Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

Similar documents
Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

C-H Activation in Total Synthesis Masayuki Tashiro (M1)

Taking an advantage of innovations in science and technology to develop MHEWS

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

京都 ATLAS meeting 田代. Friday, June 28, 13

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS

Yutaka Shikano. Visualizing a Quantum State

Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI, Tomoya Yamazaki. Sakurajima Volcano Research Center, DPRI, Kyoto University

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure

Youhei Uchida 1, Kasumi Yasukawa 1, Norio Tenma 1, Yusaku Taguchi 1, Jittrakorn Suwanlert 2 and Somkid Buapeng 2

GRASS 入門 Introduction to GRASS GIS

日本政府 ( 文部科学省 ) 奨学金留学生申請書

Influence of MJO on Asian Climate and its Performance of JMA Monthly Forecast Model

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論

EDL analysis for "HAYABUSA" reentry and recovery operation はやぶさ カプセル帰還回収運用における EDL 解析

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018

2015 年度研究活動報告理工学術院 先進理工 応用物理学科小澤徹 Department of Applied Physics, Waseda University

Global Spectral UV in Recent 6 Years and Test Observation of Diffuse Spectral UV with Brewer Spectrophotometer at Rikubetsu, Central Hokkaido

質量起源 暗黒物質 暗黒エネルギー 宇宙線 陽子崩壊 ニュートリノ質量 米国 P5 ニュートリノ CPV 宇宙背景ニュートリノクォーク レプトンマヨラナ粒子 ニュートリノ測定器 陽子崩壊探索. Diagram courtesy of P5. Origin of Mass.

一般化川渡り問題について. 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 組合せゲーム パズルミニ研究集会

超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

Safer Building and Urban Development ( 安全な建物づくり まちづくりづ ) Contents ( 内容 ) 1)Lessons from building damage by earthquake motions and/or tsunami ( 振動被害または

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム

Hypocenter Distribution of Deep Low-frequency Tremors in Nankai Subduction Zone, Japan

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

Deep moist atmospheric convection in a subkilometer

Seasonal Variations of Global, Reflected, and Diffuse Spectral UV Observations based on Brewer Spectrophotometers at Tsukuba, 2004 to 2012

Analysis of shale gas production performance by SGPE

Absolute Calibration for Brewer Spectrophotometers and Total Ozone/UV Radiation at Norikura on the Northern Japanese Alps

WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工

Kyoko Kagohara 1, Tomio Inazaki 2, Atsushi Urabe 3 and Yoshinori Miyachi 4 楮原京子

Hiroshi Ikeda a, *, Akiko Shimizu a, Makoto Ogawa b, Yasushi Ibaragi b and Shinobu Akiyama c : Lectotypification of Glaziocharis abei (Burmanniaceae)

Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana

Title volcanic deep low-frequency tremors. Citation Geophysical Research Letters, 34(7) Issue Date Journal Article. Text version author

マテリアルズインフォマティクスの最前線 吉田 亮. サイエンティフィック システム研究会 科学技術計算分科会 2017年度会合

Fusion neutron production with deuterium neutral beam injection and enhancement of energetic-particle physics study in the Large Helical Device

October 7, Shinichiro Mori, Associate Professor

PROTEUS, AND THE NAME OF THE TYPE SPECIES OP THE GENUS HUENIA

生命科学科 3 年後期 分子細胞生物 I 相同アミノ酸配列の比較解析 藤博幸関西学院大学理工学部生命医化学科

Illustrating SUSY breaking effects on various inflation models

Estimation of Gravel Size Distribution using Contact Time

2011/12/25

69 地盤の水分変化モニタリング技術 比抵抗モニタリングシステムの概要 * 小林剛 Monitoring Technology for a Moisture Change of Subsurface Outline of the Resistivity Monitoring System Tsuyo

Thermal Safety Software (TSS) series

Altitudinal Increasing Rate of UV radiation by the Observations with Brewer Spectrophotometers at Norikura, Suzuran and Tsukuba

Predictability Variation in Numerical Weather Prediction: a Multi-Model Multi-Analysis Approach

FDM Simulation of Broadband Seismic Wave Propagation in 3-D Heterogeneous Structure using the Earth Simulator

ATLAS 実験における荷電ヒッグス粒子の探索

11/13 Diagonalization. Theorem: The set R of all real numbers is not enumerable. 12/13. 0.a k1 a k2 a k3... where a ij {0, 1,...

Mathematics 数理科学専修. welcome to 統合数理科学を 目 指 す 基礎理工学専攻

Y. Okayasu for the Jlab E collaboration Department of Physics. Tohoku University

External Review Report for Earthquake Research Institute The University of Tokyo 外部評価報告書. September 2014 平成 26 年 9 月 東京大学地震研究所

BCR30AM-12LB. RJJ03G Rev I T(RMS) 30 A V DRM 600 V I FGT I, I RGT I, I RGT III 50 ma : PRSS0004ZE-A ( : TO-3P) 4 2, 4

Trends of the National Spatial Data Infrastructure

2006 Inter-laboratory Comparison Study for Reference Material for Nutrients in Seawater

Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa

結合および相互作用エネルギーの定量的 評価法の開発と新規典型元素化合物の構築

Study of Cloud and Precipitation Processes Using a Global Cloud-system Resolving Model

1 1 1 n (1) (nt p t) (1) (2) (3) τ T τ. (0 t nt p ) (1) (4) (5) S a (2) (3) 0sin. = ωp

統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史

The unification of gravity and electromagnetism.

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan

Introduction to Multi-hazard Risk-based Early Warning System in Japan

( 主査 ) 教授髙橋秀幸教授山口信次郎准教授佐藤修正

井出哲博士の研究業績概要 井出哲博士はこれまで データ解析や数値シミュレーションの手法を用いることによって 地震の震源で起きている現象を様々な角度から研究してきた その主な研究成果は 以下の 3 つに大別される

21 点 15 点 3 解答用紙に氏名と受検番号を記入し, 受検番号と一致したマーク部分を塗りつぶすこと 受検番号が 0( ゼロ ) から始まる場合は,0( ゼロ ) を塗りつぶすこと

D j a n g o と P H P の仲間たち ( 改変済 ) サイボウズ ラボ株式会社 TSURUOKA Naoya

Development of Advanced Simulation Methods for Solid Earth Simulations

Experimental and FE Analysis of Seismic Soil-Pile-Superstructure Interaction in Sand. Mahmoud N. HUSSIEN*, Tetsuo TOBITA and Susumu IAI

非弾性散乱を利用した不安定核 核構造研究 佐藤義輝東京工業大学

-the 1st lecture- Yoshitaka Fujita Osaka University. Snake of March 16-20, 2015

A method for estimating the sea-air CO 2 flux in the Pacific Ocean

THE HOLISTIC LOVE REPORT

Advance Publication by J-STAGE. 日本機械学会論文集 Transactions of the JSME (in Japanese)

高分解能原子核乾板を用いた暗黒物質探索 中竜大 名古屋大学基本粒子研究室 (F 研 ) ICEPP 白馬

Video Archive Contents Browsing Method based on News Structure Patterns

Network of Evolutionary Trends and Maturity assessment through contradiction analysis 進化トレンドのネットワークと矛盾解析による成熟度評価

第 6 回 スペースデブリワークショップ 講演資料集 291 E3 デオービット用膜面展開機構の開発 Development of Membran Deployment mechanism for Deorbiting 高井元 ( 宇宙航空研究開発機構 ), 古谷寛, 坂本啓 ( 東京工業大学 ),

Predictabilities of a Blocking Anticyclone and a Explosive Cyclone

Parameter Estimation of Solar Radiation Pressure Torque of IKAROS

Product Specification

Method for making high-quality thin sections of native sulfur

Future Change Storm Surge based on Multi-Scenario and Multi-Regional Climate Model Ensemble Experiments

高エネルギーニュートリノ : 理論的な理解 の現状

din Linguistics 一 一 St1'uctur~s a proposals representagrammati squite incomplete. Although generate al

Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

IAEA,NEA ISOE 国際 シンポジューム出張報告

Adaptation Oriented Simulations for Climate Variability

Neutron-Insensitive Gamma-Ray Detector with Aerogel for Rare Neutral-Kaon Decay Experiment

Transcription:

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data Seiichi SHIMADA * Abstract The IGS reprocessed GPS precise ephemeris (repro1) is evaluated applying the Japanese dense GPS network data for the period from 869 to 1041 GPS weeks (September 1996 to December 1999; 173 weeks). We compare the weekly repeatability of the site coordinates of the Japanese network sites applying the reprocessed orbit with that applying the original IGS final orbit. For the case of the orbit-fixed analysis, the repeatability with the reprocessed orbit is better than that with the original orbit in the E-W and U-D components, although not significant compared with the standard error. On the other hand, for the case of the orbit-estimated analysis, the station coordinate repeatabilities are almost the same. Then we examine the systematic biases of the station coordinates between the reprocessed and the IGS final orbits, and we find that the coordinates applying the original final orbit deviate in north, east, and upward compared with those applying the reprocessed orbit although the difference is not significant compared with the uncertainties of site coordinate solutions. Finally we examine the systematic discontinuity of the station coordinates between the periods of the different reference frames applied in the IGS final orbit, and find that the jump between ITRF94 and ITRF97 is far larger than that between ITRF96 and ITRF97, although the most jumps are not significant compared with the one sigma uncertainties. Key words : Global Positioning System, IGS reprocessed precise ephemeris, Japanese GPS network 1. Introduction The IGS (International GNSS Service) has re-calculated the GPS precise ephemeris (repro1 reprocessed ephemeris) for the period from GPS weeks 749 to 1409 (May 1994 to January 2007) (Gendt and Ferland, 2010). The conditions of the analysis are almost same as those that were applied for the period after 1410 week. For the reference frame, ITRF2005 is adopted (Altamimi et al., 2007), together with the igs05 absolute phase center variation (PCV) models for both satellite and receiver antennas. Nine analysis centers analyzed the tracking data using 2009 state-of-the-art analysis software. By contrast, in the original IGS final orbit estimation, there were fewer analysis centers for the early periods, and the reference frame changes over time as the ITRF was updated. Moreover there was a significant discontinuity at week 1400 when the analysis centers switched to the absolute PCV models from a model that used a constant (but block-dependent) phase center offset for the satellite antennas from a relative PCV model for the ground antennas that assumed zero correction for the commonly used choke ring antennas (Dow et al., 2009). For example, during the period June 1996 to February 1998, the IGS adopted the ITRF94 reference frame and seven analysis centers analyzed the tracking data using late-1990s the state-ofthe-art software. For this period the satellite position sigmas indicated in the table in the summary file are much reduced for the reprocessed orbit compared with the original IGS final orbit, for instance 887 GPS week (January 5 11, 1997) from 20 40 mm sigmas of the final orbit to less than 15 mm sigmas of the reprocessed orbit. In this study we evaluate the IGS reprocessed ephemeris using a subset of the Japanese dense GPS network data for the period from September 1996 to December 1999 (from 869 to 1041 GPS week; 173 weeks), comparing the estimated weekly station coordinates using the reprocessed orbits with those of the original IGS final orbits. We first obtained the * 3-1 Tennodai, Tsukuba, Ibaraki, 305-0006, Japan -1-

Fig. 2 IGS fiducial sites used in the analysis. Fig. 1 GEONET and NIED analyzing sites in Tokai area, Central Japan, with USUD IGS site. coordinates at the end of time series and the velocity at the Japanese sites, then evaluate the repeatability (rms scatter) of the coordinates, and evaluate systematic biases. Fin ally we estimate the discontinuities of the coordinates at epochs for which the reference frame changed. 2. Data and Analysis Since our primary scientific interest has been the Tokai area of central Japan (Fig. 1), we use for our evaluation of the 95 GEONET (Miyazaki et al., 1998) and five NIED (Shimada, 1997) stations in this region. However, in order to avoid contamination of our orbit studies by the seismo-volcanic event of July to September 2000 (Nishimura et al., 2001) and the slow earthquake event from mid-2000 to mid-2005 (Miyazaki et al., 2006), we limit the span of our study to the 173-week period from September 1996 to the end of 1999. We processed the data using the GAMIT/GLOBK 10.4 software (Herring et al., 2010), and estimated site coordinates, phase ambiguities, hourly tropospheric delays, and tropospheric gradients every four hours for each site. We examine two types of analysis, one in which the orbits are fixed and one in which they are allowed to adjust. In the latter case, however, we first apply constraints at the level of ten parts per billion (~2 m in position) to resolve the phase ambiguities, then relax these constrains for the final estimation. In the estimating coordinates of the Tokai network and optionally the orbital parameters, we define the terrestrial reference frame by minimizing the adjustments of the coordinates of ~20 IGS station in and around eastern Asia (Fig. 2) to their values in ITRF 2005 (Altamimi et al. 2007). We adopt igs05 PCV models for IGS and NIED network receivers and satellite antennas, and the absolute PCV model determined by Geospatial Information Authority of Japan (Shimada, 2012; Hatanaka et al., 2001a, 2001b) for the GEONET sites because the network a unique antenna radome not included in the igs05 models. For the solution longer than one week we estimate the velocities of stations in addition but some exception exists mentioned below. In Fig. 3 we show an example time series of the baseline between sites 3097 and 3078 in the Tokai network (Fig. 1 shows the location of the sites) applying the reprocessed and the original final orbits with and without orbit estimation for both orbits. In some periods the time series show annual variations especially in the U-D component, although there does not seem any significant jump in any solution. In general for the most of the stations in the Tokai network the trend is linear with few significant jumps. Some time series exhibit significant annual variation that is not spatially coherent, suggesting that its causes are either local ground motion or temperature sensitivity of the antennas or monuments. 3. Results 3.1 Station coordinates repeatability Table 1 shows the coordinate repeatability of the Tokai network sites for the solution in which orbit parameters are not estimated. The coordinates at the end of time series and the velocity of network sites are obtained applying GLOBK. The scatter of the coordinate is obtained by the difference of the observed coordinates and those from the calculation using the coordinates and velocity obtain by GLOBK. The -2-

Evaluation of IGS Reprocessed Precise Ephemeris S. SHIMADA N-S COMPONENT (a) reprocessed orbit E-W COMPONENT (a) reprocessed orbit U-D COMPONENT (a) reprocessed orbit (b) IGS final orbit (b) IGS final orbit (b) IGS final orbit (c) reprocessed orbit (c) reprocessed orbit (c) reprocessed orbit (d) IGS final orbit (d) IGS final orbit (d) IGS final orbit 10mm 10mm 20mm 1996 1997 1998 1999 2000 1996 1997 1998 1999 2000 1996 1997 1998 1999 2000 Fig. 3 Time series of the baseline between 3097 and 3078 sites in the Tokai network. (a) Applying the reprocessed orbit with orbit parameter not estimated. (b) Applying the original final orbit with orbit parameter not estimated. (c) Applying the reprocess orbit with orbit parameter estimated. (d) Applying the original final orbit with orbit parameter estimated. repeatability of the reprocessed orbit is better than that of the original IGS final orbit in all three components, especially E-W and U-D components. The noise increase (quadratic difference of the rms values) is 0.6 mm in N-S, 1.5 mm in E-W, and 3.1 mm in U-D. When the orbits are allowed to adjust (Table 2) there is virtually no differences between the original and reprocessed orbits, because the orbit relaxation reduces the deviation of the original final orbits. 3.2 Systematic biases of the station coordinates To examine the systematic biases of the station coordinates between the reprocessed and the original final orbits, we first estimated the linear velocities of each site using the reprocessing orbit fixed solutions. We then adopted these velocities and estimated the average station coordinates over the data span for both the orbit-fixed and orbit-free cases (Table 3). The average differences for the network are about 0.5 mm for the orbit-fixed solutions and 0.1 mm for the orbit-free solutions, for the both horizontal and vertical coordinates. For the orbit-fixed solutions, the coordinates applying the IGS final orbit deviate north, east and upward compared with those applying the reprocessed orbit, although the one-sigma uncertainties of each station solution distribute from 0.1 mm to 0.4 mm for the horizontal components, and from 0.4 mm to 0.9 mm for the vertical component for both the reprocessed and the original final orbits, thus the difference is not significant compared with the uncertainties of the site coordinate solutions. For the orbit-estimated solutions, the coordinate difference is far smaller than that of the orbit-fixed solutions. For this case also the coordinates applying the IGS final orbit deviate north, east, and upward compared with those applying the reprocessed orbit, although the one-sigma uncertainties of each station solution distribute from 0.1 to 0.4 mm for the horizontal components, and from 0.4 mm to 0.9 mm for Table 1 The repeatability of weekly data of the Tokai network sites during the period from September 1996 to the end of 1999 when orbit parameter not estimated. The uncertainties are the standard deviation. Reprocessed ephemeris 2.0 ± 0.6 mm 2.6 ± 0.7 mm 6.6 ± 1.4 mm IGS final ephemeris 2.1 ± 0.6 mm 3.0 ± 0.6 mm 7.4 ± 1.2 mm Table 2 The repeatability of the weekly data of the Tokai network sites during the period from September 1996 to the end of 1999 when orbit parameter estimated. The uncertainties are the standard deviation. Reprocessed ephemeris 2.7 ± 0.5 mm 3.5 ± 0.5 mm 8.7 ± 0.9 mm IGS final ephemeris 2.7 ± 0.5 mm 3.5 ± 0.5 mm 8.6 ± 0.9 mm -3-

Table 3 The average of the coordinate difference between the solutions applying the IGS final orbit and the reprocessed orbit for 86 Tokai network sites during the period from September 1996 to the end of 1999. The uncertainties are the standard deviation. (IGS final orbit) (reprocessed orbit) when orbit parameter not estimated 0.42 ± 0.01 mm 0.52 ± 0.01 mm 0.53 ± 0.09 mm (IGS final orbit) (reprocessed orbit) when orbit parameter estimated 0.103 ± 0.001 mm 0.033 ± 0.001 mm 0.099 ± 0.009 mm the vertical component for both the reprocessed and the original final orbits, thus the difference is also not significant compared with the uncertainties of site coordinate solutions. 3.3 Discontinuity between the different reference frames in IGS final orbit Applying the estimated velocities of the Tokai network sites in chapter 3.2, we estimated the coordinates for each of the periods for which the original IGS final orbits were computed using different reference frames: ITRF94 GPS weeks 0869-0946, ITRF96 weeks 0947-1020, ITRF97 weeks 1021-1041 (Table 4). In general the systematic jump between ITRF94 and ITRF97 is far larger than that between ITRF96 and ITRF97, although the every discontinuity is not significant compared with the one sigma uncertainties except the jump in the U-D component between ITRF94 and ITRF97. Table 4 The average of the coordinate difference between the solutions applying the IGS final orbit and the reprocessed orbit for 80 Tokai network sites for the period of ITRF94, ITRF96, and ITRF97 reference frames applied for IGS final orbit. The uncertainties are the standard deviation. ITRF94 - ITRF97 when orbit parameter not estimated 0.20 ± 0.20 mm -0.40 ± 0.26 mm -4.06 ± 0.60 mm when orbit parameter estimated 0.03 ± 0.24 mm -0.07 ± 0.26 mm -0.26 ± 0.68 mm ITRF96 ITRF97 when orbit parameter not estimated 0.07 ± 0.24 mm -0.30 ± 0.34 mm -0.42 ± 0.68 mm when orbit parameter estimated -0.09 ± 0.24 mm 0.07 ± 0.36 mm -0.06 ± 0.79 mm 4. Discussion Shimada (2012) compares the repeatability of the coordinate solutions of the Tokai network sites analyzing the absolute and the relative PCV models for the periods from September 1996 to the end of 1999, and from the beginning of 2005 to November 2006 using the IGS final orbit. In the latter period the coordinate solution applying the absolute PCV model shows the better repeatability than that applying the relative PCV model, although in the former period the both solutions show almost same repeatability. The author concludes that for the former period the regional reference frame has not yet precisely established in eastern Asia and the IGS final orbit is not accurate enough to clarify the superiority of the absolute PCV model comparing with the relative PCV models. This study proves the speculation of Shimada (2012) by evaluating the accuracy of the IGS final orbit compared with the reprocessed. The large station coordinate difference between ITRF94 and ITRF97 compared with that between ITRF96 and ITRF97 suggests that deficiencies in the ITRF94 affects the accuracy of the IGS final ephemeris. On the other hand, the orbit-estimated solutions indicate less significant difference in the coordinate repeatability, the systematic biases, and the systematic discontinuity between the different reference frame, because the IGS final orbit has also improved applying the accurate ITRF 2005 coordinates and velocities of the fiducial network sites and the accurate absolute PCV model, thus the inaccuracy of the orbit becomes small compared with the orbit-fixed solution of the original orbit. The repeatability of the orbit-estimated solution is generally worse than the orbit-fixed solution because the network of the fiducial sites is not sufficiently global. 5. Conclusion We evaluate the IGS repro1 reprocessed ephemeris applying the Japanese dense GPS network data for the period from September 1996 to December 1999 (from 869 to 1041 GPS week; 173 weeks). We compare the weekly repeatability of the analyzed site coordinates of the Tokai network, Central Japan, applying the reprocessed ephemeris and the original IGS final ephemeris. For the case of the orbit-fixed analysis, the repeatability of the reprocessed orbit is better than that of the original final orbit in E-W and U-D components, although not significant compared with the one-sigma uncertainties. In N-S component repeatability is almost same for the both orbits. On the other hand, for the case of the orbit-estimated solutions, the repeatability of both orbits is almost same. We examine the systematic biases of the station coordinates of the Tokai sites and some biases seem between the IGS final and the reprocessed orbits, although the biases -4-

Evaluation of IGS Reprocessed Precise Ephemeris S. SHIMADA are not significant compared with the one-sigma uncertainties of the site coordinate solutions. The systematic biases with the orbit-estimated solutions are significant smaller than those with the solutions that orbit not estimated. We also calculate the systematic discontinuity of the station coordinates between the different reference frames used in the IGS original final orbit. The jump between ITRF94 and ITRF97 is far larger than that between ITRF96 and ITRF97 for the orbit-fixed solution, although both jumps are not significant compared with the one-sigma uncertainties except the jump in U-D component between ITRF94 and ITRF97. This may show the inaccuracy of the IGS final orbit based on the ITRF94 reference frame in the region based on the inaccurate regional reference frame. Acknowledgments The GEONET RINEX files and the GEONET absolute PCV model are provided by the Geospatial Information Authority of Japan. We use GMT program by Wessel and Smith (1998) to draw figures. References 1) Altamimi, Z., Collilieux, X., Legrand, J., Garayt, B., and Boucher, C. (2007): ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters, J. Geophys. Res., 112, B09401, doi:10.1029/2007jb004949. 2) Dow, J. M., Neilan, R. E., and Rizos, C. (2009): The International GNSS Service in a changing landscape of Global Navigation Satellite Systems, J. Geodesy, 83, 191 198, DOI: 10.1007/s00190-008-0300-3. 3) Gendt, G. and Ferland, R. (2010): Availability of repro1 products, IGS Electronic Mail, 6136. 4) Hatanaka, Y., Sawada, M., Horita, A., and Kusaka, M. (2001a): Calibration of antenna-radome and monumentmultipath effect of GEONET - Part 1: Measurement of phase characteristics, Earth Planets Space, 53, 13-21. 5) Hatanaka, Y., Sawada, M., Horita, A., Kusaka, M., Johnson, J. M., and Rocken, C. (2001b): Calibration of antenna-radome and monument-multipath effect of GEONET - Part 2: Evaluation of the phase map by GEONET data, Earth Planets Space, 53, 23-30. 6) Herring, T. A., King, R. W., and McClusky, S. C. (2010): Documentation for the GAMIT/GLOBK GPS analysis software. Dept. of Earth, Atmospheric Planet. Sci., Mass. Inst. of Technol.. 7) Miyazaki, S., Hatanaka, Y., Sagiya, T., and Tada, T. (1998): The nationwide GPS array as an Earth observation system, Bull. Geogr. Surv. Inst., 44, 11-22. 8) Miyazaki, S., Segall, P., McGuire, J. J., Kato, T., and Hatanaka, Y. (2006): Spatial and temporal evolution of stress and slip rate during the 2000 Tokai slow earthquake. J. Geophys. Res., 111, B03409, doi:10.1029/2004jb003426. 9) Nishimura, T., Ozawa, S., Murakami, M., Sagiya, T., Tada, T., Kaidzu, M., and Ukawa, M. (2001): Crustal deformation caused by magma migration in the northern Izu Islands, Japan. Geophys. Res. Lett., 28, 3745-3748. 10) Shimada, S. (1997): Crustal movements observed by GPS fixed-point network in Kanto-Tokai district Central Japan, In: Segawa, J, Fujimoto, H, Okubo, S (Eds.) Gravity, Geoid and Marine Geodesy, 265-272. 11) Shimada, S. (2012): Comparison of the coordinates solutions between the absolute and the relative phase center variation models in the dense regional GPS network in Japan. In: Kenyon, S, Pacino, M C, Marti, U (Eds.) Geodesy for Planet Earth, Springer, 651-656. 12) Wessel, P. and Smith, W. H. F. (1998): New, improved version of the Generic Mapping Tools released, EOS Trans. AGU, 79, 579. (Accepted: November 6, 2013) -5-

日本国内の GPS 観測データ解析による IGS 再解析暦の評価 島田誠一 防災科学技術研究所 要旨 IGS (International GNSS Service) の再解析暦 (repro1) を,GPS 週 749 ~ 1041(1996 年 9 月 ~ 1999 年 12 月 ) の期間の日本国内 GPS 観測網による観測データを用いて評価した.IGS 再解析暦を用いた解析による国内観測点の座標値解と IGS 最終暦を用いた解析による座標値解との週値再現性を比較した. 軌道暦の補正値を推定しなかった場合, 再解析暦による解の座標値再現性は, 標準偏差と比較して有意とはいえないが, 東西及び上下成分で最終暦より低減していた. 一方, 軌道暦の補正値を推定した場合は, 両方の暦による再現性はほぼ同一であった. 次に, 再解析暦と最終暦による座標値解のあいだに系統誤差があるかどうかを調べたところ, 最終暦による座標値解は再解析暦による座標値解より北方 東方及び上方に偏位していることがわかったが, これらの差は座標値解の標準誤差と比べて有意ではなかった. 最後に,IGS 最終暦を計算したときに用いた基準座標系が異なる期間ごとの座標解の系統差を調べたところ,ITRF94 と ITRF97 とを用いた期間とのあいだには,ITRF96 と ITRF97 とを用いた期間とのあいだよりはるかに大きな系統差があったが, 上下成分以外ではこの差は有意ではなかった. キーワード : 全地球測位システム,IGS 再解析暦, 国内 GPS 観測網 -6-