The Quest for Light Scalar Quarkonia from elsm

Similar documents
Development of a hadronic model: general considerations. Francesco Giacosa

Phenomenology of a pseudoscalar glueball and charmed mesons

arxiv: v2 [hep-ph] 26 Mar 2013

arxiv:nucl-th/ v1 23 Feb 2007 Pion-nucleon scattering within a gauged linear sigma model with parity-doubled nucleons

Scalar fields in low-energy QCD

Axial anomaly s role on conventional mesons, baryons, and pseudoscalar glueball. Theory seminar at the ITP, Uni Giessen 20/12/2017, Giessen, Germany

The chiral anomaly and the eta-prime in vacuum and at low temperatures

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

2 topics on light scalars: their role in thermal models and the pole of k

The scalar meson puzzle from a linear sigma model perspective

Gian Gopal Particle Attributes Quantum Numbers 1

Chiral and angular momentum content of rho and rho mesons from dynamical lattice calculations

Symmetries and in-medium effects

Recent Results on Spectroscopy from COMPASS

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

Tetraquarks and Goldstone boson physics

Hadron Spectroscopy at COMPASS

Spectroscopy Results from COMPASS. Jan Friedrich. Physik-Department, TU München on behalf of the COMPASS collaboration

Hadronic physics from the lattice

Lecture 9 Valence Quark Model of Hadrons

Fluid dynamics with a critical point

Nature of the sigma meson as revealed by its softening process

Bethe Salpeter studies of mesons beyond rainbow-ladder

HLbl from a Dyson Schwinger Approach

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872)

hybrids (mesons and baryons) JLab Advanced Study Institute

8 September Dear Paul...

Exotic Hadrons. O Villalobos Baillie MPAGS PP5 November 2015

The Quark Parton Model

t Hooft Determinant at Finite Temperature with Fluctuations

Light-Meson Spectroscopy at Jefferson Lab

Discovery of charged bottomonium-like Z b states at Belle

Hadronic Resonances in a Hadronic Picture. Daisuke Jido (Nuclear physics group)

Forefront Issues in Meson Spectroscopy

Photoabsorption and Photoproduction on Nuclei in the Resonance Region

Some recent progresses in heavy hadron physics. Kazem Azizi. Oct 23-26, Second Iran & Turkey Joint Conference on LHC Physics

Theory toolbox. Chapter Chiral effective field theories

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira

Proton Structure and Prediction of Elastic Scattering at LHC at Center-of-Mass Energy 7 TeV

Medium Modifications of Hadrons and Electromagnetic Probe

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

arxiv:nucl-th/ v1 21 Jan 1999

Dr Victoria Martin, Prof Steve Playfer Spring Semester 2013

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Quantum Chromo Dynamics (QCD), as the fundamental theory of the strong interaction predicts the existence of exotic mesons made of gluons. Observation

arxiv:hep-ex/ v2 2 Feb 2001

Fractionized Skyrmions in Dense Compact-Star Matter

Heavy mesons and tetraquarks from lattice QCD

QCD Symmetries in eta and etaprime mesic nuclei

Investigating the Light Scalar Mesons

PROBING OF STRONG INTERACTIONS AND HADRONIC MATTER WITH CHARMONIUM-LIKE STUDIES

Isospin. K.K. Gan L5: Isospin and Parity 1

PoS(EPS-HEP 2009)057. Bottomonium Studies at BaBar. Veronique Ziegler. SLAC National Accelerator Laboratory

Low mass dileptons from Pb + Au collisions at 158 A GeV

NEW PERSPECTIVES FOR STUDY OF CHARMONIUM AND EXOTICS ABOVE DD THRESHOLD. Barabanov M.Yu., Vodopyanov A.S.

Glueballs and their decay in holographic QCD

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.:

Tests of Chiral Perturbation Theory in Primakoff Reactions at COMPASS

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

arxiv: v1 [hep-ex] 31 Dec 2014

PCAC in Nuclear Medium and the Lovelace - Shapiro - Veneziano formula

arxiv:hep-ph/ v2 22 Feb 1996

Lattice QCD investigation of heavy-light four-quark systems

Confined chirally symmetric dense matter

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Can we locate the QCD critical endpoint with a Taylor expansion?

General Introductory Remarks. gamardshoba. me war germaniidan CGSWHP 04. Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

spectroscopy overview Jozef Dudek Old Dominion University & Jefferson Lab thanks for inviting a whinging pom

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

Aspects of Two- and Three-Flavor Chiral Phase Transitions

Hadron Spectrospopy & Primakoff Reactions at COMPASS

Lectures on Chiral Perturbation Theory

Overview of Light-Hadron Spectroscopy and Exotics

What do we learn from the inclusion of photoproduction data into the multichannel excited baryon analysis?

The symmetries of QCD (and consequences)

Johan Bijnens. Lund University. bijnens bijnens/chpt.html

Quarkonium Phenomenology in Vacuum

Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics

Mass Components of Mesons from Lattice QCD

Probing of XYZ meson structure with near threshold pp and pa collisions

Curriculum Vitae Denis Parganlija

arxiv: v2 [hep-ph] 18 Sep 2017

Applications of QCD Sum Rules to Heavy Quark Physics

πn Multi-πN Scattering in the 1/N c Expansion (HJK, Richard Lebed, Phys.Rev.D75:016002,2007)

Analyticity and crossing symmetry in the K-matrix formalism.

arxiv: v1 [hep-ex] 1 Sep 2015

Goldstone bosons in the CFL phase

Scalar mesons in three-flavor Linear Sigma Models

The arrangement of the fundamental particles on mass levels derived from the Planck Mass

Quark Model. Ling-Fong Li. (Institute) Note 8 1 / 26

Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations

Photon Production in a Hadronic Transport Approach

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature.

LECTURE ONE LECTURE TWO

Mesonic and nucleon fluctuation effects at finite baryon density

Valence quark contributions for the γn P 11 (1440) transition

In-medium properties of the nucleon within a pirho-omega model. Ju-Hyun Jung in collaboration with Hyun-Chul Kim and Ulugbek Yakhshiev

Discrete Transformations: Parity

Transcription:

Institut für Theoretische Physik Goethe-Universität Frankfurt am Main The Quest for Light calar Quarkonia from elm Denis Parganlija [Based on arxiv: 5.3647] In collaboration with Francesco Giacosa and Dirk H. Rischke (Frankfurt) György Wolf and Péter ovács (Budapest) NCNP tockholm

Introduction: Definitions and Experimental Data Mesons: quark-antiquark states calar mesons: J PC = ++ More scalars than predicted by quarkantiquark picture look for tetraquarks, glueballs Mesons: hadronic states with integer spin NCNP tockholm

Motivation: PDG Data on J PC = ++ Mesons n n u u + dd Five states up to.8 GeV (isoscalars) tate Mass [MeV] Width [MeV] ss f (6) 4-6 - f (98) 98± 4 - f (37) - 5-5 f (5) 55±6 9±7 f (7) 7±6 35±8 q q qq Glueball NCNP tockholm meson - meson bound state

Linear igma Model Implements features of QCD: U(N f ) L x U(N f ) R Chiral ymmetry Explicit and pontaneous Chiral ymmetry Breaking; Chiral U() A Anomaly Vacuum calculations calculations at T Chiral Partners Degeneration above T C order parameter for restoration of chiral symmetry New in our model: N f = 3 with vector and axialvector mesons extended Linear igma Model - elm Vacuum spectroscopy first Extend to T as a next step NCNP tockholm

L igma Model Lagrangian with Vector and Axial-Vector Mesons (N f = 3) calars and Pseudoscalars = Tr [( D Φ) ( D Φ)] m Tr ( Φ Φ) λ[tr ( Φ Φ)] λ Tr ( Φ + Tr [ H( Φ + Φ )] + c[(det Φ + det Φ ) 4det( ΦΦ )] P Φ) Explicit ymmetry Breaking n n = σ N + a a σ N a a D Φ = Φ + ig( ΦR L Φ) Where are scalar qq states? + σ + P = ss η N + π π NCNP tockholm η Chiral Anomaly N π π Under GeV? + η + Φ = Above + ip GeV?

V igma Model Lagrangian with Vector and Axial-Vector Mesons (N f = 3) Vectors and Axial-Vectors L L R = = m Tr ( L + ) + Tr + ( + ) 4 ν R ν L R ν ig (Tr { Lν [ L, L ]} + Tr{ Rν [ R, R ]}) = = Lν ν δn( mu, d) = R VA ν ν L ν ν ν R ω N + ρ ρ ω ρ N + ρ ω + A = N a + a NCNP tockholm f δ ( m n f u, d ) a N δ ( m + s a s ) f + L + R = V A = V A

igma Model Lagrangian with Vector and Axial-Vector Mesons (N f = 3) More (Pseudo)scalar (Axial-)Vector Interactions h INT. = Tr ( Φ Φ) Tr ( L + R ) + h Tr [( L Φ) + ( ΦR ) ] h Tr ( ΦR Φ L ) L + 3 L = L + L + P VA L INT. Perform pontaneous ymmetry Breaking (B): σ N σ N + ϕ N, σ σ + ϕ Nine parameters, none free fixed via fit of masses (except the two sigmas) NCNP tockholm

Fit of Masses Mass m π m m η m η' m ρ m Our value [MeV] 38.65 497.96 53. 957.79 775.49 PDG Value [MeV] 39.57 493.68 547.85 957.78 775.49 96.5 89.66 Resonances favoured to be qq states Mass m ϕ() m f (4) m a (6) m (7) m a (45) m (45) NCNP tockholm Our value [MeV] 36.9 457 9 343 45 PDG Value [MeV] 9.5 46.4 3 7 474 55 45 What about the sigmas?

calar Mesons in Our Model n n = Mixing between σ N and σ mixing angle θ N a Two states emerge: σ 95% n n σ 95% s s σ N + a a σ N a + σ + and 5% ss and 5% nn NCNP tockholm ss Interpretation depends m σ andγ, σ, on

Predominantly Non-trange igma PDG : m f Γ f (37) (37) = = ( 5) MeV, ( 5) MeV Experimental datafavour f (37) as predominantly nn NCNP tockholm

Predominantly trange igma PDG: Γ f (7) = (9.3 ± ππ m f (7) = (7 ± 6.5) MeV 6) MeV Our values: m f = th. (7 ) th. (7 ) m f = 63 677 MeV MeV f (7) predominantly ss calar qq states above GeV! NCNP tockholm

ummary Linear igma Model N f = 3 and vector and axial-vector mesons Global fit of all masses except the sigmas Obtained masses ~3% w.r.t. experimental data NCNP tockholm

ummary: Our Results on J PC = ++ Mesons tate Mass [MeV] Width [MeV] f (6) tetraquark? 4 - f (98) tetraquark? 98± f (37) predominantly nn - 5 f (5) 55±6 predominantly glueball f (7) predominantly ss 7±6 NCNP tockholm 6-4 - - 5 9±7 35±8 [. Janowski, D. Parganlija, F. Giacosa and D. H. Rischke, arxiv:3.338 ]

Outlook Lagrangian With Three Flavours + Glueball + Tetraquarks Mixing in the calar ector: Quarkonia, Tetraquarks and Glueball Extension to Non-Zero Temperature: tudy Chiral ymmetry Restoration Include Tensor, Pseudotensor Mesons, Baryons (Nucleons) NCNP tockholm

pare lides NCNP tockholm

Motivation: QCD Features in an Effective Model QCD Lagrangian Chirality Projection Operators NCNP tockholm

Motivation: QCD Features in an Effective Model Global Unitary Transformations invariant not invariant Chiral ymmetry Explicit ymmetry Breaking pontaneously Broken in Vacuum In addition: Chiral U() A Anomaly NCNP tockholm

Motivation: Reasons to Consider Mesons More scalar mesons than predicted by quark-antiquark picture Classification needed Restoration of chiral invariance and decofinement Degeneration of chiral partners π and σ σhas to be a quark-antiquark state Identify the scalar quark-antiquark state σ Need a model with scalar and other states NCNP tockholm

Motivation: tructure of calar Mesons pontaneous Breaking of Chiral ymmetry Goldstone Bosons (N f = π) Restoration of Chiral Invariance and Deconfinement Degeneration of Chiral Partners (π/σ) f (6), sigma f (37) Nature of scalar mesons calar qq states under GeV f (6), a (98) not preferred by N f = results calar qq states above GeV f (37), a (45) preferred by N f = results [Parganlija, Giacosa, Rischke in Phys. Rev. D 8: 544, ; arxiv: 3.4934] NCNP tockholm

Calculating the Parameters hift the (axial-)vector fields: f f + w η f f + w r a N N fn r r a + wa π N Canonically normalise pseudoscalars and : η Z N, η r r ηn, N, π Zππ Z Z Perform a fit of all parameters except g (fixed via ρ ππ) 9 parameters, none free fixed via masses m π, m ω m m m m m m, NCNP tockholm f + w η mη, mη ' mη, m m, N η ρ m, * m f m f (4 ) ) m m (7 ) m m ϕ ( ) a a ( 6, a a (45 ) (43 ) + w [Parganlija, Giacosa, Rischke in Phys. Rev. D 8: 544, ; arxiv: 3.4934] Preliminary : no fit with m a GeV, m GeV < <

Other Results η η mixing angle θ η = 43.9 LOE Collaboration: θ η = 4.4 ±.5 Rho meson mass has two contributions: m φ N ρ = m + [ h + h + h3 ] + NCNP tockholm h φ ~ Gluon Condensate Quark Condensates We obtain m 76 MeV * π Data: 48.7 MeV Our value: 44. MeV φ() + - Data:.8 MeV Our value:.33 MeV

Note: N f = Limit The f (6) state not preferred to be quarkonium [Parganlija, Giacosa, Rischke in Phys. Rev. D 8: 544, ; arxiv: 3.4934] NCNP tockholm

Note: N f = Limit Experimental data favours f (37) as predominantly qq PDG : m f Γ f (37) (37) = = ( 5) MeV, ( 5) MeV [Parganlija, Giacosa, Rischke in Phys. Rev. D 8: 544, ; arxiv: 3.4934] NCNP tockholm

cenario II (N f =): cattering Lengths cattering lengths saturated Additional scalars: tetraquarks, quasimolecular states Glueball NCNP tockholm

cenario II (N f =): Parameter Determination Masses: m Pion Decay Constant π, m, m, m, m η a ρ a Five Parameters: Z, h, h, g, m σ f NCNP tockholm π = Γ ρ ππ = (49.4 ±.) MeV g = g( Z Γ ( a (45) = 65 ± 3) MeV h = h ( Z) h ( h, 3 small) Γ a πγ [ Z] = mσ m f (37) (.64± free.46) MeV φ Z Z )

cenario I (N f =): Other Results Γ Our Result Γ a η η' A a ρ ππ [ Z, g ], f a π [ Z, ]exact =.64 MeV πγ a =.8 a =.454 = 333MeV ηπ c mixing angle Γ h : 4.8 +.5 -. deg [LOE Collaboration, hep-ex/69v3]: [D. η η' mixing angle : 4.4 ±.5 deg Experimental Value Γ a =.64 MeV πγ a =.8 (NA48/) a =.457 (NA48/) A a ηπ = 333 MeV V. Bugg et al., Phys. Rev. D 5, 44 (994)] NCNP tockholm

cenario I (N f =): a σπ Decay m = m ρ generated from the quark condensate only; our result: m = 65 MeV a σπ PDG : Γ a (total) = (5 6) MeV NCNP tockholm

Comparison: the Model with and without Vectors and Axial-Vectors (N f =) Include values vectors decrease NCNP tockholm Note: other observables (ππ scattering lengths, a (98) ηπ decay amplitude, phenomonology of a, and others) are fine [Parganlija, Giacosa, Rischke, Phys. Rev. D 8: 544, ]

cenario I (N f =): a ρπ Decay PDG : (5 6) MeV Γ σ ππ < 6 MeV if m < σ 5 MeV [M. Urban, M. Buballa and J. Wambach, Nucl. Phys. A 697, 338 ()] NCNP tockholm

cenario I (N f =) : Parameter Determination Three Independent Parameters: Z, m, m σ Γa [ Z] = (.64 ±.46) MeV πγ φ m ρ = m + [ h + h ( Z) + h3 ( Z)] a [ Z, m NCNP tockholm ~ Gluon Condensate Quark Condensate Isospin [. Janowski (Frankfurt U.), Diploma Thesis, ], m σ ] =.8 ±. [ mπ Angular Momentum (s wave) m σ m Z =.67± = [88, 65 + 3 65 ] [NA48/ Collaboration, 9]. MeV 477] MeV

L VA L R ν ν vectors Lagrangian of a Linear igma Model with Vector and Axial-Vector Mesons (N f =) Vectors and Axial-Vectors ν m = Tr [( L ν ) + ( R ) ] + + Tr [( L ) + ( R ) ] 4 ν ν ig (Tr { L ν [ L, L ]} + Tr{ R ν [ R, R ]}) 3 3 g3{tr [( Lν iea [ t, Lν ] + ν L ieaν [ t,l ]){ L, 3 + Tr [( R iea [ t, R ] + R iea [ t, R ]){ R, = = L R ν ν L 3 ν ν ν ν ν R ν 3 ν ν 3 L ( iea [ t, L ] iea [ t, L ]) 3 ν ν 3 R ( iea [ t, R ] iea [ t, R ]) ν NCNP tockholm δn( m u, d ν }] }]} = ) δ ( m n u, d δ ( ) s ms axialvectors )

L Lagrangian of a Linear igma Model with Vector and Axial-Vector Mesons (N f =) calars and Pseudoscalars = Tr [( D Φ) ( D Φ)] m Tr ( Φ Φ) λ[tr ( Φ Φ)] λ Tr ( Φ + Tr [ H( Φ + Φ )] + c[(det Φ + det Φ ) 4det( ΦΦ )] P Φ) Explicit ymmetry Breaking scalars Chiral Anomaly D Φ = pseudoscalars 3 Φ + ig( ΦR L Φ) iea [ t, Φ] photon { σ, a} { f(6), a(98)}or { f(37), a(45)} Where is the scalar qq state? NCNP tockholm