Recap

Closure Properties of Regular Languages

Nondeterminism and Nodeterministic Automata

First Midterm Examination

CS375: Logic and Theory of Computing

Assignment 1 Automata, Languages, and Computability. 1 Finite State Automata and Regular Languages

1 From NFA to regular expression

CS103B Handout 18 Winter 2007 February 28, 2007 Finite Automata

Formal languages, automata, and theory of computation

Chapter 4 Regular Grammar and Regular Sets. (Solutions / Hints)

Non-deterministic Finite Automata

NFAs continued, Closure Properties of Regular Languages

Myhill-Nerode Theorem

Lexical Analysis Part III

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014

CMSC 330: Organization of Programming Languages. DFAs, and NFAs, and Regexps (Oh my!)

ɛ-closure, Kleene s Theorem,

Scanner. Specifying patterns. Specifying patterns. Operations on languages. A scanner must recognize the units of syntax Some parts are easy:

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

CS 310 (sec 20) - Winter Final Exam (solutions) SOLUTIONS

NON-DETERMINISTIC FSA

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages

Context-Free Grammars and Languages

Harvard University Computer Science 121 Midterm October 23, 2012

Compiler Design. Fall Lexical Analysis. Sample Exercises and Solutions. Prof. Pedro C. Diniz

Finite Automata. Informatics 2A: Lecture 3. John Longley. 22 September School of Informatics University of Edinburgh

Today s Topics Automata and Languages

Automata and Languages

CS 330 Formal Methods and Models

Regular languages refresher

Anatomy of a Deterministic Finite Automaton. Deterministic Finite Automata. A machine so simple that you can understand it in less than one minute

Finite Automata. Informatics 2A: Lecture 3. Mary Cryan. 21 September School of Informatics University of Edinburgh

Talen en Automaten Test 1, Mon 7 th Dec, h45 17h30

Languages & Automata

80 CHAPTER 2. DFA S, NFA S, REGULAR LANGUAGES. 2.6 Finite State Automata With Output: Transducers

Non-Deterministic Finite Automata

Coalgebra, Lecture 15: Equations for Deterministic Automata

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4

1.4 Nonregular Languages

State Minimization for DFAs

NFAs continued, Closure Properties of Regular Languages

Tutorial Automata and formal Languages

12.1 Nondeterminism Nondeterministic Finite Automata. a a b ε. CS125 Lecture 12 Fall 2016

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Chapter 1, Part 1. Regular Languages. CSC527, Chapter 1, Part 1 c 2012 Mitsunori Ogihara 1

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

Lecture 09: Myhill-Nerode Theorem

CS 330 Formal Methods and Models Dana Richards, George Mason University, Spring 2016 Quiz Solutions

FABER Formal Languages, Automata and Models of Computation

Transcription:

CSI 3104 /Winter 2011: Introduction to Forml Lnguges Chpter 7: Kleene s Theorem Chpter 7: Kleene s Theorem Regulr expressions, Finite Automt, trnsition grphs re ll the sme!! Dr. Neji Zgui CSI3104-W11 1

Chpter 7: Kleene s Theorem Method of proof Let A,B,C e sets such tht A B, B C, C A. Then A=B=C. Remrk: Regulr expressions, finite utomt, nd trnsition grphs ech define set of lnguges. Dr. Neji Zgui CSI3104-W11 2

Chpter 7: Kleene s Theorem Kleene s Theorem Any lnguge tht cn e defined y regulr expression, or finite utomton, or trnsition grph cn e defined y ll three methods. Dr. Neji Zgui CSI3104-W11 3

Chpter 7: Kleene s Theorem Proof of Kleen s theorem: It is enough to prove ech of the lemms elow. Lemm 1: Every lnguge tht cn e defined y finite utomton cn lso e defined y trnsition grph. Lemm 2: Every lnguge tht cn e defined y trnsition grph cn lso e defined y regulr expression. Lemm 3: Every lnguge tht cn e defined y regulr expression cn lso e defined y finite utomton. FA TG RE FA Dr. Neji Zgui CSI3104-W11 4

Chpter 7: Kleene s Theorem Lemm 1: Every lnguge tht cn e defined y finite utomton cn lso e defined y trnsition grph. Proof: By definition, every finite utomton is trnsition grph. Lemm 2: Every lnguge tht cn e defined y trnsition grph cn lso e defined y regulr expression. Proof: By constructive lgorithm, tht works 1. for every trnsition grph 2. in finite numer of steps Dr. Neji Zgui CSI3104-W11 5

Chpter 7: Kleene s Theorem 1st step: trnsform to trnsition grph with single strt stte. 1 2 5 3 4 L 1 L 3 4 2 L 5 Dr. Neji Zgui CSI3104-W11 6

Chpter 7: Kleene s Theorem 2nd step: nd single finl stte 9 1 L 12 2 Result is n equivlent trnsition grph, of the form: L L L L L L 9 L Dr. Neji Zgui CSI3104-W11 7

Chpter 7: Kleene s Theorem 3. Comine edges tht hve the sme strting nd ending stte. x r 3 r 1 r 2 x r 1 r 2 r 3 r 1 3 7 r 1 r 2 r 2 3 7 Dr. Neji Zgui CSI3104-W11 8

Chpter 7: Kleene s Theorem 3. Eliminte sttes one y one: ypss nd stte elimintion opertion r 1 1 r 2 3 3 r 1 1 r 3 3 r 2 r 1 1 r 2 3 3 r 1 1 r 2 *r 3 3 Dr. Neji Zgui CSI3104-W11 9

Chpter 7: Kleene s Theorem Bypss stte 2 r 1 r 2 r 3 r 4 1 2 4 3 r 1 r 2 *r 3 3 r 5 5 1 r 1 r 2 *r 4 4 r 1 r 2 *r 5 5 Dr. Neji Zgui CSI3104-W11 10

Chpter 7: Kleene s Theorem L 1 4 L L 3 2 5 L ypss stte 2, pths through stte 2: 1 2 4, 1 2 5, 3 2 4, 3 2 5 Dr. Neji Zgui CSI3104-W11 11

Chpter 7: Kleene s Theorem L 1 4 L L 3 2 5 L L 1 * * 4 L L 3 * 5 L * Dr. Neji Zgui CSI3104-W11 12

Chpter 7: Kleene s Theorem 7 9 7 r 1 r 2 r 3 2 r 1 r 3 *r 4 r 1 r 3 *r 5 r 1 r 3 *r 6 r 2 r 3 *r 4 r 2 r 3 *r 5 r 4 r 5 r 6 1 1 4 5 1 1 4 Even with mny pths through stte 2, lwys n equivlent GTG. 9 r 2 r 3 *r 6 5 Dr. Neji Zgui CSI3104-W11 13

Chpter 7: Kleene s Theorem Specil cses r r 2 3 r 1 2 4 3 r 1 3 2 1, 1 2 1 r 1 r 2 * r 3 r 4 r 2 * r 1 3 3 Dr. Neji Zgui CSI3104-W11 14

Chpter 7: Kleene s Theorem r 1 1 r 8 r 2 r 4 r 5 2 r 3 r 7 r 6 3 3 2 1, 3 2 3, 1 2 1, 1 2 3 r 9 r 8 r 2 r 4 *r 5 r 1 r 2 r 4 *r 3 1 3 r 7 r 6 r 4 *r 5 r 9 r 6 r 4 *r 3 Dr. Neji Zgui CSI3104-W11 15

Chpter 7: Kleene s Theorem 3. Comine edges r 1 r 2 r 35 r 1 r 2 r 35 Dr. Neji Zgui CSI3104-W11 16

Chpter 7: Kleene s Theorem Exmple 1,, ()()*() Dr. Neji Zgui CSI3104-W11 17

Chpter 7: Kleene s Theorem, L EXAMPLE2: EVEN-EVEN,, L, 1 2 L L L L 1 1 ()()*() ()()()*() [()()()*()]* Dr. Neji Zgui CSI3104-W11 18

Chpter 7: Kleene s Theorem Exmple 3 1 r 4 4 r 10 r 1 r 2 r 5 r 8 2 r 3 r 7 3 r 9 r 6 5 Dr. Neji Zgui CSI3104-W11 19

Chpter 7: Kleene s Theorem Trnsition Grph Regulr Expression Algorithm (nd proof) 1. Add (if necessry) unique strt stte without incoming edges nd unique finl stte without outgoing edges. For ech stte tht is not strt stte or finl stte, repet steps 2 nd 3. 2. Do ypss nd stte elimintion opertion. 3. Comine edges tht hve the sme strting nd ending stte. 4. Comine the edges etween the strt stte nd the finl stte. The lel on the only remining edge is the regulr expression result. If there is none, the regulr expression is. Dr. Neji Zgui CSI3104-W11 20

Chpter 7: Kleene s Theorem Lemm 3: Every lnguge tht cn e defined y regulr expression cn lso e defined y finite utomton. Proof: By constructive lgorithm strting from the recursive definition of regulr expressions. Dr. Neji Zgui CSI3104-W11 21

Chpter 7: Kleene s Theorem Rememer: Given n lphet, the set of regulr expressions is defined y the following rules. 1. For every letter in, the letter written in old is regulr expression. Λ is regulr expression. 2. If r 1 nd r 2 re regulr expressions, so is r 1 r 2. 3. If r 1 nd r 2 re regulr expressions, so is r 1 r 2. 4. If r 1 is regulr expression, so is r 1 *. 5. Nothing else is regulr expression. Dr. Neji Zgui CSI3104-W11 22

Chpter 7: Kleene s Theorem Build finite utomton tht ccepts the lnguge: ()*()()* Rule: 1. The letter 1 2. The letter 1 3. The word (using 1) 3 4. The word (using 2) 3 5. The expression (using 3 nd 4) 2 6. The expression (using 1 nd 2) 2 7. The expression ()* (using 6) 4 8. The expression ()*() (using 7 nd 5) 3 9. The expression ()*()()* (using 8 nd 7) 3 Dr. Neji Zgui CSI3104-W11 23

Chpter 7: Kleene s Theorem Rule 1 ll ll The lnguge Λ ll Only the letter x ll except x x ll Dr. Neji Zgui CSI3104-W11 24

Chpter 7: Kleene s Theorem Rule 2: r1r2, Exmple 1 x x x 2 1 3 y 1 y 2 y 3 y 4, x 1 x 2 x 1 x 2 x 3 x 1 x 3 x 3 x 3 y 1 y 3 y 2 y 2 y 4 y 1 y 3 y 1 y 4 y 4 y 2 y 3 All word contining Dr. Neji Zgui CSI3104-W11 25 EVEN-EVEN

Chpter 7: Kleene s Theorem 11 9 1 3 6 12 10 5 2 7 4 Dr. Neji Zgui CSI3104-W11 26 Result: r1r2 8

Chpter 7: Kleene s Theorem Exmple 2. x 1 y 1 (words ending in ) x 2 y 2 (words ending in ) x 1 x 2 x 1 x 2 x 2 x 1 y 1 y 1 y 2 y 2 y 1 y 2 Dr. Neji Zgui CSI3104-W11 27

Chpter 7: Kleene s Theorem Lemm 3: Every lnguge tht cn e defined y regulr expression cn lso e defined y finite utomton. Proof: By constructive lgorithm strting from the recursive definition of regulr expressions 1. There is n FA tht ccepts only the empty word (Λ) nd n FA tht ccepts only single letter. 2. If there is n FA tht ccepts the lnguge defined y r 1 nd n FA tht ccepts the lnguge defined y r 2, then there is n FA tht ccepts the lnguge r 1 r 2. 3. If there is n FA tht ccepts the lnguge defined y r 1 nd n FA tht ccepts the lnguge defined y r 2, then there is n FA tht ccepts the lnguge defined y their conctention r 1 r 2. 4. If there is n FA tht ccepts the lnguge defined y r then there is n FA tht ccepts the lnguge defined y r*. Thus for every regulr expression, we cn construct FA. Dr. Neji Zgui CSI3104-W11 28

Chpter 7: Kleene s Theorem Algorithm 1: r 1 r 2 Input: FA 1: lphet: sttes: x 1, x 2, x 3, strt stte: x 1 FA 2: lphet: sttes: y 1, y 2, y 3, strt stte: y 1 plus finl sttes nd trnsitions The new FA: lphet: sttes: z 1, z 2, z 3, strt stte: x 1 or y 1 trnsitions: if z i = x j or y k nd x j x new nd y k y new (for input p) then z new = (x new or y new ) for input p. If x new or y new is finl stte, then z new is finl stte. Dr. Neji Zgui CSI3104-W11 29

Chpter 7: Kleene s Theorem x 1 x 2 (words ending in ) y 1 y 2 (words ending in ) x 1 x 2 x 1 x 2 x 2 x 1 y 1 y 1 y 2 y 2 y 1 y 2 x 1 or y 1 x 1 or y 2 lgorithm 1 x 2 or y 1 Dr. Neji Zgui CSI3104-W11 30

Chpter 7: Kleene s Theorem Algorithm 2: Put ll pirs (x i or x j ) in the trnsition tle x 1 or y 1 x 1 or y 2 x 1 or y 1 x 1 or y 2 x 2 or y 1 x 2 or y 2 x 2 or y 1 x 2 or y 2 Dr. Neji Zgui CSI3104-W11 31

Chpter 7: Kleene s Theorem Rule 3: r1r2, Exmple 1,, second letter is, odd numer of s Dr. Neji Zgui CSI3104-W11 32

Chpter 7: Kleene s Theorem,,, Dr. Neji Zgui CSI3104-W11 33

Chpter 7: Kleene s Theorem x 1 y 1 Exmple 2 x 2 y 2 z 1 z 2 x 3, r 1 : ll with r 2 : words ending in r1r2 z 3 z 4 Dr. Neji Zgui CSI3104-W11 34

Chpter 7: Kleene s Theorem z 1 z 2 z 3 z 4 We strt y creting the sttes z1=x1nd z2=x2 (z2,)= x3 we continue on AF1 OR y1 we move to AF2, since x3 is finl stte in AF1 (z2, ) = x3 or y1= z3 (z3, ) = x3 or y1= z3 (z3, ) = x3 or y1 or y2 = z4 (z4, )= x3 or y1=z3 (z4, )=x3 or y1 or y2 = z4 Dr. Neji Zgui CSI3104-W11 35

Chpter 7: Kleene s Theorem Rule 3: Conctention: Summry of the Algorithm 1. Add stte z for every stte of the first utomton tht is possile to go through efore rriving t finl stte. 2. For ech finl stte x, dd stte z = (x or y 1 ), where y 1 is the strt stte of the second utomton. 3. Strting from the sttes dded t step 2, dd sttes: x (stte such tht execution continues on 1 st utomton) z= OR y (stte such tht execution moves on 2 nd utomton} 4. Lel every stte tht contins finl stte from the second utomton s finl stte. Dr. Neji Zgui CSI3104-W11 36

Chpter 7: Kleene s Theorem x 1 Exmple 3 x 2 x 3, r 1 : no doule, y 1 y 2 r 2 : odd numer of letters, Dr. Neji Zgui CSI3104-W11 37

Chpter 7: Kleene s Theorem x 1 or y 1 x 2 or y 2 or y 1 z 1 z 3 z 2 z 4, x 1 or y 2 or y 1 x 3 or y 1 or y 2 r 1 r 2 : ll words except L Dr. Neji Zgui CSI3104-W11 38

Chpter 7: Kleene s Theorem Exmple 4, x 1 x 3, r 1 : words strting with x 2 y 1 y 2 r 2 : words ending in Dr. Neji Zgui CSI3104-W11 39

Chpter 7: Kleene s Theorem z 1 z 3 z 1 r 1 r 2 z 2, z 2 z 4 z 4 z 6 r 2 r 1 z 3 z 5 z 7 Dr. Neji Zgui CSI3104-W11 40

Chpter 7: Kleene s Theorem Rule 4: r*, Exmple 1 x 1 x 2 x 3,, r: * * r*: words without doule, nd tht do not strt with. x 4 Dr. Neji Zgui CSI3104-W11 41

Chpter 7: Kleene s Theorem z1=x1 ± (z1, ) = x1 or x2= z2 (z1,) = x4= z3 (z2,)= x1 or x2 =z2 (z2, )= x1 or x3 or x4= z4 (z3, )=z3 (z3,) = z3 (z4,)= x1 or x2 or x4= z5 (z4, )= x4 = z3 (z5,)= x1 or x2 or x4= z5 (z5, )= x1 or x3 or x4= z4 r* z 2 z 1, z 4 z 5 z 3 Dr. Neji Zgui CSI3104-W11 42

Chpter 7: Kleene s Theorem Exmple 2 x 1 Words ending in x 2 z1=x1 _ (z1, ) = x1 ou x2= z2 (z1,) = z1 (z2,)= x1 ou x2 =z2 (z2, )= x1=z1 x 1 x 1 ou x 2 x 1 x 1 ou x 2 Prolem with Λ Dr. Neji Zgui CSI3104-W11 43

Chpter 7: Kleene s Theorem Rule 4: Kleene Str: Algorithm Given: n FA whose sttes re {x 1, x 2, x 3, } For every suset of sttes, crete stte of the new FA. Remove ny suset tht contins finl stte ut not the strt stte. Mke the trnsition tle for ll the new sttes. Add stte. Connect it to the sme sttes s the originl strt stte ws connected to using the sme trnsitions. The finl sttes must e those tht contin t lest one finl stte from the originl FA. Dr. Neji Zgui CSI3104-W11 44

Chpter 7: Kleene s Theorem Exmple 3 x 1 x 2 Words with n odd numer of s. z 1 z 2, z 3 Λ nd words with t lest one. Dr. Neji Zgui CSI3104-W11 45

Chpter 7: Kleene s Theorem A nondeterministic finite utomton (NFA) is: 1. finite set of sttes, one of which is designted s the strt stte, nd some (mye none) of which re designted the finl sttes 2. n lphet of input letters 3. finite set of trnsitions tht show how to go to new stte, for some pirs of stte nd letters Remrk: Every finite utomton is nondeterministic finite utomton. Every nondeterministic finite utomton is trnsition grph. Dr. Neji Zgui CSI3104-W11 46

Chpter 7: Kleene s Theorem 2 Exmples of Nondeterministic Finite Automt,,, ()*()*()* x 1 x x 4 2 x 3 Dr. Neji Zgui CSI3104-W11 47

Chpter 7: Kleene s Theorem Theorem: Every lnguge tht cn e defined y nondeterministic finite utomton cn lso e defined y deterministic finite utomton. Proof (1): Every nondeterministic finite utomton is trnsition grph. By lemm 2: trnsition grph regulr expression By lemm 3: regulr expression finite utomton Proof (2): By constructive lgorithm (See Mnuel pge 135) Dr. Neji Zgui CSI3104-W11 48

Chpter 7: Kleene s Theorem Algorithm: nondeterministic utomton deterministic utomton (FA) Given: nondeterministic utomton whose sttes re {x 1, x 2, x 3, } 1. For every suset of sttes, crete stte of the new FA. 2. Mke the trnsition tle for ll the new sttes (or just the new sttes tht cn e entered). 3. Add stte. Add trnsitions tht loop ck to itself for ll letters of the lphet. For ech new stte, if there is no trnsition for letter p, dd one tht goes to the stte. 4. The finl sttes must e those tht contin t lest one finl stte from the originl nondeterministic finite utomton. Dr. Neji Zgui CSI3104-W11 49

Chpter 7: Kleene s Theorem x 1 x x 4 2 x 3 x 1 x 2 x 3 or x 4 x 4,, Dr. Neji Zgui CSI3104-W11 50

Chpter 7: Kleene s Theorem, x 1 x 2 x 3, (x1,)=x1 (x1,)=x1 or x2 (x1 or x2, )=x1 (x1 or x2,)=x2 or x3 (x2 or x3,)=x2 or x3 (x2 or x3,)=x2 or x3 x 1 x 1 or x 2 x 2 or x 3, Dr. Neji Zgui CSI3104-W11 51

Chpter 7: Kleene s Theorem Lemm 3: Every lnguge tht cn e defined y regulr expression cn lso e defined y finite utomton. Proof: By constructive lgorithm strting from the recursive definition of regulr expressions, we uild nondeterministic finite utomton. Then, y the most recent theorem, it is possile to then uild finite utomton. Dr. Neji Zgui CSI3104-W11 52

Chpter 7: Kleene s Theorem Rule 1: Λ nd the letters in Dr. Neji Zgui CSI3104-W11 53

Chpter 7: Kleene s Theorem x 1 x 2 x 4 y y 2 1, x 3 Rule 2: r1r2, x 1 y 1 y 2 Dr. Neji Zgui CSI3104-W11 54 x 2 x 4 x 3

Chpter 7: Kleene s Theorem Rule 3: r1r2 w 1 w 2 x 1 x 2 x 3,, w x 1 x 2 x 3 2 w 1 Dr. Neji Zgui CSI3104-W11 55