BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

Similar documents
Course 121, , Test III (JF Hilary Term)

We will begin by supplying the proof to (a).

MAS221 Analysis, Semester 2 Exercises

Sequence and Series of Functions

[Q. Booklet Number]

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

The Definite Integral

INSTRUCTOR: CEZAR LUPU. Problem 1. a) Let f(x) be a continuous function on [1, 2]. Prove that. nx 2 lim

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1 Tangent Line Problem

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

Convergence rates of approximate sums of Riemann integrals

Important Facts You Need To Know/Review:

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

CITY UNIVERSITY LONDON

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Objective Mathematics

Math 104: Final exam solutions

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

Chapter 7 Infinite Series

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

Review of the Riemann Integral

Things I Should Know In Calculus Class

( ) dx ; f ( x ) is height and Δx is

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

ANALYSIS HW 3. f(x + y) = f(x) + f(y) for all real x, y. Demonstration: Let f be such a function. Since f is smooth, f exists.

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

EXERCISE a a a 5. + a 15 NEETIIT.COM

The Definite Riemann Integral

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Convergence rates of approximate sums of Riemann integrals

Limit of a function:

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

BC Calculus Review Sheet

PhysicsAndMathsTutor.com

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

POWER SERIES R. E. SHOWALTER

Test Info. Test may change slightly.

y udv uv y v du 7.1 INTEGRATION BY PARTS

Review of Sections

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

5.1 - Areas and Distances

1.3 Continuous Functions and Riemann Sums

National Quali cations SPECIMEN ONLY

Approximations of Definite Integrals

Limits and an Introduction to Calculus

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule).

( ) = A n + B ( ) + Bn

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2]

Advanced Calculus Test File Spring Test 1

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

denominator, think trig! Memorize the following two formulas; you will use them often!

Math 3B Midterm Review

10.5 Test Info. Test may change slightly.

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

MATHEMATICS. 61. The differential equation representing the family of curves where c is a positive parameter, is of

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION

(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1

National Quali cations AHEXEMPLAR PAPER ONLY

Name: A2RCC Midterm Review Unit 1: Functions and Relations Know your parent functions!

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

Crushed Notes on MATH132: Calculus

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION. (2014 Admn. onwards) III Semester. B.Sc. Mathematics CORE COURSE CALCULUS AND ANALYTICAL GEOMETRY

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6)

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Infinite Sequences and Series. Sequences. Sequences { } { } A sequence is a list of number in a definite order: a 1, a 2, a 3,, a n, or {a n } or

Graphing Review Part 3: Polynomials

lecture 16: Introduction to Least Squares Approximation

MTH 146 Class 16 Notes

Riemann Integration. Chapter 1

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date:

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

EVALUATING DEFINITE INTEGRALS

Approximate Integration

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

Calculus Summary Sheet

Sharjah Institute of Technology

Chapter Real Numbers

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n.

The Weierstrass Approximation Theorem

LEVEL I. ,... if it is known that a 1

9.1 Sequences & Series: Convergence & Divergence

Math 2414 Activity 17 (Due with Final Exam) Determine convergence or divergence of the following alternating series: a 3 5 2n 1 2n 1

Basic Limit Theorems

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

BC Calculus Path to a Five Problems

BRAIN TEASURES TRIGONOMETRICAL RATIOS BY ABHIJIT KUMAR JHA EXERCISE I. or tan &, lie between 0 &, then find the value of tan 2.


Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Transcription:

EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si )/ (cos ) / d Q. (si )(sec ) Q. d Q.6 si d Q.7 l l d Q. (l ) (l ) l d Q.9 e d Q. Itegrte f () w.r.t., where f () = t + l l ( )d Q. Q. ( ) si d Q. (e cos ) d cosec cot. sec Q. cosec cot sec d Q.7 sisec Q. d ( cos si )( si cos ) cossi d d Q. d Q.6 79si d seccos ec Q. t.t.t d Q.9 si si si cos Q. d Q. si cos cos cos d si d Q. e Q.6 si d Q. si t si cos ( si si cos Q.9 / (7 ) cos ) d Q.7 d ( b) d c ( b) l d Q. / d Q. d ( ) Q. Q. e ( ) d d Q. d Q. cot t si 7 d Q. ( ) 7 d

d Q. Q. Q. d 6 d 9cos si Q. Q.6 cos Q.9 si z si si EXERCISE II / / Q. si rc t(si) d Q. cos. si 6 d Q.7 Let h () = (fog) () + K where K is y costt. If h() d d d Q.7 ( ) ( )( ) ( )d d Q. cos e Q. Evlute I = / d Q.6 cos (cos si ) f () f (t) vlue of j () where j () = dt, where f d g re trigoometric fuctios. g(t) g() d d = (, ) (l ) d hece fid I. si the compute the cos (cos ) Q. Fid the vlue of the defiite itegrl si cos d. Q.9 Evlute the itegrl : d Q. If P = d ; Q = d d R = () Q =, (b) P = R, (c) P Q + R = Q. Prove tht eb g d zb ( )( b) b d b ( ) ( b) ( b) j the prove tht Q. ( ) d Q..l d Q. Evlute: d Q. si d Q.6 / si si bcos d Q.7 d si Q. e cos d Q.9 7 6 7 d Q. Let, be the distict positive roots of the equtio t = the evlute (si si ) d, idepedet of d.

/ Q. cos si si Q. Evlute: d Q. ( )si d ( cos ) ( b)sec t d (,b>) t Q. If, d re the three vlues of which stisfy the equtio cos ) (si d cos d = the fid the vlue of ( Q. Show tht pq ). cos d = q + sip where q N & p Q.6 Show tht the sum of the two itegrls / e (+)² d + e 9( /)² d is zero. / si Q.7 d / Q. si si b cos d (>, b>) Q.9 d Q. / t si si b si d Q. si b Q. Commet upo the ture of roots of the qudrtic equtio + = k + t k dt depedig o the vlue of k + R. Q. si z z Q. Show tht e e dz e e d Q. Prove tht z dz Q.6 (.d ) (b d d si.si.cos d ) / ( > ) d Q.7 ()., (b) d l L si d d Q. Show tht = = cos cos NM Q.9 si si d si if if (, ) (, )

Q. Q. (sicos) d ( si )cos d ( cos ) Q. Evlute l Q. Prove tht u f ( t) dt du = d Q. f (u).( u) du. 6 t d Q. Lim (6si 7 cos ) d. Q.6 Show tht f d f ( ). l l. ( ). ( Q.7 Evlute the defiite itegrl, Q. Prove tht () ( )( ) d = 99 666 (b) 66 si 69 ) d d = d (c) d ()( ) = where, > (d).d ()( ) = where < Q.9 If f() = cos (cos ) (cos ) (cos ) (cos ) (cos ) cos, fid f( ) d Q. Evlute : e l t si (cos ) d. Q. If the derivtive of f() wrt is Q. Fid the rge of the fuctio, f() = EXERCISE III cos f () the show tht f() is periodic fuctio. si dt t cos t. Q. A fuctio f is defied i [, ] s f() = si cos ; ; f() = ; f (/) =. Discuss the cotiuity d derivbility of f t =. Q. Let f() = [ if if d g() = cotiuity d differetibility of g() i (, ). Q. Prove the iequlities: () 6 < d f(t) dt. Defie g () s fuctio of d test the (b) e / < e d < e².

(c) < d b the fid & b. cos d (d) Q.6 Determie positive iteger, such tht e ( ) d = 6 6e. Q.7 Usig clculus () If < the fid the sum of the series.... (b) If < prove tht (c) Prove the idetity f ()= t + t + t +... + Q. If () = cos ( t) (t) dt. The fid the vlue of () + (). 7 d y Q.9 If y = f (t) si ( t) dt the prove tht y = f (). d Q. If y = ltdt, fid d y d t = e. 6.... t = cot Q. If f() = + [y² + ²y] f(y) dy where d y re idepedet vrible. Fid f(). 7 cot dy Q. A curve C is defied by: = e cos for [, ] d psses through the origi. Prove tht the d roots of the fuctio (other th zero) occurs i the rges < < d < <. Q.() Let g() = c. e & let f() = e t. ( t + ) / dt. For certi vlue of 'c', the limit of s is fiite d o zero. Determie the vlue of 'c' d the limit. (b) Fid the costts '' ( > ) d 'b' such tht, Lim t d t t b si =. f( ) g( ) d t Q. Evlute: Lim dt d (t )(t ) si Q. Give tht U = {( )} & prove tht Q.6 If d U d = ( ) U ( )U, further if V = e. U d, prove tht whe, V + ( ).V ( ) V = t t dt = ( > ) the show tht there c be two itegrl vlues of stisfyig this

equtio. if Q.7 Let f() = if. Defie the fuctio F() = f(t) dt d show tht F is ( ) if cotiuous i [, ] d differetible i (, ). Q. Let f be ijective fuctio such tht f() f(y) + = f() + f(y) + f(y) for ll o egtive rel & y with f () = & f () = f(). Fid f() & show tht, f() d (f() + ) is costt. Q.9 Evlute: () Lim (b) Lim (d) Give Lim /... ; C C... ; (c) Lim Q. Prove tht si + si + si +... + si (k ) = prove tht, / Q. If U = si si / si k d = si! = b where d b re reltively prime, fid the vlue of ( + b)..... 7 k / ; si k, k N d hece si d, the show tht U, U, U,..., U costitute AP. Hece or otherwise fid the vlue of U. Q. Solve the equtio for y s fuctio of, stisfyig y (t)dt ( ) t y(t)dt, where >, give y () =. Q. Prove tht : () I m, = m. ( ) d = (b) I m, = m!! ( m )!! m. (l ) d = () (m ) m, N. m, N. Q. Fid positive rel vlued cotiuously differetible fuctios f o the rel lie such tht for ll f () = ( t) f '(t) f dt + e Q. Let f() be cotiuously differetible fuctio the prove tht, where [. ] deotes the gretest iteger fuctio d >. [] [t] f (t) dt = []. f() f (k) Q.6 Let f be fuctio such tht f(u) f(v) u v for ll rel u & v i itervl [, b]. The: (i) Prove tht f is cotiuous t ech poit of [, b]. k

b (ii) Assume tht f is itegrble o [, b]. Prove tht, f( ) d ( b ) f( c) ( b ) Q.7 Let F () = deotes the derivtive., where c b t dt d G () = t dt the compute the vlue of (FG)' () where dsh Q. Show tht for cotiuously thrice differetible fuctio f() Q.9 Prove tht f() f() = f() + k ( ) k k f( ). = k m + f ( t )( t ) dt m k ( ) k m k k Q. Let f d g be fuctio tht re differetible for ll rel umbers d tht hve the followig properties: (i) f ' () = f () g () (ii) g ' () = g () f () (iii) f () = (iv) g () = () Prove tht f () + g () = 6 for ll. (b) Fid f () d g (). ANSWER KEY EXERCISE I Q. l cos cos + C Q. Q. l(cos + si ) + + (si os ) Q. t 6 l Q. t Q.6 e c e cos si cos si Q.7 (c) (si ) l t l (sec ) Q. l t Q.9 t t Q. l b b t t + t + C whe t = + / Q. / cos Q. cos. rc cos si. l cos si si si Q. t / (t ) Q. l t + sec² + t Q. rccos c

Q.6 ( + ) rc t Q.7 9. l Q. l (l) l e Q.9 l e e t t Q. l ( ) Q. t ( t ) t 6 l t + C where t = /6 Q. + t cos cos l Q. si sec (si cos ) (si cos ) Q. l c cos cos + c Q. C l( + ( + )e ) ( )e Q.6 si cos l t si cos Q.7 l rc t (si cos ) c Q. (sec ) (sec ) (sec ) si cos Q.9 si l si cos cot cot cot cot cot Q. l cos si Q. rct t c Q. cos si cot. l e cos cos Q. l ( + t) l ( + t ) + l t t t t t t where t = Q. lt t c Q. c ( ) cot Q.6 c e cos ( cosec ) Q.7 si b k Q. e c l Q. rcsec c Q. u u u Q. t t t si t u where t = t (7) Q.9 c 9 7 c where u Q. t si si cos Q. l + 7 6 + 6 t () + Q. rct c () Q.6 + C si Q.7. c Q. l + C

t t Q.9 l l t t where t = cos d = cosec (cot) Q. cosec t cosec Q. 6 EXERCISE II Q. l Q. 6 e Q. Q. 6 Q.7 sec() Q. 6 Q.9 + Q. Q.6 l 7 Q. ( l ) Q. l ( ) Q. Q.6 ( b) Q.7 Q. (e ) 6 Q.9 Q. ( b) Q. (b) Q. Q. ( ) Q. Q.9 Q. 6 rc t rc t Q. Q.7 Q. 6 Q. rel & distict k R Q. Q.6 Q.7 () ; (b) l Q.9 l Q. 6 l Q. 7 Q. l 6 Q. Q. 7 Q.7 666 Q.9 Q. ( l) EXERCISE III Q., Q. cot. & der. t =

Q. g() is cot. i (, ); g() is der. t = & ot der. t =. Note tht ; ( ) for g() = for for Q. (c) = & b = 7 Q.6 = Q.7 () 6 Q. cos Q. + e Q. f() = + +9 ² 9 Q. () c = d Limit will be (b) = d b = Q.. Q.6 = or Q.7 F() = if if if Q. f () = + Q.9 () e (/) ( ) ; (b) l ; (c) e ; (d) Q. U = Q. y = e e Q. f () = e + Q.7 Q. f () = + e ; g () = e