Ness LUNA II facility. INFN underground Gran Sasso Laboratories. P. Corvisiero INFN - Italy

Similar documents
Recent results and status of the

The LUNA - MV project at the Gran Sasso Laboratory

Nuclear Astrophysics Underground Status & Future

References and Figures from: - Basdevant, Fundamentals in Nuclear Physics

Underground nuclear astrophysics and the Sun

at Gran Sasso Laboratories, Italy

Direct measurement of the 2H(α,γ)6Li cross section at energies of astrophysical interest

PoS(FRAPWS2016)005. LUNA: hydrogen, helium and carbon burning under Gran Sasso. Carlo Broggini. INFN-Sezione di Padova

LUNA-400 and LUNA-MV: present and future of Nuclear Astrophysics at LNGS

«Ettore Majorana» International School of Subnuclear Physics Erice, 14th-23rd June 2016

Nuclear astrophysics at Gran Sasso Laboratory: LUNA experiment

Neutrino physics and nuclear astrophysics:

Reaction rates in the Laboratory

(EXPERIMENTAL) NUCLEAR ASTROPHYSICS. study energy generation processes in stars study nucleosynthesis of the elements

Neutrino Physics and Nuclear Astrophysics: the LUNA-MV project at Gran Sasso

Latest results from LUNA

Cross section measurements of fusion reactions at astrophysically relevant energies: the LUNA experiment

LUNA: a Laboratory for Underground Nuclear Astrophysics. Dipartimento di Scienze Fisiche, Universitá Federico II, Napoli, and INFN Napoli, Italy

Experimental study of the 14 N(p,γ) 15 O reaction

Primer: Nuclear reactions in Stellar Burning

Perspectives on Nuclear Astrophysics

The LUNA experiment at the Gran Sasso Laboratory

Hands on LUNA: Detector Simulations with Geant4

DIANA A NEXT GENERATION DEEP UNDERGROUND ACCELERATOR FACILITY

Solar Neutrinos. Solar Neutrinos. Standard Solar Model

Hydrogen & Helium Burning in Stars

Basic Nuclear Physics 2. Nuclear Reactions. I(j,k)L. I + j L +k or I( j,k )L. Glatzmaier and Krumholz 7,8 Prialnik 4 Pols 6 Clayton 4

Reaction rates for nucleosynthesys of light and intermediate-mass isotopes

Experimental setup. Alpha beam. Deuterium exhaust. - Germanium detector close to the beam line to. increase the detection efficiency

MRC-1: Low Energy Nuclear Reactions and Stellar Evolution

Nuclear Astrophysics

Hydrogen Burning in More Massive Stars and The Sun.

Stellar Evolution: what do we know?

Future research of 12 C(a,g) 16 O. Claudio Ugalde

Experimental Initiatives in Nuclear Astrophysics

Nuclear Astrophysics with DRAGON at ISAC:

Topics in Nuclear Astrophysics II. Stellar Reaction Rates

Results on geoneutrinos at Borexino experiment. Heavy Quarks and Leptons Yamagata Davide Basilico

Search for the η e + e - decay at the SND detector

Lecture #1: Nuclear and Thermonuclear Reactions. Prof. Christian Iliadis

1. Introduction on Astroparticle Physics Research options

Resonant Reactions direct reactions:

Nuclear Astrophysics

Scientific goal in Nuclear Astrophysics is to explore:

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso

DIPOLE-STRENGTH IN N=50 NUCLEI STUDIED IN PHOTON-SCATTERING EXPERIMENTS AT ELBE

arxiv: v1 [nucl-ex] 4 Feb 2009

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

Metallicities in stars - what solar neutrinos can do

Radiative Capture Reaction

Background by Neutron Activation in GERDA

Nuclear Physics Questions, Achievements, Goals

Nuclear Physics Questions, Directions, Applications

Nuclear astrophysics studies with charged particles in hot plasma environments

Status of the CUORE experiment at Gran Sasso

arxiv:nucl-ex/ v1 9 Feb 2006

HiRA: Science and Design Considerations

What Powers the Stars?

The CNGS neutrino beam

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration

Neutron cross sections in stellar nucleosynthesis: study of the key isotope 25 Mg

F. Cappella INFN - LNGS

Cosmic Rays. Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon

Low Background Experiments and Material Assay. Tessa Johnson NSSC Summer School July 2016

Solution: HW 4 AY 123, Fall 2007

CNGS beam monitor with LVD

Cosmogenic background for the GERDA experiment. Luciano Pandola INFN, Laboratori del Gran Sasso, Italy

Experimental neutron capture data of 58 Ni from the CERN n TOF facility

Direct measurement of the 17 O(p,α) 14 N reaction at energies of astrophysical interest at LUNA

RITU and the GREAT Spectrometer

Contents. General Introduction Low background activities Pixel activities Summary and Outlook. Kai Zuber

Publications of Francesco Arneodo: journal articles

Neutron induced reactions & nuclear cosmo-chronology. chronology. A Mengoni IAEA Vienna/CERN, Geneva

Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration

Nuclear Binding Energy

arxiv: v1 [nucl-ex] 18 Nov 2016

Determining Two Reaction Rates in Novae using the ANCs Technique. Tariq Al-Abdullah Hashemite University, Jordan Russbach, March 2011

Neutron Activation of 76Ge

Investigation of radiative proton-capture reactions using high-resolution g-ray spectroscopy

Measurement of the 62,63. Ni(n,γ) cross section at n_tof/cern

R-matrix Analysis (I)

THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS

Thermonuclear Reactions in Stars

Measurementof 7 Be(n,α) and 7 Be(n,p) cross sections for the Cosmological Li problem in

Astrophysical Nucleosynthesis

ILE, Osaka University ILE, Osaka February 3, 2014

Number of neutrino families from LEP1 measurements

arxiv:nucl-ex/ v2 17 May 2004

핵입자물리특강 고에너지물리실험방법론 김선기 2014 년 2 학기

cryogenic calorimeter with particle identification for double beta decay search

Nucleosynthesis. at MAGIX/MESA. Stefan Lunkenheimer MAGIX Collaboration Meeting 2017

1. Neutrino Oscillations

The GERmanium Detector Array

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics

Ne(p,γ) 23 Na MEASUREMENT AT LUNA II AND IMPACT ON ASTROPHYSICAL SCENARIOS. MARIE-LUISE MENZEL for the LUNA collaboration

Hydrogen Burning in More Massive Stars.

Gamma background measurements in the Gran Sasso National Laboratory

Nuclear Astrophysics - I

Week 4: Nuclear physics relevant to stars

Nuclear Resonance Fluorescence with. NRF with monoenergetic photons and fundamental experiments at ELI-NP. Julius Wilhelmy

Transcription:

Ness 2002 LUNA II facility INFN underground Gran Sasso Laboratories P. Corvisiero INFN - Italy

the pp chain p + p d + e + + + ν e e d + p 3 3 He He + γγ 84.7 % 13.8 % 3 3 He He + 3 3 He He α + 2p 3 2p 3 He He + 4 4 He He 7 7 Be Be + γγ 13.78 % 0.02 % 7 7 7 Be+e Be+e - - 7 7 Li Li + γ γ +ν 7 Be +ν e Be + p 8 8 B+γ B+γ e 7 7 Li Li + p α α + α 8 8 B B 2α 2α + e + + ν e e 4p 4 He + 2e + + 2ν e + 26.73 MeV

Tunnel & gamow T sun 16 10 6 k E MB 1.3keV Exponential drop of cross section in the energy range of the sun The Gamow Peak: Energy window in which non resonant reactions take place in stellar environment. Examples: E c /kev E 0 /kev σ (E 0 )/barn E min /kev 3 He( 3 He,2p) 4 He 1540 21 7 10-13 16.5 3 He(α,γ) 7 Be 1540 22 9 10-18 107 14 N(p,γ) 15 O 2270 26 4 10-21 200

The astrophysical S-factor σ(e) = S(E) exp(-2πη) /E S(E) = E σ(e) exp(2πη)? 2πη = 31.29 Z 1 Z 2 (µ/e) 0.5

Reaction rates inside the sun: Luminosity Q-value reaction rates L =2. 10 39 MeV/s Q=26.73 MeV L R = Q = 10 38 s -1 in the Lab: ε ~ 10 % I P ~ ma τ ~ µg/cm 2 pb < σ < nb R lab = σ ε I p τ N av /A??? event/month < R lab < event/day signal rate background rate cosmic ray flux at the sea level 2 10-2 cm -2 s -1 on a 10 cm 2 detector 2000 events/day!!!

Shower on LNGS Background reduction in LNGS (shielding 4000 m w.e.) Cosmic shower Radiation Muons Neutrons Photons LNGS/surface 10-6 10-3 10-1 Gran Sasso underground halls

Luna goal LUNA the first worldwide underground accelerator facility goal: technique: Provide a direct measurement of the most relevant fusion reactions of astrophysical interest taking advantage of the very low background of Gran Sasso underground Laboratories

LUNA site LUNA underground Laboratories LUNA 50kV LUNA 400kV

Luna 50 kv LUNA facility LUNA1 50 kv accelerator En. range: 3 50 kev En. stability: < 10-4 current intensity: 50-500 µa windowless gas target 0.3 1 mbar 3 He( 3 He,2p) 4 He D(p,γ) 3 He Gamow peak fully explored D( 3 He,p) 4 He electron screening

Foto 50 kv

Luna 400 kv LUNA2 400 kv accelerator En. range: 50 400 kev current intensity: 200-1000 µa Two different beam lines (2003) for solid and/or 0.5 10 mbar gas target En. calibrated to < 0.3 kev at E p = 130 400 kev Capture γ-rays from 12 C(p,γ) 13 N reaction; Resonances: 23 Na(p,γ) 24 Mg (E p = 308.9 kev) 26 Mg(p,γ) 27 Al (E p = 338.1 kev) 25 Mg(p,γ) 26 Al (E p = 389.2 kev) Present and future activity: 14 N(p,γ) 15 O 4 He( 3 He,γ) 7 Be in progress scheduled in 2004

LUNA phase 2LUNA II foto New 400 kv accelerator

U max = 50-400 kv LUNA 400 kv at LNGS: I LUNA II max = 650 µa Foto = 0.07 kev E max allowed beams : protons, alphas

detectors Detectors 50x50 mm 2 Si detectors (1 mm thick) 50x50 mm 2 E- E Sitelescopes 3 He( 3 He,2p) 4 He D( 3 He,p) 4 He BGO 28cmx8cm 4π D(p,γ) 3 He 14 N(p,γ) 15 O four high eff. HpGe (140%, 120%, 2x100%) 14 N(p,γ) 15 O 4 He( 3 He,γ) 7 Be

30 10 BGO detector BGO 50 2000 Channels 20000 seeds 0 2000 4000 6000 Energy / kev 14 N(p,γ) 15 O Simulation 8000 10 6 10 4 10 2 10 0 4096 Channels 12.5 days Background Spectrum Measured Underground E>5.5 MeV: 4.4 cts/mev/day 2000 4000 6000 8000 Energy / kev

BGO & gastarget Bgo BGO and gas target and gas target pumping stages target calorimeter beam

background Silicon array: Background Less than 4*10-2 counts per day in ROI BGO: See spectrum HpGe: See spectrum

BGO spectrum numebr of events above E = 5 MeV: < 4 counts/mev/day Excellent for reactions with a Q-value > 5 MeV total Energy (MeV)

HpGe spectrum 0.511 40 K 214 Bi 208 Tl LNGS background HpGe 120 % t meas = 3.5 days above E = 5 MeV: < 2 10-3 counts/kev/day

P + N14 LUNA results 3 He( 3 He,2p) 4 He D(p,γ) 3 He 14 N(p, γ) 15 O

He3 + He3 Lowest energy: 2cts/month Lowest cross section: 0.02 pbarn Background < 4*10-2 cts/d in ROI

P + d test D(p,γ) 3 He The second reaction mesured below the Gamow peak Test for: detector, gas target, electronics Detector: BGO ( r int =3 cm, r ext =10 cm, L=28cm) Target: Gas target (p= 1 mbar, L targ = 10 cm) Eγ: 5.5 MeV `

P + d previous D(p,γ) 3 He: Physics case important reaction in protostars cosmogenic d is present in the gas cloud Griffiths et al 1963 Schmid et al 1997 no p+p bottleneck time evolution is governed by the S 1 2 factor Existing data are inconsistent

D(p,g) P + d 10 kev D(p,γ) 3 He LUNA data E cm = 10 kev

P + d 6 kev D(p,γ) 3 He below the Gamow peak E cm = 6 kev σ = 0.01 pbarn Viviani et al. PRC61 (2000)

CNO cycle p,γ 12 C 13 N p,α β - 14 N(p,γ) 15 O Bottle neck of CNO cycle 15 N 13 C 15 O β + p,γ p,γ 14 N Determination of CNO neutrino fluxes Slowest reaction

P+ 14 N and g.c.age P + N14 glob. clusters 14 N(p,γ) 15 O Chronometer of The Universe age S 14,1 /5 S 14,1 x5 Standard CF88

P + N14 Exc st 14 N(p,γ) 15 O E p = 250 kev Q = 41.2 C t = 20 h I =570 µa E target = 45 kev

P + N14 250 kev 14 N(p,γ) 15 O E p = 250 kev Q = 41.2 C t = 20 h I =570 µa E target = 45 kev

P + N14 g.s. 14 N(p,γ) 15 O E p = 250 kev Q = 41.2 C t = 20 h I =570 µa (p,γ 0 ) direct capture to g.s. E target = 45 kev

P + N14 Exc st 14 N(p,γ) 15 O E p = 250 kev Q = 41.2 C t = 20 h I =570 µa 6.79 6.18 (p,γ x ) capture to exc. states 5.18 E target = 45 kev

P + N14 200 kev 14 N(p,γ) 15 O Direct capture ground state transition in the 14 N(p,γ) 15 O reaction at a c.m. energy of 200 kev.

P + N1 4 rate 14 N(p,γ) 15 O Counting rate: 10 6 10 5 p=1 mbar; η=50%; I beam= 250 µa 10 4 10 3 10 2 10 1 back 1σ 10 0 10-1 10-2 50 70 90 110 130 150 170 190 E beam (kev)