Q & Particle-Gas Multiphase Flow. Particle-Gas Interaction. Particle-Particle Interaction. Two-way coupling fluid particle. Mass. Momentum.

Similar documents
Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

PHYS PRACTICE EXAM 2

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Orthotropic Materials

KINEMATICS OF RIGID BODIES

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

Low-complexity Algorithms for MIMO Multiplexing Systems

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation


MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

MECHANICS OF MATERIALS Poisson s Ratio

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can.

2D vector fields 1. Contents

The sudden release of a large amount of energy E into a background fluid of density

Lecture 22 Electromagnetic Waves

r P + '% 2 r v(r) End pressures P 1 (high) and P 2 (low) P 1 , which must be independent of z, so # dz dz = P 2 " P 1 = " #P L L,

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light

Physics 2001/2051 Moments of Inertia Experiment 1

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

Vanishing Viscosity Method. There are another instructive and perhaps more natural discontinuous solutions of the conservation law

Program: RFEM 5, RSTAB 8, RF-DYNAM Pro, DYNAM Pro. Category: Isotropic Linear Elasticity, Dynamics, Member

Physics 207 Lecture 13

Structural Dynamics and Earthquake Engineering

Modelling Hydromechanical Dilation Geomaterial Cavitation and Localization

Do not turn over until you are told to do so by the Invigilator.

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

7 Wave Equation in Higher Dimensions

Chapter Finite Difference Method for Ordinary Differential Equations

NUMERICAL SIMULATION FOR NONLINEAR STATIC & DYNAMIC STRUCTURAL ANALYSIS

AST1100 Lecture Notes

2. v = 3 4 c. 3. v = 4c. 5. v = 2 3 c. 6. v = 9. v = 4 3 c

MATHEMATICAL FOUNDATIONS FOR APPROXIMATING PARTICLE BEHAVIOUR AT RADIUS OF THE PLANCK LENGTH

EN221 - Fall HW # 7 Solutions

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8

Some Basic Information about M-S-D Systems

A New Mathematical Approach to the Turbulence Closure Problem

Turbulent buoyant confined jet with variable source temperature

From Particles to Rigid Bodies

The Production of Polarization

2001 November 15 Exam III Physics 191

Fluid Flow and Heat Transfer Characteristics across an Internally Heated Finned Duct

ME 304 FLUID MECHANICS II

11. HAFAT İş-Enerji Power of a force: Power in the ability of a force to do work

Diffusion & Viscosity: Navier-Stokes Equation

Finite Element Analysis of Structures

Pressure Vessels Thin and Thick-Walled Stress Analysis

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain

Differential Equations

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum

1. VELOCITY AND ACCELERATION

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba

FINITE DIFFERENCE APPROACH TO WAVE GUIDE MODES COMPUTATION

Servomechanism Design

ECE 2100 Circuit Analysis

Computer Simulation of the Relationship between Flat. Service and Service Return in Tennis Singles

Measures the linear dependence or the correlation between r t and r t-p. (summarizes serial dependence)

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP).

AN EVOLUTIONARY APPROACH FOR SOLVING DIFFERENTIAL EQUATIONS

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions

ENGINEERING FOR RURAL DEVELOPMENT Jelgava, MECHANISM MOTION STUDIES WITH COLLISIONS AT SEVERAL POINTS

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

Ch.1. Group Work Units. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch. Rui Li, J. Bisognano, R. Legg, and R. Bosch

3.012 Fund of Mat Sci: Bonding Lecture 1 bis. Photo courtesy of Malene Thyssen,

ME 391 Mechanical Engineering Analysis

Relative and Circular Motion

New method to explain and calculate the gyroscopic torque and its possible relation to the spin of electron

Math 209 Assignment 9 Solutions

SUMMARY GENERAL STRATEGY IMPORTANT CONCEPTS APPLICATIONS. Problem Solving. Motion Diagrams. Pictorial Representation

Lecture 10: Wave equation, solution by spherical means

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

1 Fundamental Solutions to the Wave Equation

Computation of the Effect of Space Harmonics on Starting Process of Induction Motors Using TSFEM

LECTURE 5. is defined by the position vectors r, 1. and. The displacement vector (from P 1 to P 2 ) is defined through r and 1.

The motions of the celt on a horizontal plane with viscous friction

IB Physics Kinematics Worksheet

Position, Velocity, and Acceleration

ψ(t) = V x (0)V x (t)

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

The k-filtering Applied to Wave Electric and Magnetic Field Measurements from Cluster

THE EFFECT OF SUCTION AND INJECTION ON UNSTEADY COUETTE FLOW WITH VARIABLE PROPERTIES

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions )

Lecture Angular Momentum

Sharif University of Technology - CEDRA By: Professor Ali Meghdari

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

ROTOR SUPPORTED. J. Tůma, J. Škuta, R. Klečka VSB Technical University of Ostrava J. Šimek TECHLAB Praha

Control Volume Derivation

P h y s i c s F a c t s h e e t

156 There are 9 books stacked on a shelf. The thickness of each book is either 1 inch or 2

Curling Stress Equation for Transverse Joint Edge of a Concrete Pavement Slab Based on Finite-Element Method Analysis

Exponential and Logarithmic Equations and Properties of Logarithms. Properties. Properties. log. Exponential. Logarithmic.

10. Groundwater in geotechnical problems

Objectives. To develop the principle of linear impulse and momentum for a particle. To study the conservation of linear momentum for

Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum.

Artemis Project. Analysis of recovery buoy for Artemis. Analysis. Executive Summary. Model. Before and during deployment.

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t

Fundamental Vehicle Loads & Their Estimation

The Global Trade and Environment Model: GTEM

AB for hydrogen in steel is What is the molar flux of the hydrogen through the steel? Δx Wall. s kmole

Stress distribution during a silo filling or a discharging process

Transcription:

Paicle-Gas Muliphase Flow Fluid Mass Momenum Enegy Paicles Q & m& F D Paicle-Gas Ineacion Concenaion highe dilue One-way coupling fluid paicle Two-way coupling fluid paicle Concenaion highe Paicle-Paicle Ineacion collision conac

Discee paicle simulaion Paicle Mico Fluid Meso dy dx

Discee paicle simulaion () Collision fee flow (dilue phase flow) One-way () Collision dominaed flow (inemediae concenaion) Two-way (3) Conac dominaed flow (dense phase) Fluid : negleced Fluid : aken ino accoun One-way Two-way

Paicle-Paicle Ineacion. Collision fee flow Dilue phase flow. Collision dominaed flow Dispesed flow 3. Conac dominaed flow Dense phase flow

Collision Dominaed Flow

Cluse : Cloud, Heeogeneous concenaion Rise cluse 00[mm] Ciculaing fluidized bed Tubulence of cluse scale Lage influence on anspo phenomena

Dispesed flow (collision-dominaed) Paicle velociy v Fluid velociy u lif Angula velociy ω dag v s Tanslaion : v s + & 0 x 0 Δ Fluid foce (dag & lif) & f F x + g m mass gaviy x x + vs Δ Gaviy acceleaion veco Roaion: &ω T I 0 ω ω 0 + ω 0 Δ & Toque Ineial momen ( 8 5 5 ) πρ s a

Had sphee model Impulsive equaions ( 0) m ( V V ) J ( 0) m ( V V ) J ( 0) I( ω ω ) n J ( 0) I ( ω ω ) n J (0) V, ω (0) (0) V, ω (0) V, ω V, ω n J I Nomal uni veco dieced fom Paicle o Impulsive foce exeed on Paicle Momen of ineia I ( / 5) m

G G Relaion beween pe-and pos- collision velociies n (0) (0) G c (0) c n G G (0) f + c (0) f + c e : coefficien of esiuion f : ficion coefficien (0) (0) V V Relaive velociy beween paicle cenes (0) (0) (0) G + Relaive velociy of he conac poin ω n + ω n (0) (0) G Tangenial componen of elaive velociy c ( G n)n (0) Gc : Nomal uni veco dieced fom Paicle o (0) : Tangenial uni veco Gc (0) (0) n G < > 7 ( e) G 7 ( e) ( 0) ( 0) m V V ( n f)( n G )( + e) m + m ( 0) ( 0) m V V + ( n f)( n G )( + e) m + m ω ω 5 m m + m (0) (0) ω ( n G )( n ) f ( + e) 5 m m + m (0) (0) ω ( n G )( n ) f ( + e) ( 0) ( 0) ( 0) m V V ( + e)( n G ) n+ Gc 7 m + m ( 0) ( 0) ( 0) m V V + ( + e)( n G ) n+ Gc 7 m + m ( 0) 5 ( 0 ω ω ) ( ) 7 G n m c m + m ( 0) 5 ( 0 ω ω ) ( ) 7 G n m c m + m

Collision-dominaed Flow Equaions of moion Relaionship beween pe- and pos collision velociies Finding collision panes How? Deeminisic Taecoies of all paicles Pinciple of sepaaion Sochasic (DSMC) Diec Simulaion Mone Calo Pobabiliy Taecoies of sample paicles

Deeminisic mehod based on aecoies No collide k ( ) +Δ a ( ) + k + Δ +Δ + Δ a + Δ Collide k ( ) +Δ ( ) + k + Δ a + Δ a + Δ ( ) ( ) + k a + a + d a if k has a soluion 0<k<, paicles collide.

Deeminisic vs DSMC Deeminisic Taecoies of all paicles Sochasic (DSMC) Taecoies of sample paicles Diec Simulaion Mone Calo Pobabiliy

Sochasic (DSMC) mehod Field of physical paicles Sample paicles Field eplaced wih sample paicles

Collision pobabiliy Collision pobabiliy of Paicle i colliding Paicle Numbe of sample paicle : N Numbe densiy : Relaive velociy : n G i v i i v Numbe densiy of sample paicle G i Δ D p n s n N The numbe of paicles in he ube : P i n π D s p G δ i

DSMC Decision No collision Find collision pane Decision Collision Find collision pane Decision No collision Find collision pane

In DSMC mehod, calculaion of aecoies ae made only fo sample paicles. When calculaing aecoies of each sample paicle in ime sep Δ, you have o conside whehe a sample paicle collides ohe paicles which ae epesened by anohe sample paicle. Numbe of sample paicle N Numbe of ue paicles n Numbe of sample paicle n s n/n If he sample paicle i collides necessaily wih any one of paicles in he field, he collision pobabiliy ha he sample paicle i collides wih any one of paicles in he field is. In his case, he collision pobabiliy ha he sample paicle i collides wih one of paicles epesened by sample paicle is /N, because each sample paicle has he equal possibiliy o collide wih he sample paicle i. N + N + + N + + N

Collision pobabiliy ha he sample paicle i collides wih one of paicles epesened by sample paicle unde he condiion ha he sample paicle i collides necessaily wih any one of paicles in he field N + N + + N + + N sample paicle i vs. sample paicle. sample paicle i vs. sample paicle. sample paicle i vs. sample paicle N. N N P i N N The condiion ha he sample paicle i collides necessaily wih any one of paicles in he field Acual collision pobabiliy P i ha he sample paicle i collides wih one of paicles epesened by sample paicle No saisfied P i < N

Collision pobabiliy Paicle i o Paicle P i n s π D p G i Δ 0 < P i < /N Paicle i o Paicle P i n s π D p G i Δ 0 < P i </N Paicle i o Paicle P i n s π D p G i Δ 0 < P i < /N Paicle i o Paicle N P in n s π D p G in Δ 0< P in </N R R 0 P i P i P i /N /N (-)/N /N (N-)/N P in Selec a candidae of collision pane Jin[R N]+, R :andom numbe if R > (/N) - P i, Paicle i collides Paicle. if R < (/N) - P i, Paicle i does no collide Paicle.

Example calculaion Le us conside i, i.e., conside Paicle Le he numbe of sample paicles be N000 3 Le a andom numbe fom a geneao R0.3456 4 is calculaed, in[r N]+in[0.3456 000]+35 Paicle 35 is he candidae of he collision pane of Paicle 5 Collision pobabiliy P 35 is calculaed fom P i n s π D p G i Δ Fo example, le P 35 be P 35 0.0003 6 /N - P i 35/000-0.00030.347 7 Compaing he andom numbe R 0.3456 wih he above value, 8 R < (/N) - P i Theefoe, Paicle does no collide wih Paicle 35. R0.3456 Pi0.0003 (-)/N /N 0.34 0.35

Teamen of of fluid moion Navie-Sokes o Eule equaion Meso-Scale dy Local aveaged dx

Equaions of fluid moion Equaion of coninuiy ε ( ε u + x Equaion of moion (inviscid) ) 0 u ε p ρ f pi : velociy : void facion : pessue : fluid densiy : paicle-fluid ineacion Dag f β v u ) pi ( i i ( ε u u i ) ( ε iu ) + x ε p ρ x i + f si

Collision Dominaed Flow Cluse Fomaion D 3D

Tanaka e al.(993) In-elasic collision Cluse fomaion

3D 3D simulaion Tsui s laboaoy (998)

Mixe Mixe Avalanche Hou glass

Fluidized bed Pneumaic conveying

Conac-dominaed flow Foces acing on paicles? Paicle velociy v Roaion ω dag Fluid velociy u Conac foces (nomal and angenial) gaviy

Sof sphee model Defomaion Ovelap

Compession peiod () Recovey peiod ()

Damping vibaion k : siffness m : mass η : damping coefficien x 0 + Equaion of moion : mass acceleaion foce m & x η x& k x Viscous Damping Resoing foce due o linea sping

x k x x m & & & η x e x λ Subsiuing o he above equaion 0 + + k m ηλ λ > 4km η e C C e x λ λ + m k m m + η η λ m k m m η η λ 4km η ( ) m e C C x η + η < 4km + m m k C m m k C e x m 4 sin 4 cos η η η + ε η η m m k Ce x m 4 cos

m & x + x& Iniial condiion: η + kx 0 0 : x x x & v 0, 0 Sol. x Ce η m cos k m η 4m + ε x T ηm Ce x 0

m & x + η x& + kx 0 Iniial condiion: 0 : x 0, x& v 0 v0 x exp γ ω sin q + x q v x& exp γ ω q cos q γ q Sol. ( ) ( ) 0 ( ){ ( ) sin( q ) } 0 ω x x 0 whee T kn ηn ω, γ, q ω γ m mk 0 Vibaion peiod T π q

Sof sphee model Paicle conac foce: f f + f C Cn C nomal foce angenial foce δ C slide δ n C Paicle i Sping : Siffness Young s modulus, Poisson aio Paicle i Dash-po : Damping coefficien Coefficien of esiuion

Sof sphee model sping slide Dash-po coupling (a) nomal foce conac foce : fc fcn + fc (b) angenial foce nomal foce Hez angenial foce Mindlin Sping : Siffness Young s modulus, Poisson aio Dash-po : Damping coefficien Coefficien of esiuion

Nomal Foce Paicle adius i Paicle i δ n f Cni Paicle adius η ( ) 3/ k n δ ni n v i n i n i Paicle Siffness Ovelap Damping coefficien Velociy veco of paicle I elaive o paicle Uni veco dawn fom paicle i o paicle Poisson aio k n 4 3 ν Ei i ν + E i + i Young s modulus

( ) i i i n ni n Cni n n v k f η δ 3/ 3 4 + + i i i i n E E k ν ν Nomal Foce Nomal Foce ( ) 3 + i i p p n E k ν Conac beween sphees wih he same physical popeies and diffeen adiuses p i p i E E E, ν ν ν Conac beween sphee and wall p w w p p n E E k 3 4 + ν ν Conac beween sphees wih he same physical popeies and he same adiuses p i ( ) 3 p p p n E k ν

Tangenial Foce Paicle adius i δ Tangenial defomaion Paicle i δ n f Ci Paicle adius k δ η v si Paicle Siffness Tangenial defomaion Damping coefficien Tangenial componen of elaive velociy a conac poin Poisson aio k ν i + 8 + δ n G i ν i Gi Laeal Young s modulus

si Ci v k f δ η Tangenial Foce Tangenial Foce 8 n i i i i G G k δ ν ν + + Conac beween sphees wih he same physical popeies and diffeen adiuses p i p i G G G, ν ν ν 4 n i i p p G k δ ν + Conac beween sphee and wall 8 n w w p p p n G G k δ ν ν + Conac beween sphees wih he same physical popeies and he same adiuses p i n p p p G k δ ν ( ) +ν E G

Equaions of of paicle moion f F fc Tanslaion : & x + m + g Roaion: &ω T I x m g T : Posiion veco :Angula velociy : Mass f F : Fluid foce (dag & lif) : Gaviy acceleaion veco f C : Conac foce :Toque v ω I : Ineial momen ( ) 8 5 πρ s a 5 v s v s + & 0 x 0 Δ x x + vs Δ 0 ω ω 0 + ω 0 Δ &

(x, y ) (x, y ) (x, y ) (xi, yi) (xi, yi) δ n (xi, yi) δ n (x, y ) (x, y ) (x, y ) (xi, yi) (xi, yi) δ n δ n (xi, yi)

Teamen of of fluid moion Navie-Sokes o Eule equaion Local aveaged Finie diffeence mehod dy dx

Equaions of fluid moion Equaion of coninuiy ε ( ε u + x Equaion of moion (inviscid) ) 0 u ε p ρ f pi : velociy : void facion : pessue : fluid densiy : paicle-fluid ineacion Dag f β v u ) pi ( i i ( ε u u i ) ( ε iu ) + x ε p ρ x i + f si

Paicle-fluid ineacion em Dag f β v u ) pi ( i i ε < 0.8 μ β D ε ( ε ) [ 50( ε ).75 Re ] + D Re D ρ α u v D c μ ε > 08. β 3 4 ρ( ε) ε. C v u D Dp 7 C D 0687. 4( + 05. Re ) Re LL(Re 000) 0. 43LLLLLLLLL(Re > 000) Re D u / ν p

Calculaion of of fluid moion (SIMPLE mehod) (Semi-Implici Mehod fo Pessue-Linked Equaion) Saggaed gid : Gid fo scala (pessue, void facion) Gid fo veco (velociy) Sa Disceizaion : finie diffeence Assume pessue Soluion algoihm : Modify pessue + Δ no Calculae velociy fom momenum equaion Check whehe he equaion of coninuiy is saisfied yes Daa save End

Main flow Sa iniialize all daa +Δ calculae void facion calculae fluid moion calculae paicle moion save daa end

Paicle moion Calculae fluid moion Does he paicle conac ohe paicle (wall)? Yes No Repea N imes N:paicle numbe Calculae conac foce acing on he paicle Calculae Paicle Moion Calculae fluid foce acing on he paicle Calculae paicle acceleaion and velociy Calculae paicle posiion Save daa

Examples of of DPS () Collision fee flow (dilue phase flow) () Collision dominaed flow (inemediae concenaion) Tubulen diffusion Dus collecion Dilue phase paicle anspo ( pneumaic o hydaulic) Ciculaing fluidized bed Paicle anspo ( pneumaic o hydaulic) (3) Conac dominaed flow (dense phase) Fluid : negleced Fluid : aken ino accoun Soil mechanics Avalanche Simple shea flow Vibaing bed Hoppe & chue flow Scew feede Ball mill Roaing dum Mixe Tumbling Ganulao Copy machine Compacion Cush Dampe Sieve Fluidized bed Dense phase anspo Colloid

Tanaka, Ishida and Tsui, (99) Flow ime Dense phase pneumaic conveying

Roaing dum Compaison wih measuemens Non-spheical paicle Segegaion

Cenifugal umbling ganulao Compaison wih measuemens Cohesion foce: Effec of liquid bidge

D fluidized Bed

3D Fluidized bed

Paicle numbe : Paicle size Similaiy paamee: k M. Kazai, K. Roko, T. Kawaguchi, T. Tanaka and Y. Tsui: A Sudy on Condiions fo Similaiy of Paicle Moion in Numeical Simulaion of Dense Gas-Solid Two Phase Flow, ICMF 95 Kyoo (995) D D p p0 : Similaiy paamee Paicle densiy Fluid viscosiy Fluid dag ρ0 ρ μ kμ 3 0 k β β0 3 k Coecion of void facion : Face Ceneed Cubic sucue: M. Sakano, T. Minoua and H. Nakanishi : Numeical Simulaion of Twodimensional Fluidized Bed Using Discee Elemen Mehod, 7h Symposium on Muliphase Flows, Tokyo (995)