Heat Flows, Geometric and Functional Inequalities

Similar documents
Logarithmic Sobolev Inequalities

Stein s method, logarithmic Sobolev and transport inequalities

Concentration inequalities: basics and some new challenges

Convergence to equilibrium of Markov processes (eventually piecewise deterministic)

Intertwinings for Markov processes

Stability results for Logarithmic Sobolev inequality

Displacement convexity of the relative entropy in the discrete h

Discrete Ricci curvature: Open problems

Discrete Ricci curvature via convexity of the entropy

Entropic curvature-dimension condition and Bochner s inequality

curvature, mixing, and entropic interpolation Simons Feb-2016 and CSE 599s Lecture 13

arxiv: v4 [math.pr] 8 Jul 2013

Inverse Brascamp-Lieb inequalities along the Heat equation

Metric measure spaces with Riemannian Ricci curvature bounded from below Lecture I

COMMENT ON : HYPERCONTRACTIVITY OF HAMILTON-JACOBI EQUATIONS, BY S. BOBKOV, I. GENTIL AND M. LEDOUX

CMS winter meeting 2008, Ottawa. The heat kernel on connected sums

HYPERCONTRACTIVE MEASURES, TALAGRAND S INEQUALITY, AND INFLUENCES

Needle decompositions and Ricci curvature

Spaces with Ricci curvature bounded from below

A REPRESENTATION FOR THE KANTOROVICH RUBINSTEIN DISTANCE DEFINED BY THE CAMERON MARTIN NORM OF A GAUSSIAN MEASURE ON A BANACH SPACE

Lecture No 1 Introduction to Diffusion equations The heat equat

Heat Flow Derivatives and Minimum Mean-Square Error in Gaussian Noise

GENERALIZATION OF AN INEQUALITY BY TALAGRAND, AND LINKS WITH THE LOGARITHMIC SOBOLEV INEQUALITY

Ricci Curvature and Bochner Formula on Alexandrov Spaces

BOUNDS ON THE DEFICIT IN THE LOGARITHMIC SOBOLEV INEQUALITY

M. Ledoux Université de Toulouse, France

Around Nash inequalities

From Concentration to Isoperimetry: Semigroup Proofs

Poincaré Inequalities and Moment Maps

INTERPOLATION BETWEEN LOGARITHMIC SOBOLEV AND POINCARÉ INEQUALITIES

NEW FUNCTIONAL INEQUALITIES

THE GEOMETRY OF EUCLIDEAN CONVOLUTION INEQUALITIES AND ENTROPY

Generalized Ricci Bounds and Convergence of Metric Measure Spaces

A Lévy-Fokker-Planck equation: entropies and convergence to equilibrium

Ricci curvature for metric-measure spaces via optimal transport

From the Brunn-Minkowski inequality to a class of Poincaré type inequalities

ICM 2014: The Structure and Meaning. of Ricci Curvature. Aaron Naber ICM 2014: Aaron Naber

Fokker-Planck Equation on Graph with Finite Vertices

CURVATURE BOUNDS FOR CONFIGURATION SPACES

Nash Type Inequalities for Fractional Powers of Non-Negative Self-adjoint Operators. ( Wroclaw 2006) P.Maheux (Orléans. France)

arxiv: v1 [math.dg] 10 Dec 2014

A Spectral Gap for the Brownian Bridge measure on hyperbolic spaces

MASS TRANSPORT AND VARIANTS OF THE LOGARITHMIC SOBOLEV INEQUALITY

Volume comparison theorems without Jacobi fields

Heat flow on Alexandrov spaces

Some Applications of Mass Transport to Gaussian-Type Inequalities

Concentration Properties of Restricted Measures with Applications to Non-Lipschitz Functions

Ricci curvature and geometric analysis on Graphs

Metric measure spaces with Ricci lower bounds, Lecture 1

Harnack Inequalities and Applications for Stochastic Equations

Lecture No 2 Degenerate Diffusion Free boundary problems

KLS-TYPE ISOPERIMETRIC BOUNDS FOR LOG-CONCAVE PROBABILITY MEASURES. December, 2014

Grundlehren der mathematischen Wissenschaften 348

A Stein deficit for the logarithmic Sobolev inequality

Ollivier Ricci curvature for general graph Laplacians

Stein s method, logarithmic Sobolev and transport inequalities

High-dimensional distributions with convexity properties

Contents 1. Introduction 1 2. Main results 3 3. Proof of the main inequalities 7 4. Application to random dynamical systems 11 References 16

Invariances in spectral estimates. Paris-Est Marne-la-Vallée, January 2011

Spectral Gap and Concentration for Some Spherically Symmetric Probability Measures

Some functional inequalities on non-reversible Finsler manifolds

Mixing in Product Spaces. Elchanan Mossel

Functional inequalities for heavy tailed distributions and application to isoperimetry

Logarithmic Harnack inequalities

ROBUSTNESS OF THE GAUSSIAN CONCENTRATION INEQUALITY AND THE BRUNN-MINKOWSKI INEQUALITY

A new Hellinger-Kantorovich distance between positive measures and optimal Entropy-Transport problems

Functional Inequalities for Gaussian and Log-Concave Probability Measures

Levy Gromov s isoperimetric inequality for an innite dimensional diusion generator

Convex inequalities, isoperimetry and spectral gap III

Pseudo-Poincaré Inequalities and Applications to Sobolev Inequalities

Mass transportation methods in functional inequalities and a new family of sharp constrained Sobolev inequalities

EXAMPLE OF A FIRST ORDER DISPLACEMENT CONVEX FUNCTIONAL

Liouville Properties for Nonsymmetric Diffusion Operators. Nelson Castañeda. Central Connecticut State University

Φ entropy inequalities and asymmetric covariance estimates for convex measures

arxiv:math/ v3 [math.dg] 30 Jul 2007

Optimal transport and Ricci curvature in Finsler geometry

A concentration theorem for the equilibrium measure of Markov chains with nonnegative coarse Ricci curvature

Fonctions on bounded variations in Hilbert spaces

arxiv: v2 [math.dg] 18 Nov 2016

A note on the convex infimum convolution inequality

École d Été de Probabilités de Saint-Flour 1994 ISOPERIMETRY AND GAUSSIAN ANALYSIS. Michel Ledoux

ON THE REGULARITY OF SAMPLE PATHS OF SUB-ELLIPTIC DIFFUSIONS ON MANIFOLDS

ISOPERIMETRIC AND STABLE SETS FOR LOG-CONCAVE PERTURBATIONS OF GAUSSIAN MEASURES

Riesz transforms on group von Neumann algebras

Spaces with Ricci curvature bounded from below

WEAK CURVATURE CONDITIONS AND FUNCTIONAL INEQUALITIES

RESEARCH STATEMENT MICHAEL MUNN

The dynamics of Schrödinger bridges

the canonical shrinking soliton associated to a ricci flow

arxiv: v1 [math.mg] 28 Sep 2017

SPECTRAL GAP, LOGARITHMIC SOBOLEV CONSTANT, AND GEOMETRIC BOUNDS. M. Ledoux University of Toulouse, France

POINCARÉ, MODIFIED LOGARITHMIC SOBOLEV AND ISOPERIMETRIC INEQUALITIES FOR MARKOV CHAINS WITH NON-NEGATIVE RICCI CURVATURE

Displacement convexity of generalized relative entropies. II

On extensions of Myers theorem

Riesz transforms on complete Riemannian manifolds

KLS-type isoperimetric bounds for log-concave probability measures

Rigidity of cones with bounded Ricci curvature

Mean field games via probability manifold II

Inégalités de dispersion via le semi-groupe de la chaleur

From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality

Transcription:

Heat Flows, Geometric and Functional Inequalities M. Ledoux Institut de Mathématiques de Toulouse, France

heat flow and semigroup interpolations Duhamel formula (19th century) pde, probability, dynamics major tool in geometric and functional analysis

last decades developments dynamical proofs of Euclidean and Riemannian geometric, functional and transport inequalities heat kernel bounds, spectral analysis, integral inequalities, measure concentration, statistical mechanics, optimal transport

geometric aspects gradient bounds convexity Ricci curvature lower bounds D. Bakry and M. Émery (1985) hypercontractive diffusions

selected topics logarithmic Sobolev form of the Li-Yau parabolic inequality (Gaussian) isoperimetric-type inequalities transport and Harnack inequalities Brascamp-Lieb inequalities and noise stability joint with D. Bakry Analysis and geometry of Markov diffusion operators D. Bakry, I. Gentil, M. L. (2014)

selected topics logarithmic Sobolev form of the Li-Yau parabolic inequality (Gaussian) isoperimetric-type inequalities transport and Harnack inequalities Brascamp-Lieb inequalities and noise stability to start with: a basic model example the logarithmic Sobolev inequality

classical logarithmic Sobolev inequality L. Gross (1975) γ standard Gaussian (probability) measure on R n dγ(x) = e x 2 /2 dx (2π) n/2 f > 0 smooth, R f dγ = 1 n f log f dγ 1 Rn f 2 dγ R n 2 f

classical logarithmic Sobolev inequality L. Gross (1975) γ standard Gaussian (probability) measure on R n dγ(x) = e x 2 /2 dx (2π) n/2 f > 0 smooth, R f dγ = 1 n (relative) entropy f log f dγ 1 Rn f 2 dγ R n 2 f

classical logarithmic Sobolev inequality L. Gross (1975) γ standard Gaussian (probability) measure on R n dγ(x) = e x 2 /2 dx (2π) n/2 f > 0 smooth, R f dγ = 1 n (relative) entropy f log f dγ 1 Rn f 2 dγ R n 2 f Fisher information

classical logarithmic Sobolev inequality f log f dγ 1 Rn f 2 dγ R n 2 f f f R 2 f 2 log f 2 dγ 2 f 2 dγ n R n Wiener analysis, hypercontractivity, convergence to equilibrium of kinetic equations and Markov chains, measure concentration, information theory, optimal transport (C. Villani) Perelman s Ricci flow

heat flow interpolation D. Bakry, M. Émery (1985) simplest proof? (P t ) t 0 heat semigroup on R n P t f (x) = f (y) e x y 2 /4t dy R n (4πt) n/2 = R n f ( x + 2t y ) dγ(y) u(x, t) = P t f (x), t 0, x R n solves the heat equation t u = u, u(x, 0) = f (x)

heat kernel inequality f > 0, t > 0, at any point: P t (f log f ) P t f log P t f P t f (x) = t = 1 2 R n f ( x + 2t y ) dγ(y) (x = 0) : P t γ P t (f log f ) P t f log P t f = R n f log f dγ ( R n f dγ = 1 )

heat flow interpolation P t (f log f ) P t f log P t f = t 0 d ds P ( s Pt s f log P t s f ) ds heat equation t P t = P t chain rule (both in time and space) d ds P ( s Pt s f log P t s f ) ( Pt s f 2 ) = P s P t s f

P t (f log f ) P t f log P t f = t 0 ( Pt s f 2 ) P s ds P t s f gradient commutation P u f = P u ( f ) (curvature) P u f 2 [P u ( f ) ] 2 Pu ( f 2 f ) P u f u = t s P t (f log f ) P t f log P t f t 0 ( ( f 2 ( f 2 ) P s P t s ))ds = t P t f f

classical logarithmic Sobolev inequality L. Gross (1975) γ standard Gaussian (probability) measure on R n dγ(x) = e x 2 /2 dx (2π) n/2 f > 0 smooth, R f dγ = 1 n f log f dγ 1 Rn f 2 dγ R n 2 f

P t (f log f ) P t f log P t f = t 0 ( Pt s f 2 ) P s ds P t s f gradient commutation P u f = P u ( f ) (curvature) P u f 2 [P u ( f ) ] 2 Pu ( f 2 f ) P u f u = t s P t (f log f ) P t f log P t f t 0 ( ( f 2 ( f 2 ) P s P t s ))ds = t P t f f

P t (f log f ) P t f log P t f = heat flow interpolation t φ(s) = P s ( Pt s f 2 P t s f 0 ) φ(s) ds gradient commutation P u f = P u ( f ) ( f 2 ) φ increasing: s t, φ(s) φ(t) = P t f differentiate φ, φ 0?

differentiate φ, φ 0? ( Pt s f 2 ) φ(s) = P s P t s f = P s ( Pt s f log P t s f 2) φ (s) = 2 P s ( Pt s f Γ 2 (log P t s f ) )

Γ 2 Bakry-Émery operator Γ 2 (h) = 1 2 ( h 2) h ( h) = Hess(h) 2 + Ric g ( h, h) on R n or (M, g) n-dimensional Riemannian manifold Bochner s formula (M, g) non-negative Ricci curvature Γ 2 (h) 0, φ 0 P t (f log f ) P t f log P t f = t 0 ( f 2 ) φ(s) ds t P t (P t ) t 0 heat semigroup on (M, g) f

heat flow interpolation under Γ 2 0 heat kernel inequalities, functional inequalities (Sobolev, logarithmic Sobolev, Poincaré, Nash...) under geometric (Ricci) curvature conditions more generally under Ric g K, K R equivalent gradient bounds (commutation) P t f e Kt P t ( f )

reverse logarithmic Sobolev inequality heat kernel inequality ( f 2 ) P t (f log f ) P t f log P t f t P t f reverse form t P tf 2 P t f P t (f log f ) P t f log P t f gradient bounds (both equivalent to Γ 2 0 as t 0)

P t (f log f ) P t f log P t f = dimensional improvement t 0 φ(s) ds φ (s) = 2 P s ( Pt s f Γ 2 (log P t s f ) ) actually under Ric g 0 Γ 2 (h) = Hess(h) 2 + Ric g ( h, h) Hess(h) 2 1 n ( h)2 φ (s) 2 n P ( s Pt s f [ log P t s f ] 2)

dimensional logarithmic Sobolev inequality P t (f log f ) P t f log P t f t P t f + n ( 2 P tf log 1 2t n (log(1 + x) x or n ) ) P t (f log f ) P t f reverse form P t (f log f ) P t f log P t f t P t f n ( 2 P tf log 1 + 2t ) n (log P tf )

reverse form P t (f log f ) P t f log P t f t P t f n ( 2 P tf log 1 + 2t ) n (log P tf ) in particular 1 + 2t n (log P tf ) > 0 f : M R, f > 0, Ric g 0, t > 0 P t f 2 (P t f ) 2 P tf P t f n 2t Li-Yau (1986) parabolic inequality maximum principle D. Bakry, M. L. (2006)

Li-Yau (1986) parabolic inequality P t f 2 (P t f ) 2 P tf P t f (Ric g 0) n 2t ( t + s P t f (x) P t+s f (y) t Harnack inequalities ) n/2e d(x,y) 2 /4s d(x, y) Riemannian distance heat kernel bounds

weighted Riemannian manifold (M, g) weighted Riemannian manifold dµ = e V dx, V smooth potential on M L = V, (P t ) t 0 semigroup non-negative curvature-dimension CD(0, N) Γ 2 = Ric g + Hess(V ) 1 N (Lh)2 curvature-dimension CD(K, N), K R, N 1 Γ 2 (h) K h 2 + 1 N (Lh)2

Markov Triple Markov Triple (E, µ, Γ) semigroup (P t ) t 0, generator L, invariant measure µ carré du champ operator Γ(f, g) = 1 L(f g) f Lg g Lf, 2 Γ (f, g) A A Bakry-Émery Γ 2 operator Γ 2 (f, g) = 1 LΓ(f, g) Γ(f, Lg) Γ(g, Lf ) 2 curvature-dimension CD(K, N) Γ 2 (h, h) K Γ(h, h) + 1 N (Lh)2, h A

logarithmic Sobolev form of the Li-Yau parabolic inequality (Gaussian) isoperimetric-type inequalities transport and Harnack inequalities Brascamp-Lieb inequalities and noise stability

Gaussian isoperimetric inequality isoperimetric inequality for the standard Gaussian measure dγ(x) = e x 2 /2 dx (2π) n/2 on R n C. Borell (1975), V. Sudakov, B. Tsirelson (1974) half-spaces extremal sets for the isoperimetric problem H = { x R n ; x, u a }, u = 1, a R if A R n, γ(a) = γ(h) then γ + (A) γ + (H) γ + (A) = lim inf ε 0 1 [ γ(aε ) γ(a) ] ε

Gaussian isoperimetric profile I(v) = inf { γ + (A) ; γ(a) = v }, A R n, v (0, 1) half-spaces: one-dimensional I = ϕ Φ 1 Φ(s) = s e x2 /2 dx, ϕ = Φ 2π isoperimetric inequality A R n, I ( γ(a) ) γ + (A)

heat flow and isoperimetric-type inequalities Γ 2 0 (CD(0, ) non-negative curvature) M (weighted) Riemannian manifold f : M [0, 1] smooth I (P t f ) P t ( I 2 (f ) + 2t f 2 ) (stronger than logarithmic Sobolev inequality, εf, ε 0) D. Bakry, M. L. (1996)

heat flow and isoperimetric-type inequalities f : M [0, 1] smooth I (P t f ) P t ( I 2 (f ) + 2t f 2 ) M = R n t = 1 2 : P t γ Bobkov s inequality ( ) I f dγ R n R n I 2 (f ) + f 2 dγ f = 1 A (I(0) = I(1) = 0) I ( γ(a) ) γ + (A)

(spherical) isoperimetric-type inequalities similar under CD(K, ) on (E, µ, Γ) Markov triple comparison to the Gaussian isoperimetric profile open problem: heat flow proof of isoperimetry on the sphere on S n R n+1 spherical caps are the isoperimetric extremizers Lévy-Gromov (1980) theorem (M, g), µ normalized volume element, CD(n 1, n) isoperimetric profile I µ I S n

reverse isoperimetric-type inequalities f : M [0, 1] smooth, Γ 2 0 [ I (Pt f ) ] 2 [ Pt ( I (f ) )] 2 2t Pt f 2 Φ 1 P t f 1 2t - Lipschitz Φ 1 P t f (x) Φ 1 P t f (y) + d(x, y) 2t sharp gradient bounds, Harnack-type inequalities

new isoperimetric Harnack inequality Γ 2 0 (CD(0, ) non-negative curvature) P t (1 A )(x) P t (1 Ad(x,y) )(y) d(x, y) distance from x to y A ε = { z M ; d(z, A) < ε } similar under CD(K, ), K R on (E, µ, Γ) Markov triple D. Bakry, I. Gentil, M. L. (2013)

Wang s Harnack inequality (1997) Γ 2 0 (CD(0, ) non-negative curvature) ( Pt f ) 2 (x) Pt ( f 2 ) (y) e d(x,y)2 /2t (infinite dimensional version of the Li-Yau Harnack inequality) variant: log-harnack inequality P t (log f )(x) log P t f (y) + d(x, y)2 4t links to optimal transport inequalities

HWI inequality F. Otto, C. Villani (2000) M (weighted) Riemannian manifold CD(0, ) dν = f dµ, f > 0, M f dµ = 1 ( f 2 ) 1/2 f log f dµ W 2 (ν, µ) dµ f M M Kantorovich-Wasserstein distance W 2 (ν, µ) 2 = inf d(x, y) 2 dπ(x, y) π µ ν M M

Kantorovich-Rubinstein duality ( ) 1 2 W 2(ν, µ) 2 = sup Q 1 ϕ dµ ϕ dν ϕ M M Hofp-Lax infimum convolution semigroup Q s f (x) = inf [f (y) + y M ] d(x, y)2, x M, s > 0 2s log-harnack inequality P t (log f ) Q 2t (log P t f ) P t f log P t f dµ 1 4t W 2 2 (ν, µ), dν = f dµ M S. Bobkov, I. Gentil, M. L. (2001)

commutation property (P t ) t 0 heat semigroup (Q s ) s 0 Hopf-Lax semigroup P t (Q s f ) Q s (P t f ) heat flow contraction in Wasserstein distance W 2 (µ t, ν t ) W 2 (µ 0, ν 0 ) dµ t = P t f dµ dν t = P t g dµ M. K. von Renesse, K. T. Sturm (2005), F. Otto, M. Westdickenberg (2006), K. Kuwada (2010)

logarithmic Sobolev form of the Li-Yau parabolic inequality (Gaussian) isoperimetric-type inequalities transport and Harnack inequalities Brascamp-Lieb inequalities and noise stability

γ standard Gaussian (probability) measure on R n T ρ f (x) = dγ(x) = e x 2 /2 dx (2π) n/2 R n f ( ρ x + 1 ρ 2 y ) dγ(y), ρ (0, 1) T ρ f = P t f, ρ = e t (P t ) t 0 Ornstein-Uhlenbeck semigroup generator L = x invariant measure γ

R n heat flow and noise stability E. Mossel, J. Neeman (2012) ρ (0, 1), J : R 2 R smooth, f, g : R n R R n J ( f (x), g ( ρ x + 1 ρ 2 y )) dγ(x)dγ(y) ( ) J f dγ, R n g dγ R n if and only if ( ) 11 J ρ 12 J 0 ρ 12 J 22 J (J ρ-concave)

(P t ) t 0 Ornstein-Uhlenbeck semigroup ψ(t) = R n R n J ( P t f (x), P t g ( ρx + 1 ρ 2 y )) dγ(x)dγ(y), t 0 ψ (t) = R n R n [ ( 11 J) P t f 2 + ( 22 J) P t g 2 2 ρ 12 J P t f P t g ] dγ dγ J ρ-concave = ψ (t) 0 ψ(0) ψ( )

first example of J- function J(u, v) = Jρ H (u, v) = u α v β, u, v > 0, α, β [0, 1] ρ-concave if ρ 2 αβ (α 1)(β 1) f α (x)g β( ρ x + 1 ρ 2 y ) dγ(x)dγ(y) R n R n ( ) α ( ) β f dγ g dγ R n R n duality T ρ g q g p ρ 2 q 1 p 1 (1 < p < q < ) Nelson s hypercontractivity (1966-73)

multidimensional extensions f k : R p R, k = 1,..., m A k p n matrix, A k t A k = Id R p Γ kl = A l t A k (p p matrix), k, l = 1,..., m smooth J : R m R J(f 1 A 1,..., f m A m ) dγ J R n ( f 1 A 1 dγ,..., R n f m A m dγ R n ) m if and only if kl J Γ kl v k, v l 0 for all v k R p k,l=1

geometric Brascamp-Lieb inequalities K. Ball (1989) decomposition of the identity m c k A k A k = Id R n, c k 0, A k unit vectors in R n k=1 f k : R R +, k = 1,..., m m R n k=1 J(u 1,..., u m ) = u c 1 1 ucm m f c ( k k Ak, x ) dx m ( f k dx R k=1 ) ck

multilinear inequalities Brascamp-Lieb inequalities H. Brascamp, E. Lieb (1976) maximize m R n k=1 f c ( k k Ak, x ) dx maximizers: Gaussian kernels heat flow methodology E. Carlen, E. Lieb, M. Loss (2004) J. Bennett, A. Carbery, M. Christ, T. Tao (2008)

second example of J-function E. Mossel, J. Neeman (2012) J(u, v) = J B ρ (u, v) ( Jρ B (u, v) = P X 1 Φ 1 (u), ρ X 1 + ) 1 ρ 2 Y 1 Φ 1 (v), u, v [0, 1] X 1, Y 1 N (0, 1) independent, distribution Φ Φ(s) = J B ρ s e x2 /2 ρ-concave dx 2π

Jρ B R n R n ( f (x), g ( ρ x + 1 ρ 2 y )) dγ(x)dγ(y) ( ) Jρ B f dγ, R n g dγ R n f = 1 A g = 1 B, A, B R n P ( X A, ρ X + 1 ρ 2 Y B ) P ( X H, ρ X + 1 ρ 2 Y K ) X, Y independent with distribution γ in R n H, K parallel half-spaces γ(h) = γ(a), γ(k) = γ(b) C. Borell (1985) Gaussian rearrangements

Borell s noise stability theorem noise stability of A R n S ρ (A) = P ( X A, ρ X + 1 ρ 2 Y A ) S ρ (A) S ρ (H), γ(a) = γ(h) half-spaces are the most noise stable Max-Cut and Majority is Stablest E. Mossel, R. O Donnell, K. Oleszkiewicz (2010)

from noise stability to isoperimetry S ρ (A) = P ( X A, ρ X + 1 ρ 2 Y A ) Borell s theorem S ρ (A) S ρ (H) (γ(a) = γ(h) half-space) heat flow description of the perimeter γ + (A) lim sup ρ 1 π log 1 ρ [ γ(a) Sρ (A) ] equality when A = H half-space Gaussian isoperimetry γ + (A) γ + (H)

extensions log-concave mesures dµ = e V dx, Hess(V ) K > 0 (E, µ, Γ) Markov Triple, CD(K, ), K > 0 deficit (Gaussian noise stability and isoperimetry) R. Eldan (2013) (stochastic calculus) developments in Boolean analysis discrete cube and structures (Majority is Stablest) A. De, E. Mossel, J. Neeman (2013)

Thank you for your attention