Einselection without pointer states -

Similar documents
Under what conditions do quantum systems thermalize?

PHY305: Notes on Entanglement and the Density Matrix

S.K. Saikin May 22, Lecture 13

MP 472 Quantum Information and Computation

Quantum decoherence. Éric Oliver Paquette (U. Montréal) -Traces Worshop [Ottawa]- April 29 th, Quantum decoherence p. 1/2

Reconstructing Entropy from Objective Probabilities

Classical and quantum simulation of dissipative quantum many-body systems

Decoherence and Thermalization of Quantum Spin Systems

arxiv: v2 [cond-mat.stat-mech] 5 Apr 2018

Trapped ion spin-boson quantum simulators: Non-equilibrium physics and thermalization. Diego Porras

Typicality paradigm in Quantum Statistical Thermodynamics Barbara Fresch, Giorgio Moro Dipartimento Scienze Chimiche Università di Padova

Quantum control of dissipative systems. 1 Density operators and mixed quantum states

Emergent Fluctuation Theorem for Pure Quantum States

Decoherence : An Irreversible Process

Dephasing, relaxation and thermalization in one-dimensional quantum systems

Ensembles and incomplete information

arxiv: v1 [quant-ph] 12 Dec 2008

The general reason for approach to thermal equilibrium of macroscopic quantu

arxiv: v1 [quant-ph] 1 Jul 2013

BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS

SPACETIME FROM ENTANGLEMENT - journal club notes -

Thermalization in Quantum Systems

Adiabatic evolution and dephasing

Non-Markovian Quantum Dynamics of Open Systems: Foundations and Perspectives

Lecture 2: Quantum measurement, Schrödinger cat and decoherence

Physics 4022 Notes on Density Matrices

Quantum Mechanics C (130C) Winter 2014 Final exam

Note on invariant properties of a quantum system placed into thermodynamic environment

Introduction to Quantum Information Hermann Kampermann

2 The Density Operator

A geometric analysis of the Markovian evolution of open quantum systems

Taming the non-equilibrium: Equilibration, thermalization and the predictions of quantum simulations

MBL THROUGH MPS. Bryan Clark and David Pekker. arxiv: Perimeter - Urbana. Friday, October 31, 14

arxiv:quant-ph/ v1 21 Feb 2002

(Dynamical) quantum typicality: What is it and what are its physical and computational implications?

Giant Enhancement of Quantum Decoherence by Frustrated Environments

The great conceptual puzzle of statistical mechanics is how a

What is thermal equilibrium and how do we get there?

Multivariate trace inequalities. David Sutter, Mario Berta, Marco Tomamichel

b) (5 points) Give a simple quantum circuit that transforms the state

Lecture 13B: Supplementary Notes on Advanced Topics. 1 Inner Products and Outer Products for Single Particle States

Models of few (and many) body quantum systems with Point Interactions

arxiv: v1 [quant-ph] 16 Oct 2018

arxiv: v2 [hep-th] 27 Dec 2018

Quantum thermodynamics

Physics 239/139 Spring 2018 Assignment 6

Time Evolving Block Decimation Algorithm

Quantum Entanglement and Measurement

Quantum Systems Measurement through Product Hamiltonians

Spin-Boson Model. A simple Open Quantum System. M. Miller F. Tschirsich. Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012

Lecture 4: Entropy. Chapter I. Basic Principles of Stat Mechanics. A.G. Petukhov, PHYS 743. September 7, 2017

Response of quantum pure states. Barbara Fresch 1, Giorgio J. Moro 1

Adiabatic response of open systems

Quantum Reservoir Engineering

arxiv: v2 [quant-ph] 1 Oct 2017

Quantum Chaos and Nonunitary Dynamics

A no-go theorem for theories that decohere to quantum mechanics

QUANTUM DECOHERENCE IN THE THEORY OF OPEN SYSTEMS

Methodology for the digital simulation of open quantum systems

Relational time and intrinsic decoherence

Einselection of Pointer Observables: The New H-Theorem?

Spin liquids in frustrated magnets

arxiv: v2 [quant-ph] 21 Feb 2012

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

Quantum Thermodynamics

arxiv: v2 [hep-th] 7 Apr 2015

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego

Emergence of objective properties from subjective quantum states: Environment as a witness

Entanglement: concept, measures and open problems

arxiv:quant-ph/ v2 26 Jun 2011

Physics 239/139 Spring 2018 Assignment 2 Solutions

Quantum Mechanics C (130C) Winter 2014 Assignment 7

Lecture 2: Open quantum systems

From unitary dynamics to statistical mechanics in isolated quantum systems

4 Matrix product states

Thermodynamical cost of accuracy and stability of information processing

Variational analysis of dissipative Ising models

Quantum Measurements: some technical background

Measuring entanglement entropy of a generic many-body system. Dima Abanin (Harvard) Eugene Demler (Harvard)

(De)-localization in mean-field quantum glasses

Error Classification and Reduction in Solid State Qubits

Ph 219/CS 219. Exercises Due: Friday 20 October 2006

Combined systems in PT-symmetric quantum mechanics

Classical Monte Carlo Simulations

DEPHASING CHANNELS FOR OVERCOMPLETE BASES

Derivation of Bose-Einstein and Fermi-Dirac statistics from quantum mechanics: Gauge-theoretical structure

arxiv:quant-ph/ v4 5 Dec 2000

A quantum dynamical simulator Classical digital meets quantum analog

7 Three-level systems

Typical quantum states at finite temperature

Many-Body Coherence in Quantum Thermodynamics

Quantum Mechanics + Open Systems = Thermodynamics? Jochen Gemmer Tübingen,

Quantum decoherence: From the self-induced approach to Schrödinger-cat experiments

Storage of Quantum Information in Topological Systems with Majorana Fermions

Entanglement in Many-Body Fermion Systems

Observing a quantum phase transition by measuring a single spin

Non-Markovian Quantum Dynamics of Open Systems

Open Quantum Systems

5.80 Small-Molecule Spectroscopy and Dynamics

Transcription:

Einselection without pointer states Einselection without pointer states - Decoherence under weak interaction Christian Gogolin Universität Würzburg 2009-12-16 C. Gogolin Universität Würzburg 2009-12-16 1 / 26

Einselection without pointer states Introduction New foundation for Statistical Mechanics Thermodynamics Statistical Mechanics Second Law ergodicity equal a priory probabilities [2, 3] Classical Mechanics C. Gogolin Universität Würzburg 2009-12-16 2 / 26

Einselection without pointer states Introduction New foundation for Statistical Mechanics Thermodynamics Statistical Mechanics Second Law ergodicity equal a priory probabilities? [2, 3] Classical Mechanics? C. Gogolin Universität Würzburg 2009-12-16 2 / 26

Einselection without pointer states Introduction New foundation for Statistical Mechanics Thermodynamics Statistical Mechanics [2, 3] C. Gogolin Universität Würzburg 2009-12-16 2 / 26

Einselection without pointer states Introduction New foundation for Statistical Mechanics Thermodynamics Statistical Mechanics Quantum Mechanics [2, 3] C. Gogolin Universität Würzburg 2009-12-16 2 / 26

Einselection without pointer states Introduction Why do electrons hop between energy eigenstates? C. Gogolin Universität Würzburg 2009-12-16 3 / 26

Einselection without pointer states Introduction Why do electrons hop between energy eigenstates? quantum mechanical orbitals coherent superpositions C. Gogolin Universität Würzburg 2009-12-16 3 / 26

Einselection without pointer states Introduction Why do electrons hop between energy eigenstates? quantum mechanical orbitals discrete energy levels coherent superpositions hopping C. Gogolin Universität Würzburg 2009-12-16 3 / 26

Einselection without pointer states Introduction Table of contents 1 Technical introduction 2 Setup 3 Subsystem equilibration 4 Decoherence under weak interaction C. Gogolin Universität Würzburg 2009-12-16 4 / 26

Einselection without pointer states Technical introduction Technical introduction C. Gogolin Universität Würzburg 2009-12-16 5 / 26

Einselection without pointer states Technical introduction Quantum Mechanics on one slide Pure Quantum Mechanics ψ H A = A ψ ψ = 1 A ψ = ψ A ψ ψ t = U t ψ 0 U t = e i H t C. Gogolin Universität Würzburg 2009-12-16 6 / 26

Einselection without pointer states Technical introduction Quantum Mechanics on one slide Pure Quantum Mechanics ψ H A = A ψ ψ = 1 A ψ = ψ A ψ ψ t = U t ψ 0 U t = e i H t Include classical randomness ρ, ψ M(H) ψ = ψ ψ C. Gogolin Universität Würzburg 2009-12-16 6 / 26

Einselection without pointer states Technical introduction Quantum Mechanics on one slide Pure Quantum Mechanics ψ H A = A ψ ψ = 1 A ψ = ψ A ψ ψ t = U t ψ 0 U t = e i H t Include classical randomness ρ, ψ M(H) ψ = ψ ψ Tr[ρ] = i i ρ i = 1 A ρ = Tr[A ρ] C. Gogolin Universität Würzburg 2009-12-16 6 / 26

Einselection without pointer states Technical introduction Quantum Mechanics on one slide Pure Quantum Mechanics ψ H A = A ψ ψ = 1 A ψ = ψ A ψ ψ t = U t ψ 0 U t = e i H t Include classical randomness ρ, ψ M(H) ψ = ψ ψ Tr[ρ] = i i ρ i = 1 A ρ = Tr[A ρ] ρ t = U t ρ 0 U t U t = e i H t C. Gogolin Universität Würzburg 2009-12-16 6 / 26

Einselection without pointer states Technical introduction Quantum Mechanics on one slide Pure Quantum Mechanics ψ H A = A ψ ψ = 1 A ψ = ψ A ψ ψ t = U t ψ 0 U t = e i H t Include classical randomness ρ, ψ M(H) ψ = ψ ψ Tr[ρ] = i i ρ i = 1 A ρ = Tr[A ρ] ρ t = U t ρ 0 U t U t = e i H t mixtures: ρ = p ψ 1 + (1 p) ψ 2 C. Gogolin Universität Würzburg 2009-12-16 6 / 26

Einselection without pointer states Technical introduction Technical introduction Trace distance D(ρ, σ) = 1 2 ρ σ 1 C. Gogolin Universität Würzburg 2009-12-16 7 / 26

Einselection without pointer states Technical introduction Technical introduction Trace distance D(ρ, σ) = 1 2 ρ σ 1 = max Tr[A ρ] Tr[A σ] 0 A 1 C. Gogolin Universität Würzburg 2009-12-16 7 / 26

Einselection without pointer states Technical introduction Technical introduction Trace distance Effective dimension D(ρ, σ) = 1 2 ρ σ 1 = max Tr[A ρ] Tr[A σ] 0 A 1 d eff (ρ) = 1 Tr(ρ 2 ) C. Gogolin Universität Würzburg 2009-12-16 7 / 26

Einselection without pointer states Technical introduction Technical introduction Trace distance Effective dimension D(ρ, σ) = 1 2 ρ σ 1 = max Tr[A ρ] Tr[A σ] 0 A 1 d eff (ρ) = 1 Tr(ρ 2 ) d eff (ψ) = 1 C. Gogolin Universität Würzburg 2009-12-16 7 / 26

Einselection without pointer states Technical introduction Technical introduction Trace distance Effective dimension D(ρ, σ) = 1 2 ρ σ 1 = max Tr[A ρ] Tr[A σ] 0 A 1 d eff (ρ) = 1 Tr(ρ 2 ) d eff (ψ) = 1 d eff ( 1 d ) = d C. Gogolin Universität Würzburg 2009-12-16 7 / 26

Einselection without pointer states Technical introduction Technical introduction Trace distance Effective dimension D(ρ, σ) = 1 2 ρ σ 1 = max Tr[A ρ] Tr[A σ] 0 A 1 d eff (ρ) = 1 Tr(ρ 2 ) d eff (ψ) = 1 d eff ( 1 d ) = d Time average 1 T ω = ρ t t = lim ρ t dt T T 0 C. Gogolin Universität Würzburg 2009-12-16 7 / 26

Einselection without pointer states Technical introduction Choosing random states Mathematical construction Haar measure on SU(n) uniform distribution µ(v ) = µ(u V ) U 0 = ψ Pr{ ψ } = Pr{U ψ } C. Gogolin Universität Würzburg 2009-12-16 8 / 26

Einselection without pointer states Technical introduction Choosing random states Mathematical construction Haar measure on SU(n) uniform distribution µ(v ) = µ(u V ) U 0 = ψ Pr{ ψ } = Pr{U ψ } Explicit construction 1 expand in basis: ψ = i c i i i j = δ ij 2 choose c i from a normal distribution 3 normalize 1 = i c i 2 ψ ψ = 1 C. Gogolin Universität Würzburg 2009-12-16 8 / 26

Einselection without pointer states Setup Setup C. Gogolin Universität Würzburg 2009-12-16 9 / 26

Einselection without pointer states Setup Setup System, H S, H S Bath, H B, H B H SB ρ S t = Tr B [ψ t ] ρ B t = Tr S [ψ t ] Tr[(A S 1 B )ψ t ] = Tr[A S ρ S t ] reduced state locally observable C. Gogolin Universität Würzburg 2009-12-16 10 / 26

Einselection without pointer states Setup Setup System, H S, H S Bath, H B, H B H SB ρ S t = Tr B [ψ t ] ρ B t = Tr S [ψ t ] dψ t dt = i [ψ t, H ] C. Gogolin Universität Würzburg 2009-12-16 10 / 26

Einselection without pointer states Setup A very weak assumption on the Hamiltonian H = H S 1 + 1 H B + H SB C. Gogolin Universität Würzburg 2009-12-16 11 / 26

Einselection without pointer states Setup A very weak assumption on the Hamiltonian H = H 0 + H S 1 + 1 H B + H SB H 0 1 Tr[H S ] = Tr[H B ] = Tr[H SB ] = 0 C. Gogolin Universität Würzburg 2009-12-16 11 / 26

Einselection without pointer states Setup A very weak assumption on the Hamiltonian H = H 0 + H S 1 + 1 H B + H SB H 0 1 Tr[H S ] = Tr[H B ] = Tr[H SB ] = 0 Assumption A Hamiltonian has non degenerate energy gaps iff: E k E l = E m E n = k = l m = n or k = m l = n C. Gogolin Universität Würzburg 2009-12-16 11 / 26

Einselection without pointer states Subsystem equilibration Subsystem equilibration and fluctuations around equilibrium C. Gogolin Universität Würzburg 2009-12-16 12 / 26

Einselection without pointer states Subsystem equilibration Measure concentration in Hilbert space Theorem 1 For random ψ 0 P 1 (H) with d = dim(h) { Pr d eff (ω) < d } 2 e c d 4 d eff (ω) # energy eigenstates in ψ 0 [6] C. Gogolin Universität Würzburg 2009-12-16 13 / 26

Einselection without pointer states Subsystem equilibration Measure concentration in Hilbert space Theorem 1 For random ψ 0 P 1 (H) with d = dim(h) { Pr d eff (ω) < d } 2 e c d 4 d eff (ω) # energy eigenstates in ψ 0 = If d is large then d eff (ω) is large. [6] C. Gogolin Universität Würzburg 2009-12-16 13 / 26

Einselection without pointer states Subsystem equilibration Equilibration Theorem 2 For every ψ 0 P 1 (H) D(ρ S t, ω S ) t 1 d 2 S 2 d eff (ω) where ρ S t = Tr B ψ t ω S = ρ S t t ω = ψ t t [6] C. Gogolin Universität Würzburg 2009-12-16 14 / 26

Einselection without pointer states Subsystem equilibration Equilibration Theorem 2 For every ψ 0 P 1 (H) D(ρ S t, ω S ) t 1 d 2 S 2 d eff (ω) where ρ S t = Tr B ψ t ω S = ρ S t t ω = ψ t t = If d eff (ω) d 2 S then ρs t equilibrates. [6] C. Gogolin Universität Würzburg 2009-12-16 14 / 26

Einselection without pointer states Subsystem equilibration Speed of the fluctuations around equilibrium D(ρ S t, ρ S t+δt v S (t) = lim ) = 1 δt 0 δt 2 dρ S t dt 1 [5] C. Gogolin Universität Würzburg 2009-12-16 15 / 26

Einselection without pointer states Subsystem equilibration Speed of the fluctuations around equilibrium D(ρ S t, ρ S t+δt v S (t) = lim ) = 1 δt 0 δt 2 dρ S t dt 1 dρ S t dt = i Tr B [ψ t, H ] [5] C. Gogolin Universität Würzburg 2009-12-16 15 / 26

Einselection without pointer states Subsystem equilibration Speed of the fluctuations around equilibrium D(ρ S t, ρ S t+δt v S (t) = lim ) = 1 δt 0 δt 2 dρ S t dt 1 dρ S t dt = i Tr B [ψ t, H ] Theorem 3 For every ψ 0 P 1 (H) v S (t) t H S 1 + H SB d 3 S d eff (ω) [5] C. Gogolin Universität Würzburg 2009-12-16 15 / 26

Einselection without pointer states Subsystem equilibration Speed of the fluctuations around equilibrium D(ρ S t, ρ S t+δt v S (t) = lim ) = 1 δt 0 δt 2 dρ S t dt 1 dρ S t dt = i Tr B [ψ t, H ] Theorem 3 For every ψ 0 P 1 (H) v S (t) t H S 1 + H SB d 3 S d eff (ω) = If d eff (ω) d 3 S then ρs t is slow. [5] C. Gogolin Universität Würzburg 2009-12-16 15 / 26

Einselection without pointer states Subsystem equilibration Summary Typical states of large quantum systems have a high average effective dimension, their subsystems equilibrate and fluctuate slowly around the equilibrium state. C. Gogolin Universität Würzburg 2009-12-16 16 / 26

Einselection without pointer states Decoherence under weak interaction Decoherence under weak interaction C. Gogolin Universität Würzburg 2009-12-16 17 / 26

Einselection without pointer states Decoherence under weak interaction Approach 1: Effective dynamics standard QM: H S H B H SB dρ S t dt = i Tr B [ψ t, H ] C. Gogolin Universität Würzburg 2009-12-16 18 / 26

Einselection without pointer states Decoherence under weak interaction Approach 1: Effective dynamics standard QM: effective dynamics: H S H B H S H B H SB H SB L dρ S t dt = i Tr B [ψ t, H ] dρ S t dt = i [ρ S t, H S ] + i L(ρ S t ) C. Gogolin Universität Würzburg 2009-12-16 18 / 26

Einselection without pointer states Decoherence under weak interaction Approach 2: Decoherence à la Zurek Special Hamiltonian with pointer sates p : H = p p p H (p) Initial product state ψ 0 = ρ S 0 ψb 0 [7] C. Gogolin Universität Würzburg 2009-12-16 19 / 26

Einselection without pointer states Decoherence under weak interaction Approach 2: Decoherence à la Zurek Special Hamiltonian with pointer sates p : H = p p p H (p) Initial product state ψ 0 = ρ S 0 ψb 0 Einselection Off-diagonal elements in the pointer basis are suppressed: p ρ S t p = p ρ S 0 p ψ0 B U (p ) (p) t U t ψ0 B }{{} 1 [7] C. Gogolin Universität Würzburg 2009-12-16 19 / 26

Einselection without pointer states Decoherence under weak interaction Comparison Pros and cons unitary evolution general mechanism effective dynamics X einselection X C. Gogolin Universität Würzburg 2009-12-16 20 / 26

Einselection without pointer states Decoherence under weak interaction Comparison Pros and cons unitary evolution general mechanism effective dynamics X einselection X Can we find a more general mechanism based on standard Quantum Mechanics? C. Gogolin Universität Würzburg 2009-12-16 20 / 26

Einselection without pointer states Decoherence under weak interaction Yes we can! C. Gogolin Universität Würzburg 2009-12-16 21 / 26

Einselection without pointer states Decoherence under weak interaction Yes we can! Given the interaction is weak H SB H S, H S H B H SB C. Gogolin Universität Würzburg 2009-12-16 21 / 26

Einselection without pointer states Decoherence under weak interaction Yes we can! Given the interaction is weak H SB H S, when is the subsystem slow? v S (t) 1 2 = dρ S t dt 1 H S H SB H B C. Gogolin Universität Würzburg 2009-12-16 21 / 26

Einselection without pointer states Decoherence under weak interaction Yes we can! Given the interaction is weak H SB H S, when is the subsystem slow? v S (t) 1 2 = dρ S t dt 1 H S H SB H B dρ S t dt = i Tr B [ψ t, H ] C. Gogolin Universität Würzburg 2009-12-16 21 / 26

Einselection without pointer states Decoherence under weak interaction Yes we can! Given the interaction is weak H SB H S, when is the subsystem slow? v S (t) 1 2 = dρ S t dt 1 H S H SB H B dρ S t dt = i Tr B [ψ t, H ] = i Tr B [ψ t, H 0 + H S 1 + 1 H B + H SB ] C. Gogolin Universität Würzburg 2009-12-16 21 / 26

Einselection without pointer states Decoherence under weak interaction Yes we can! Given the interaction is weak H SB H S, when is the subsystem slow? v S (t) 1 2 = dρ S t dt 1 H S H SB H B dρ S t dt = i Tr B [ψ t, H ] = i Tr B [ψ t, H 0 + H S 1 + 1 H B + H SB ] [5] = = i Tr B [ψ t, H S 1 + H SB ] C. Gogolin Universität Würzburg 2009-12-16 21 / 26

Einselection without pointer states Decoherence under weak interaction Tow competing forces dρ S t dt = i Tr B [ψ t, H S 1 + H SB ] = i [ρ S t, H S ] + i Tr B [ψ t, H SB ] C. Gogolin Universität Würzburg 2009-12-16 22 / 26

Einselection without pointer states Decoherence under weak interaction Tow competing forces dρ S t dt = i Tr B [ψ t, H S 1 + H SB ] = i [ρ S t, H S ] + i Tr B [ψ t, H SB ] ρ S t H S C. Gogolin Universität Würzburg 2009-12-16 22 / 26

Einselection without pointer states Decoherence under weak interaction Tow competing forces dρ S t dt = i Tr B [ψ t, H S 1 + H SB ] = i [ρ S t, H S ] + i Tr B [ψ t, H SB ] ρ S t H SB H S C. Gogolin Universität Würzburg 2009-12-16 22 / 26

Einselection without pointer states Decoherence under weak interaction Tow competing forces dρ S t dt = i Tr B [ψ t, H S 1 + H SB ] = i [ρ S t, H S ] + i Tr B [ψ t, H SB ] ρ S t H SB H S C. Gogolin Universität Würzburg 2009-12-16 22 / 26

Einselection without pointer states Decoherence under weak interaction Tow competing forces dρ S t dt = i Tr B [ψ t, H S 1 + H SB ] = i [ρ S t, H S ] + i Tr B [ψ t, H SB ] ρ S t H SB H S C. Gogolin Universität Würzburg 2009-12-16 22 / 26

Einselection without pointer states Decoherence under weak interaction Decoherence through weak interaction Theorem 4 All reduced states ρ S t satisfy 2 Ek S ES l ρs kl 2 H SB + where max k l ρ S kl = ES k ρs t E S l dρ S t dt 1 [1] C. Gogolin Universität Würzburg 2009-12-16 23 / 26

Einselection without pointer states Decoherence under weak interaction Decoherence through weak interaction Theorem 4 All reduced states ρ S t satisfy 2 Ek S ES l ρs kl 2 H SB + where max k l ρ S kl = ES k ρs t E S l dρ S t dt 1 = If ρ S t is slow its off-diagonal elements are small. [1] C. Gogolin Universität Würzburg 2009-12-16 23 / 26

Einselection without pointer states Decoherence under weak interaction Conclusions Pros and cons unitary evolution general mechanism effective dynamics X einselection X our mechanism Applications electronic excitations of gases at moderate temperature radioactive decay environment assisted entanglement creation... C. Gogolin Universität Würzburg 2009-12-16 24 / 26

Einselection without pointer states Decoherence under weak interaction References [1] C. Gogolin, Einselection without pointer states, 0908.2921v2. [2] S. Lloyd, Black holes, demons and the loss of coherence: How complex systems get information, and what they do with it,. PhD thesis, Rockefeller University, April, 1991. [3] S. Popescu, A. J. Short, and A. Winter, Entanglement and the foundations of statistical mechanics, Nature Physics 2 (2006) no. 11, 754. [4] N. Linden, S. Popescu, A. J. Short, and A. Winter, Quantum mechanical evolution towards thermal equilibrium, Physical Review E 79 (2009) no. 6, 061103, 0812.2385v1. [5] N. Linden, S. Popescu, A. J. Short, and A. Winter, On the speed of fluctuations around thermodynamic equilibrium, 0907.1267v1. [6] N. Linden, S. Popescu, A. J. Short, and A. Winter, Quantum mechanical evolution towards thermal equilibrium, 0812.2385v1. [7] W. H. Zurek, Environment-induced superselection rules, Phys. Rev. D (1982) no. 26, 1862 1880. C. Gogolin Universität Würzburg 2009-12-16 25 / 26

Einselection without pointer states Thank you for your attention! beamer slides: http://www.cgogolin.de C. Gogolin Universität Würzburg 2009-12-16 26 / 26