Blind separation of instantaneous mixtures of dependent sources

Similar documents
An Iterative Blind Source Separation Method for Convolutive Mixtures of Images

Massoud BABAIE-ZADEH. Blind Source Separation (BSS) and Independent Componen Analysis (ICA) p.1/39

BLIND SOURCES SEPARATION BY SIMULTANEOUS GENERALIZED REFERENCED CONTRASTS DIAGONALIZATION

A zero-cumulant random variable and its applications $

Semi-Blind approaches to source separation: introduction to the special session

BLIND SEPARATION OF INSTANTANEOUS MIXTURES OF NON STATIONARY SOURCES

Blind Signal Separation: Statistical Principles

Analytical solution of the blind source separation problem using derivatives

Blind Channel Identification in (2 1) Alamouti Coded Systems Based on Maximizing the Eigenvalue Spread of Cumulant Matrices

where A 2 IR m n is the mixing matrix, s(t) is the n-dimensional source vector (n» m), and v(t) is additive white noise that is statistically independ

Recursive Generalized Eigendecomposition for Independent Component Analysis

Independent Component Analysis. Contents

PROPERTIES OF THE EMPIRICAL CHARACTERISTIC FUNCTION AND ITS APPLICATION TO TESTING FOR INDEPENDENCE. Noboru Murata

ON THE FOURTH-ORDER CUMULANTS ESTIMATION FOR THE HO BLIND SEPARATION OF CYCLOSTATIONARY SOURCES. Anne Férréol and Pascal Chevalier

THERE is considerable literature about second-order statistics-based

BLIND SEPARATION OF CONVOLUTIVE MIXTURES A CONTRAST-BASED JOINT DIAGONALIZATION APPROACH

An Improved Cumulant Based Method for Independent Component Analysis

ORIENTED PCA AND BLIND SIGNAL SEPARATION

A UNIFIED PRESENTATION OF BLIND SEPARATION METHODS FOR CONVOLUTIVE MIXTURES USING BLOCK-DIAGONALIZATION

Tensor approach for blind FIR channel identification using 4th-order cumulants

IDENTIFIABILITY AND SEPARABILITY OF LINEAR ICA MODELS REVISITED. Jan Eriksson and Visa Koivunen

Estimation of linear non-gaussian acyclic models for latent factors

1254 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 4, APRIL On the Virtual Array Concept for Higher Order Array Processing

1 Introduction Independent component analysis (ICA) [10] is a statistical technique whose main applications are blind source separation, blind deconvo

BLIND SEPARATION OF INSTANTANEOUS MIXTURES OF NON STATIONARY SOURCES

Blind separation of sources that have spatiotemporal variance dependencies

Fundamentals of Principal Component Analysis (PCA), Independent Component Analysis (ICA), and Independent Vector Analysis (IVA)

ON-LINE BLIND SEPARATION OF NON-STATIONARY SIGNALS

TWO METHODS FOR ESTIMATING OVERCOMPLETE INDEPENDENT COMPONENT BASES. Mika Inki and Aapo Hyvärinen

Least square joint diagonalization of matrices under an intrinsic scale constraint

Blind Instantaneous Noisy Mixture Separation with Best Interference-plus-noise Rejection

BLIND SEPARATION USING ABSOLUTE MOMENTS BASED ADAPTIVE ESTIMATING FUNCTION. Juha Karvanen and Visa Koivunen

SPARSE signal representations have gained popularity in recent

Acoustic Source Separation with Microphone Arrays CCNY

Analytical Method for Blind Binary Signal Separation

1 Introduction Blind source separation (BSS) is a fundamental problem which is encountered in a variety of signal processing problems where multiple s

BLIND SEPARATION OF SPATIALLY-BLOCK-SPARSE SOURCES FROM ORTHOGONAL MIXTURES. Ofir Lindenbaum, Arie Yeredor Ran Vitek Moshe Mishali

A Canonical Genetic Algorithm for Blind Inversion of Linear Channels

BLIND DECONVOLUTION ALGORITHMS FOR MIMO-FIR SYSTEMS DRIVEN BY FOURTH-ORDER COLORED SIGNALS

Blind Spectral-GMM Estimation for Underdetermined Instantaneous Audio Source Separation

Blind Deconvolution of Multi-Input Single-Output Systems Using the Distribution of Point Distances

THE THREE EASY ROUTES TO INDEPENDENT COMPONENT ANALYSIS; CONTRASTS AND GEOMETRY. Jean-François Cardoso

Real and Complex Independent Subspace Analysis by Generalized Variance

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

Blind Identification and Source Separation in 2 3 Under-determined mixtures

BLIND SOURCE SEPARATION IN POST NONLINEAR MIXTURES

Blind Identification of Over-complete MixturEs of sources (BIOME)

One-unit Learning Rules for Independent Component Analysis

GENERALIZED DEFLATION ALGORITHMS FOR THE BLIND SOURCE-FACTOR SEPARATION OF MIMO-FIR CHANNELS. Mitsuru Kawamoto 1,2 and Yujiro Inouye 1

CCA BASED ALGORITHMS FOR BLIND EQUALIZATION OF FIR MIMO SYSTEMS

I. INTRODUCTION INDEPENDENT component analysis (ICA) [1] [3] has received

Natural Gradient Learning for Over- and Under-Complete Bases in ICA

Adaptive Noise Cancellation

Publication VI. Esa Ollila On the circularity of a complex random variable. IEEE Signal Processing Letters, volume 15, pages

Blind Identification of Underdetermined Mixtures Based on the Hexacovariance and Higher-Order Cyclostationarity

A Pseudo-Euclidean Iteration for Optimal Recovery in Noisy ICA

THE SPIKE PROCESS: A SIMPLE TEST CASE FOR INDEPENDENT OR SPARSE COMPONENT ANALYSIS. Naoki Saito and Bertrand Bénichou

Simple LU and QR based Non-Orthogonal Matrix Joint Diagonalization

Blind Source Separation in Nonlinear Mixture for Colored Sources Using Signal Derivatives

Dictionary Learning for L1-Exact Sparse Coding

CONTROL SYSTEMS ANALYSIS VIA BLIND SOURCE DECONVOLUTION. Kenji Sugimoto and Yoshito Kikkawa

INDEPENDENT COMPONENT ANALYSIS (ICA) IN THE DECONVOLUTION OF OVERLAPPING HPLC AROMATIC PEAKS OF OIL

Blind signal processing algorithms

BLIND SEPARATION OF TEMPORALLY CORRELATED SOURCES USING A QUASI MAXIMUM LIKELIHOOD APPROACH

Generic properties of Symmetric Tensors

Efficient Line Search Methods for Riemannian Optimization Under Unitary Matrix Constraint

On Information Maximization and Blind Signal Deconvolution

Distinguishing Causes from Effects using Nonlinear Acyclic Causal Models

A Generalization of Blind Source Separation Algorithms for Convolutive Mixtures Based on Second-Order Statistics

Blind Machine Separation Te-Won Lee

Vandermonde-form Preserving Matrices And The Generalized Signal Richness Preservation Problem

Theoretical Computer Science. Completing a combinatorial proof of the rigidity of Sturmian words generated by morphisms

A GENERAL THEORY OF CLOSED-FORM ESTIMATORS FOR BLIND SOURCE SEPARATION

Underdetermined Instantaneous Audio Source Separation via Local Gaussian Modeling

Mobile Robotics 1. A Compact Course on Linear Algebra. Giorgio Grisetti

Expressions for the covariance matrix of covariance data

Acoustic MIMO Signal Processing

MINIMIZATION-PROJECTION (MP) APPROACH FOR BLIND SOURCE SEPARATION IN DIFFERENT MIXING MODELS

TRINICON: A Versatile Framework for Multichannel Blind Signal Processing

Simultaneous Diagonalization in the Frequency Domain (SDIF) for Source Separation

INDEPENDENT component analysis (ICA) plays an important

(1)(a) V = 2n-dimensional vector space over a field F, (1)(b) B = non-degenerate symplectic form on V.

arxiv: v1 [math.ra] 13 Jan 2009

Fourier PCA. Navin Goyal (MSR India), Santosh Vempala (Georgia Tech) and Ying Xiao (Georgia Tech)

On the INFOMAX algorithm for blind signal separation

SENSITIVITY ANALYSIS OF BLIND SEPARATION OF SPEECH MIXTURES. Savaskan Bulek. A Dissertation Submitted to the Faculty of

BLIND SOURCE SEPARATION TECHNIQUES ANOTHER WAY OF DOING OPERATIONAL MODAL ANALYSIS

Tutorial on Blind Source Separation and Independent Component Analysis

Lecture 10: Dimension Reduction Techniques

Deconvolution of Overlapping HPLC Aromatic Hydrocarbons Peaks Using Independent Component Analysis ICA

SOURCE SEPARATION OF TEMPORALLY CORRELATED SOURCE USING BANK OF BAND PASS FILTERS. Andrzej Cichocki and Adel Belouchrani

A Block-Jacobi Algorithm for Non-Symmetric Joint Diagonalization of Matrices

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 11, NOVEMBER On the Performance of Sparse Recovery

WE study the capacity of peak-power limited, single-antenna,

Improved PARAFAC based Blind MIMO System Estimation

A FAST ALGORITHM FOR BLIND SEPARATION OF NON-GAUSSIAN AND TIME-CORRELATED SIGNALS

Diagonalization by a unitary similarity transformation

Here each term has degree 2 (the sum of exponents is 2 for all summands). A quadratic form of three variables looks as

BLIND source separation (BSS) aims at recovering a vector

2318 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 6, JUNE Mai Vu, Student Member, IEEE, and Arogyaswami Paulraj, Fellow, IEEE

Transcription:

Blind separation of instantaneous mixtures of dependent sources Marc Castella and Pierre Comon GET/INT, UMR-CNRS 7, 9 rue Charles Fourier, 9 Évry Cedex, France marc.castella@int-evry.fr, CNRS, I3S, UMR 67, BP., Sophia-Antipolis cedex, France pcomon@i3s.unice.fr Abstract. This paper deals with the problem of Blind Source Separation. Contrary to the vast majority of works, we do not assume the statistical independence between the sources and explicitly consider that they are dependent. We introduce three particular models of dependent sources and show that their cumulants have interesting properties. Based on these properties, we investigate the behaviour of classical Blind Source Separation algorithms when applied to these sources: depending on the source vector, the separation may be sucessful or some additionnal indeterminacies can be identified. Introduction Independent Component Analysis (ICA) is now a well recognized concept, which has fruitfully spread out to a wide panel of scientific areas and applications. Contrary to other frameworks where techniques take advantage of a strong information on the diversity, for instance through the knowledge of the array manifold in antenna array processing, the core assumption in ICA is much milder and reduces to the statistical mutual independence between the inputs. However, this assumption is not mandatory in Blind Source Separation (BSS). For instance, in the case of static mixtures, sources can be separated if they are only decorrelated when their nonstationarity or their color can be exploited. Other properties such as the fact that sources belong to a finite alphabet can alternatively be utilized [, ] and do not require statistical independence. Inspired from [3, 4], we investigate the case of dependent sources, without assuming nonstationarity nor color. To our knowledge, only few references have tackled this issue [, 6]. Mixture model and notations We consider a set of N source signals (s i (n)) n Z, i =,..., N. The dependence on time of the signals will not be made explicit in the paper. The sources are mixed, yielding a P -dimensional observation vector x = (x(n)) n Z according to the model: x = As ()

Corrected version. Original version appeared in Proc. of Seventh Int. Conf. ICA 7, LNCS, Vol.4666, pp.9-6, 9- Sept. 7, London, UK where s = (s,..., s N ) T, x = (x,..., x P ) T and A is a P N matrix called the mixing matrix. We assume that A is left-invertible. Source separation consists in finding a N P separating matrix B such that its output y = Bx corresponds to the original sources. When only the observations are used for this, the problem is referred to as the BSS problem. Introducing the N N global matrix G BA, the BSS is problem is solved if G is a so-called trivial matrix, i.e. the product of a diagonal matrix with a permutation: these are well known ambiguities of BSS. In this paper, we will study separation criteria as functions of G. Source separation sometimes proceeds iteratively, extracting one source at a time (e.g. deflation approach). In this case, we will write y = bx = gs where b and g = ba respectively correspond to a row of B and G and y denotes the only output of the separating algorithm. In this case, the separation criteria are considered as functions of g. Finally, we denote by E.} the expectation operator and by Cum.} the cumulant of a set of random variables. Cum 4 y} is equivalent to Cum y, y, y, y} and, for complex variables, Cum, y} stands for Cum y, y, y, y }. 3 Examples and properties of dependent sources We introduce in this section different cases of vector sources that are dependent and that will be considered in this paper. 3. Three dependent sources Binary phase shift keying (BPSK) signals have specificities that will allow us to obtain source vectors with desired properties. In this paper, we will consider BPSK sources that take values s = + or s = with equal probability/. We define the following source vector: A. s (s, s, s 3 ) T where s is BPSK; s is BPSK, independent of s ; and s 3 = s s. Interestingly, the following lemma holds true: Lemma. The sources s, s, s 3 defined by A are obviously mutually dependent. Nevertheless they are decorrelated and their fourth-order cross-cumulants vanish, that is: Cum s i, s j } = except if i = j, () Cum s i, s j, s k, s l } = except if i = j = k = l. (3) Proof. Using the definition of s, s and their independence, one can easily check that E s } = E s } = E s 3 } =. For these centered random variables, it is known that cumulants can be expressed in terms of moments: Cum s i, s j } = E s i s j } (4) Cum s i, s j, s k, s l } = E s i s j s k s l } E s i s j } E s k s l } E s i s k } E s j s l } E s i s l } E s j s k } ()

Corrected version. Original version appeared in Proc. of Seventh Int. Conf. ICA 7, LNCS, Vol.4666, pp.9-6, 9- Sept. 7, London, UK 3 Using again the definition of s, s and their independence, it is then easy to check all cases of equations (4) and () and to verify that these fourth order crosscumulants are indeed null. On the other hand, the third order cross-cumulant reads: Cum s, s, s 3 } = E s s s 3 } = E s s } = E s } E s } > (6) and this proves that s, s, s 3 are mutually dependent. In addition, one can check that the sources (s, s, s 3 ) are pairwise independent, although not mutually independent. 3. Pairwise independent sources We now investigate further the case of pairwise independent sources and introduce the following source vector: A. s = (s, s, s 3, s 4 ) T where s, s and s 3 are independent BPSK and s 4 = s s s 3. This case has been considered in [3], where it has been shown that i,..., 4}, Cum s i, s i, s i, s i } =, Cum s, s, s 3, s 4 } = (7) and all other cross-cumulants vanish. The latter cumulant value shows that the sources are mutually dependent; although it can be shown that they are pairwise independent. It should be clear that pairwise independence is not equivalent to mutual independence but in an ICA context, it is relevant to recall the following proposition, which is a direct consequence of Darmois theorem [7, p.94]: Proposition. Let s be a random vector with mutually independent components, and x = Gs. Then the mutual independence of the entries of x is equivalent to their pairwise independence. Based on this proposition, the ICA algorithm in [7] searches for an output vector with pairwise independent component. Let us stress that this holds only if the source vector has mutually independent components: pairwise independence is indeed not sufficient to ensure identifiability as we will see in Section 4.. 3.3 Complex valued sources We consider quaternary phase shift keying (QPSK) sources which take their values in e ı π 4, e ı π 4, e ı π 4, e ı π 4 } with equal probability /4. We then define the following source vector: A3. s = (s, s, s 3, s 4 ) T where s, s and s 3 are mutually independent QPSK and s 4 = s s s 3. Based on the Equations (4) and () which hold for the above centered sources, one can check the following proposition:

4 Corrected version. Original version appeared in Proc. of Seventh Int. Conf. ICA 7, LNCS, Vol.4666, pp.9-6, 9- Sept. 7, London, UK Lemma. The sources in A3 are dependent and Cum s, s, s 3, s 4} =. However, they are second-order decorrelated and all their fourth order circular crosscumulants (i.e. with as many conjugates as non-conjugates) vanish, that is: Cum s i, s j } = and Cum si, s j } = except if i = j, (8) Cum s i, s j, s k, s l } = except if i = j = k = l. (9) Actually, we can prove that the above Lemma, as well as Lemma 4 and Proposition 6 still hold in the case when s, s and s 3 are second order circular and have unit modulus: this is not detailed for reasons of space and clarity. 4 ICA algorithms and dependent sources 4. Independence is not necessarily required The sources given by A provide us with a specific example of dependent sources that are sucessfully separated by several ICA methods: Proposition. Let y = gs where the vector of sources is defined by A. Then, the function g Cum 4 y} α, α () defines a MISO contrast function, that is, its maximization over the set of unit norm vectors ( g = ) leads to a vector g with only one non-zero component. Proof. The above proposition follows straightforwardly from Lemma since the proof of the validity of the above contrast functions only relies on the property in Equation (3). Considering again the argument in the proof, one should easily notice that the above proposition can be generalized to the case of sources which satisfy: A4. s = (s,..., s 3K ) where: i,..., K }, s 3i+ is BPSK; s 3i+ is BPSK; s 3i+3 = s 3i+ s 3i+ ; and the random variables s 3i+, s 3i+ ; i =,..., K } are mutually independent. In addition, the above result can be generalized convolutive systems and to MIMO (multiple input/multiple output) contrast functions as defined in [7, ]: Proposition 3. Let y = Gs where the vector of sources is defined by A. Then the function: N G Cum 4 y i } α, α () i= is a MIMO contrast, that is, its maximization over the group of orthogonal matrices leads to a solution G which is a trivial matrix (permutation, scaling). Many classical algorithms for BSS or ICA first whiten the data: it is known that in so doing, they constrain matrix G to be orthogonal. In particular so does the algorithm proposed in [7], which relies on the contrast function in (). It justifies that this algorithm successfully separates the sources A. Actually, any algorithm relying on a prewhitening and associated with a contrast function based on the vanishing of the fourth-order cross cumulants (e.g. JADE) is able to separate sources such as A.

Corrected version. Original version appeared in Proc. of Seventh Int. Conf. ICA 7, LNCS, Vol.4666, pp.9-6, 9- Sept. 7, London, UK 4. Pairwise independence is not sufficient We now consider the pairwise independent sources given by A and show that pairwise independence is not sufficient to ensure identifiability of the ICA model. We first have the following preliminary result: Lemma 3. Let y = gs where the vector of sources is defined by A. Assume that the vector (s, s, s 3 ) takes all 3 possible values. If the signal y has values in, +}, then g = (g, g, g 3, g 4 ) is either one of the solutions below: i,..., 4} g i = ±, and: j i, g j = i,..., 4} g i = ±/, and: j i, g j = g i () Proof. If y = gs, using the fact that s i = for i =,..., 4, we have with the particular sources given by A: [ (g y = g +g +g3 +g4 ) + g +g 3 g 4 s s + ( ) g g 3 +g g 4 s s 3 + ( ) ] g g 3 +g g 4 s s 3 Since (s, s, s 3 ) take all possible values in, } 3, we deduce from y = that the following equations necessarily hold: g + g + g3 + g4 = (3) g g + g 3 g 4 = g g 3 + g g 4 = g g 3 + g g 4 = First observe that values given in () indeed satisfy (3). Yet, if a polynomial system of N equations of degree d in N variables admits a finite number of solutions 3, then there can be at most d N distinct solutions. Hence we have found them all in (), since () provides us with 6 solutions for (g, g, g 3, g 4 ). Using the above result, we are now able to specify the output of classical ICA algorithms when applied to a mixture of sources which satisfy A. Constant modulus and contrasts based on fourth order cumulants The constant modulus (CM) criterion is one of the most known criteria for BSS. In the real valued case, it simplifies to: J CM (g) E (y ) } with: y = gs (4) Proposition 4. For the sources given by A, the minimization of the constant modulus criterion with respect to g leads to either one of the solutions given by Equation (). Proof. We know that the minimum value of the constant modulus criterion is zero and that this value can be reached (for g having one entry being ± and other entries zero). Moreover, the vanishing of the constant modulus criterion implies that y = almost surely and one can then apply Lemma 3. 3 One can show that the number of solutions of (3) is indeed finite.

6 Corrected version. Original version appeared in Proc. of Seventh Int. Conf. ICA 7, LNCS, Vol.4666, pp.9-6, 9- Sept. 7, London, UK A connection can now be established with the fourth-order autocumulant if we impose the following constraint: E y } = (or equivalently g = since y = gs) () Because of the scaling ambiguity of BSS, the above normalization can be freely imposed. Under (), we have Cum 4 y} = E (y ) } and minimizing J CM (g) thus amounts to maximizing Cum 4 y}. Unfortunately, since Cum 4 y} may be positive or negative, no simple relation between Cum 4 y} and J CM (g) can be deduced from the above equation. However, we can state: Proposition. Let y = gs where the vector of sources is defined by A. Then, under the constraint () ( g = ), we have: (i) The maximization of g Cum 4 y} leads to either one of the solutions given by Equation (). (ii) Cum 4 y} and the equality Cum 4 y} = holds true if and only if g is one of the solutions given in Equation (). Proof. Part (i) follows from the arguments given above. In addition, using multilinearity of the cumulants and (7), we have for y = gs: Cum 4 y} = ( g 4 + g 4 + g 4 3 + g 4 4) + 4 (g g g 3 g 4 ) (6) The result then follows straightfowardly from the study of the polynomial function in Equation (6). Indeed, optimizing (6) leads to the following Lagrangian: ( 4 4 4 ) L = gi 4 + 4 g i λ gi (7) i= i= After solving the polynomial system which cancels the Jacobian of the above expresssion, one can check that all solutions are such that Cum 4 y}. Details are omitted for reasons of space. Part (ii) of the proposition easily follows. Similarly to the previous section, the above proposition can be generalized to MIMO contrast functions. In particular, this explains why, for a particular set of mixing matrices such as that studied in [3], the pairwise maximization algorithm of [7] still succeeded: a separation has luckily been obtained for the considered mixing matrices and initialization point of the algorithm, but it actually would not succeed in separating BPSK dependent sources for general mixing matrices. Let us stress also that the results in this section are specific to the contrast functions given by () or (). In particular, these results do no apply to algorithms based on other contrast functions such as JADE, contrary to the results in Sections 4. and 4.3. i= 4.3 Complex case The output given by separation algorithms in case of complex valued signals may differ from the previous results which have been proved for real valued

Corrected version. Original version appeared in Proc. of Seventh Int. Conf. ICA 7, LNCS, Vol.4666, pp.9-6, 9- Sept. 7, London, UK 7 signals only. Indeed, complex valued BSS does not always sum up to an obvious generalization of the real valued case [8]. We illustrate it in our context and show that, quite surprisingly, blind separation of the sources given by A3 can be achieved up to classical inderterminations of ICA. This is in contrast with the result in Equation () where additionnal indeterminacies appeared. First, we have: Lemma 4. Let y = gs where the vector of sources is defined by A3. Assume that the vector (s, s, s 3 ) takes all 4 3 possible values. If the signal y is such that its values satisfy y =, then g = (g, g, g 3, g 4 ) satisfies: i,..., 4} g i =, and: j i, g j = (8) Proof. If y = gs, using the fact that s i = for i =,..., 4, we have with the particular sources given by A3: y = 4 g i + g i gj s i s j (9) i j i= Since (s, s, s 3 ) take all possible values in, ı,, ı} 3, we deduce from y = that the following equations necessarily hold: g + g + g 3 + g 4 = g g = g g 3 = g g 4 = g g 3 = g g 4 = g 3 g 4 = () Solving for the polynomial system in the variables g, g, g 3 and g 4, we obtain that the solutions are the ones given in Equation (8). Constant modulus and fourth-order cumulant based contrasts In contrast with Propositions 4 and we have the following result: Proposition 6. Let y = gs where the sources satisfy A3. Then, the functions: g E y } and: () g Cum, y} under constraint E y } = () are contrast functions, that is, their maximization leads to g satisfying (8). Proof. The validity of the first contrast function is obtained with the same arguments as in the proof of Proposition 4: we have y m.s. =, which yields () via (9). In the case of independent sources, the proof of the validity of the second contrast involves only cumulants with equal number of conjugate and non conjugate variables: invoking Lemma, one can see that the same proof still holds here. Note that the same arguments can be applied to ICA methods such as the pairwise algorithm in [] or JADE [9]. Figure illustrates our result.

8 Corrected version. Original version appeared in Proc. of Seventh Int. Conf. ICA 7, LNCS, Vol.4666, pp.9-6, 9- Sept. 7, London, UK.... 4.... 4 Fig.. Typical observed separation result of the sources A3 with the algorithm JADE (left: sensors, right: separation result) References. Li, T.H.: Finite-alphabet information and multivariate blind deconvolution and identification of linear systems. IEEE Trans. on Information Theory 49() (January 3) 33 337. Comon, P.: Contrasts, independent component analysis, and blind deconvolution. Int. Journal Adapt. Control Sig. Proc. 8(3) (April 4) 43 special issue on Signal Separation: http:// www3.interscience.wiley.com/cgi-bin/jhome/48. Preprint: I3S Research Report RR-3-6. 3. Comon, P.: Blind identification and source separation in 3 under-determined mixtures. IEEE Trans. Signal Processing () (January 4) 4. Comon, P., Grellier, O.: Non-linear inversion of underdetermined mixtures. In: Proc. of ICA 99, Aussois, France (January 999) 46 46. Hyva rinen, A., Shimizu, S.: A quasi-stochastic gradient algorithm for variancedependent component analysis. In: Proc. International Conference on Artificial Neural Networks (ICANN6), Athens, Greece (6) 6. Cardoso, J.F.: Multidimensional independent component analysis. In: Proc. ICASSP 98. Seattle. (998) 7. Comon, P.: Independent component analysis, a new concept. Signal Processing 36(3) (April 994) 87 34 8. Eriksson, J., Koivunen, V.: Complex random vectors and ICA models: Identifiability, uniqueness and separability. IEEE Trans. on Information Theory (3) (March 6) 7 9 9. Cardoso, J.F., Souloumiac, A.: Blind beamforming for non gaussian signals. In: IEEE- Proceedings-F. Volume 4. (993) 36 37