Green s function, wavefunction and Wigner function of the MIC-Kepler problem

Similar documents
Chemistry 532 Practice Final Exam Fall 2012 Solutions

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets!

PHYS 771, Quantum Mechanics, Final Exam, Fall 2011 Instructor: Dr. A. G. Petukhov. Solutions

Lecture 4 Quantum mechanics in more than one-dimension

Consider a system of n ODEs. parameter t, periodic with period T, Let Φ t to be the fundamental matrix of this system, satisfying the following:

The 3 dimensional Schrödinger Equation

Chemistry 432 Problem Set 4 Spring 2018 Solutions

Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom

Lecture 4 Quantum mechanics in more than one-dimension

1 r 2 sin 2 θ. This must be the case as we can see by the following argument + L2

Classical field theory 2012 (NS-364B) Feynman propagator

Quantum Mechanics I Physics 5701

More On Carbon Monoxide

The Kepler Problem and the Isotropic Harmonic Oscillator. M. K. Fung

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance

QUANTUM MECHANICS LIVES AND WORKS IN PHASE SPACE

1 Mathematical preliminaries

Physics 115C Homework 3

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Ket space as a vector space over the complex numbers

PHY 396 K. Problem set #5. Due October 9, 2008.

Chemistry 532 Problem Set 7 Spring 2012 Solutions

Waves and the Schroedinger Equation

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2

Quantum Mechanics in Three Dimensions

1 Schroenger s Equation for the Hydrogen Atom

The Quantum Theory of Atoms and Molecules

Atkins & de Paula: Atkins Physical Chemistry 9e Checklist of key ideas. Chapter 8: Quantum Theory: Techniques and Applications

Geometry and Physics. Amer Iqbal. March 4, 2010

An integral formula for L 2 -eigenfunctions of a fourth order Bessel-type differential operator

Physical Dynamics (SPA5304) Lecture Plan 2018

PhD in Theoretical Particle Physics Academic Year 2017/2018

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom

8.04 Spring 2013 March 12, 2013 Problem 1. (10 points) The Probability Current

Two dimensional oscillator and central forces

Lecture 4: Equations of motion and canonical quantization Read Sakurai Chapter 1.6 and 1.7

SME 3023 Applied Numerical Methods

1 Distributions (due January 22, 2009)

Sample Quantum Chemistry Exam 2 Solutions

Phase Space Formulation of Quantum Mechanics

Quantum Mechanics: Vibration and Rotation of Molecules

XVIIIth International Conference Geometry, Integrability and Quantization

Velocities in Quantum Mechanics

MP463 QUANTUM MECHANICS

The Hydrogen Atom. Chapter 18. P. J. Grandinetti. Nov 6, Chem P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, / 41

Chapter 6: Vector Analysis

SKMM 3023 Applied Numerical Methods

Radiation Damping. 1 Introduction to the Abraham-Lorentz equation

5.1 Classical Harmonic Oscillator

Massachusetts Institute of Technology Physics Department

Columbia University Department of Physics QUALIFYING EXAMINATION

Solution to Problem Set No. 6: Time Independent Perturbation Theory

The Simple Harmonic Oscillator

Collection of formulae Quantum mechanics. Basic Formulas Division of Material Science Hans Weber. Operators

Applications of Light-Front Dynamics in Hadron Physics

G : Quantum Mechanics II

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0

16. GAUGE THEORY AND THE CREATION OF PHOTONS

Lecture 2. Contents. 1 Fermi s Method 2. 2 Lattice Oscillators 3. 3 The Sine-Gordon Equation 8. Wednesday, August 28

The Hydrogen atom. Chapter The Schrödinger Equation. 2.2 Angular momentum

Periodic monopoles and difference modules

Opinions on quantum mechanics. CHAPTER 6 Quantum Mechanics II. 6.1: The Schrödinger Wave Equation. Normalization and Probability

1 Commutators (10 pts)

Schrödinger equation for the nuclear potential

The Sommerfeld Polynomial Method: Harmonic Oscillator Example

The Hydrogen Atom Chapter 20

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics

Physics 741 Graduate Quantum Mechanics 1 Solutions to Midterm Exam, Fall x i x dx i x i x x i x dx

Simple one-dimensional potentials

Brief review of Quantum Mechanics (QM)

Quantum Mechanics II Lecture 11 ( David Ritchie

Chapter 29. Quantum Chaos

Topics Covered: Motion in a central potential, spherical harmonic oscillator, hydrogen atom, orbital electric and magnetic dipole moments

Quantum Orbits. Quantum Theory for the Computer Age Unit 9. Diving orbit. Caustic. for KE/PE =R=-3/8. for KE/PE =R=-3/8. p"...

Einstein-Hilbert action on Connes-Landi noncommutative manifolds

ADIABATIC PHASES IN QUANTUM MECHANICS

Radu Alexandru GHERGHESCU, Dorin POENARU and Walter GREINER

Physics 137A Quantum Mechanics Fall 2012 Midterm II - Solutions

Two and Three-Dimensional Systems

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m.

Angular Momentum. Andreas Wacker Mathematical Physics Lund University

Lecture Notes 2: Review of Quantum Mechanics

= ( Prove the nonexistence of electron in the nucleus on the basis of uncertainty principle.

Exact Solutions of the Einstein Equations

Scattering theory for the Aharonov-Bohm effect

Deformation Quantization and the Moyal Star Product

PHYS 3313 Section 001 Lecture # 22

Quantum mechanics. Chapter The quantum mechanical formalism

Corrections to Quantum Theory for Mathematicians

Chapter 6. Differentially Flat Systems

Quantum Harmonic Oscillator

Computation of the scattering amplitude in the spheroidal coordinates

2.20 Fall 2018 Math Review

( ) = 9φ 1, ( ) = 4φ 2.

PHYS 404 Lecture 1: Legendre Functions

Appendix: SU(2) spin angular momentum and single spin dynamics

Simple Harmonic Oscillator

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r

Chapter 5.3: Series solution near an ordinary point

Transcription:

Green s function, wavefunction and Wigner function of the MIC-Kepler problem Tokyo University of Science Graduate School of Science, Department of Mathematics, The Akira Yoshioka Laboratory Tomoyo Kanazawa 1

Outline 1. Hamiltonian description for the MIC-Kepler problem The reduced Hamiltonian system by an S 1 action The 4-dimensional conformal Kepler problem. Green s function of the MIC-Kepler problem The infinite series of its wavefunction 3. Wigner function of the MIC-Kepler problem

1. Hamiltonian description for the MIC-Kepler problem In 1970, McIntosh and Cisneros studied the dynamical system describing the motion of a charged particle under the magnetic force due to Dirac s monopole field of strength µ and the square inverse centrifugal potential force besides the Coulomb s potential force. B µ = µ r 3 x B µ = µ r Ñ Ò Ø ÓÖ Ù ØÓ Ö ³ Ð Ü Þ Ö ¾ ÓÙÐÓÑ ³ ÓÖ Ü Ö ¾ Ü ¾ ÑÖ ÒØÖ Ù Ð ÓÖ Ù ØÓ Ö ³ Ð µ is quantized as µ ħ Z. Ç Ü Ö Ü Ý 3

The Hamiltonian description for the MIC-Kepler problem is given by T. Iwai and Y. Uwano 1986 as follows. The MIC-Kepler problem is the reduced Hamiltonian system of the 4-dimensional conformal Kepler problem by an S 1 action, if the associated momentum mapping ψu, ρ µ 0. Ü Þ Ç Ê Ü Ôµ Ì Ê Ô Üµ Ü Ë ½ Ùµ Ý ½ µ ½ Ù ¼ ¾ ¼ Ù ¼ Ù ¼ ¼ µ ½ Ù ¾ Ù Ì Ê Ù µ Ë ½ Ù Ê ψu, ρ is invariant under the S 1 action, then let ψ 1 µ T uṙ4 be a subset s.t. { ψ 1 µ = u, ρ T uṙ4 ψu, ρ = 1 u ρ 1 + u 1 ρ u 4 ρ 3 + u 3 ρ 4 = µ. } 4

The MIC-Kepler problem is a triple T Ṙ 3, σ µ, H µ where σ µ = dp x dx + dp y dy + dp z dz µ x dy dz + y dz dx + z dx dy, r3 H µ x, p = 1 m p x + p y + p z + µ mr k r. Its energy hyper surface : H µ = E Φx, p r H µ E = 0 is equal to π µ Φ u, ρ = 0 Ü Ôµ Ê Ù µ where π µ ψ 1 µ T Ṙ 3, Ü Ôµ Ì Ê Ù µ Ì Ê ½ µ π µ Φ = u H E, u u 1 + u + u 3 + u 4. 5

The conformal Kepler problem is a triple T Ṙ 4, dρ du, H where dρ du 4 j=1 dρ j du j, Hu, ρ = 1 1 m 4u 4 j=1 ρ j k u. Since u = r > 0 invariant under the S 1 action, π µφ = 0 is equal to H E = 0. The energy hyper surface H = E is equivalent to Ku, ρ= ϵ where Ku, ρ is the Hamiltonian of 4-dimensional harmonic oscillator: Ku, ρ = 1 m 4 j=1 ρ j + 1 mω 4 u j j=1 { m > 0 mass of pendulum ω > 0 angular frequency considering only the case where the real parameter E < 0 and putting both the constant mω 8E and a real parameter ϵ 4k. 6

We solved the harmonic oscillator by means of the Moyal product, which brought the following functions. Moyal propagator -exponential i ui +u ħ t+iy K f, ρ e = cos ωz 4 exp [ i ħω K ui + u f, ρ ] tan ωz where u i = u i 1, ui, ui 3, ui 4 Ṙ4 and u f = u f 1, uf, uf 3, uf 4 Ṙ4 denote initial point and final point of motion respectively. Feynman s propagator K u f, u i ; z = t + iy = m ω [ 1 4π ħ sin ωz exp i mω ħ = n= C n e inωt 1 sin ωz { u i + u f cos ωz u i u f } ] where C n ω π π/ω π/ω K u f, u i ; τ + iy e inωτ dτ. 7

Green s function Gu f, u i ; ϵ = lim y +0 = m ω π ħ i ħ exp 1 0 n= N l 1!l!l 3!l 4! H l 1 C n e inωt [ mω ħ u i + u f ] N=0 mω ħ ui 1 H l3 mω ħ ui 3 e y +iϵ ħ t+iy dt l 1 +l +l 3 +l 4 =N H l1 mω ħ uf 1 H l3 mω ħ uf 3 H l mω 1 ϵ N + ħω ħ ui H l4 mω ħ ui 4 where n N = l 1 + l + l 3 + l 4 l 1, l, l 3, l 4 N {0}, H l X is the Hermite polynomial : dl H l X = 1 l e X dx l e X. H l mω ħ uf H l4 mω ħ uf 4 8

Moreover, we denote by Ψ N u the wave function of 4-dimensional harmonic oscillator on Ṙ 4 Ψ N u = mω πħ satisfying 1 N l 1!l!l 3!l 4! H l1 mω ħ u 1 exp H l mω ħ u ˆK Ψ N u = ϵ Ψ N u where ˆK = ħ [ mω ] ħ u 1 + u + u 3 + u 4 m H l3 mω ħ u 3 4 j=1 u j + 1 mω mω H l4 ħ u 4 4 j=1 u j. Then we verify Gu f, u i ; ϵ = N=0 1 ϵ N + ħω Ψ Nu f Ψ N u i. 9

à À ÖÑÓÒ Ó ÐÐ ØÓÖ Ø Ã Ø Þ ¼ Ø Ý ¼ Ý ¼ ¼µ Þ ¼ à ¼ Ý ¼ ¼ ½ Ñ ¾ Ì Ê ½ µ À Ñ ¼ ÓÒ ÓÖÑ Ð Ã ÔÐ Ö Ù Ù µ Ä Ý ¼ ¼ Ã Ù Ù Þ ¼ µ Ì Ê ¼ Ñ À ÅÁ ¹Ã ÔÐ Ö Ü Ü µ ÓÖ Ü Ü µ 10

. Green s function of the MIC-Kepler problem We suppose E mk ħ N + N = 0, 1,,, then reduce the Green s function of the conformal Kepler problem Gu f, u i ; ϵ 4k assumed mω 8E to the Green s function of the MIC-Kepler problem G + x f, x i ; E or G x f, x i ; E by an S 1 action. G + x f, x i ; E and G x f, x i ; E denote the Green s functions in the following local coordinates τ + and τ respectively. τ + : π 1 U + u πu, φ + u = xr, θ, ϕ, expiν/ U + S 1 x = r sin θ cos ϕ y = r sin θ sin ϕ z = r cos θ, u 1 = r cos θ cos ν + ϕ u 3 = r sin θ cos ν ϕ, u = r cos θ sin ν + ϕ, u 4 = r sin θ sin ν ϕ where U + = { xr, θ, ϕ Ṙ 3 ; r > 0, 0 θ < π, 0 ϕ < π }, 0 ν < 4π. 11

τ : π 1 U u πu, φ u = x r, θ, ϕ, expi ν/ U S 1 x = r sin θ cos ϕ y = r sin θ sin ϕ z = r cos θ, u 1 = r sin θ cos ν + ϕ u 3 = r cos θ cos ν + 3 ϕ, u = r sin θ sin ν + ϕ, u 4 = r cos θ where U = { x r, θ, ϕ Ṙ 3 ; r > 0, 0 θ < π, 0 < ϕ π }, 0 ν < 4π. sin ν + 3 ϕ z θ r = r x ϕ z r = r x x O θ y x ϕ O y 1

Iwai and Uwano also investigated the quantized system 1988 : The quantized conformal Kepler problem is defined as a pair L R 4 ; 4u du, Ĥ where L R 4 ; 4u du : Ĥ = ħ m 1 4u The Hilbert space of square integrable complex-valued functions on R 4, 4 j=1 u j k u : The Hamiltonian operator. They introduce complex line bundles L l l Z on which the linear connection is induced from a connection on the principal fibre bundle π : Ṙ 4 Ṙ 3. By an S 1 action, L R 4 ; 4u du is reduced to the Hilbert space, denoted by Γ l, of square integrable cross sections in L l over Ṙ 3. 13

The quantized MIC-Kepler problem is the reduced quantum system Γ l, Ĥ l where j stands for the covariant derivation with respect to the linear connection whose curvature gives Dirac s monopole field of strength lħ/, Ĥ l = ħ m 3 j=1 j + lħ/ mr k r. Cross section in L l corresponds uniquely to an eigenfunction of the momentum operator ˆN ˆN = iħ u + u 1 u 4 + u 3 u 1 u u 3 u 4 ˆN Ψu = l ħ Ψu Ψu L R 4 ; 4u du, l Z., Accordingly, the introduction of L l is understood as a geometric consequence of the conservation of the angular momentum associated with the U1 S 1 action. 14

We can obtain the wave function of the quantized MIC-Kepler problem, denoted by Ψ N x Γ l, as the following cross section with either of the local coordinates. i x U +, Ψ + N x π e i l ν/ Ψ N, l u ii x U, Ψ N x π e i l ν/ Ψ N, l u where L R 4 ; 4u du Ψ N, l u satisfies Ĥ Ψu = E Ψu ˆK Ψu = ϵ Ψu s.t. ϵ 4k and mω 8E ˆN Ψu = l ħ Ψu. Finally, we can calculate the Green s function of the MIC-Kepler problem by the following infinite series consists of Ψ N x with either of the local coordinates. G x f, x i ; E = mω /8 = N=0 1 4k N + ħω Ψ Nx f Ψ N x i 15

Proposition 1-1. [The Green s function of the MIC-Kepler problem] i When x i, x f U +, G + x f, x i ; E = mω /8 = m ω 4πħ e mω ħ r i+r f 1 mω N=0 4k N + ħω ħ 1 ri r f cos θ i k 1!k!k 3!k 4! cos θ f P r i cos θ i, r i sin θ i P N k1 +k 3 ri r f sin θ i sin θ f r f cos θ f, r f sin θ f k +k 4 e ik 1 k k 3 +k 4 ϕ i ϕ f / where { k1 + k k 1, k, k 3, k 4 N {0} s.t. + k 3 + k 4 = N k 1 + k k 3 k 4 = l Z l = µ/ħ, P X, Y is the following polynomial. P X, Y = k 1 k j=0 s=0 j!s! ħ j+s k mω 1 C j k3 C j k C s k4 C s X j Y s 16

Proposition 1-. [The Green s function of the MIC-Kepler problem] ii When x i, x f U, G x f, x i ; E = mω /8 = m ω 4πħ e mω ħ r i+ r f 1 mω N N=0 4k N + ħω ħ 1 ri r f sin θ i k 1!k!k 3!k 4! sin θ k1 +k 3 f ri r f cos θ i cos θ f P r i sin θ i, r i cos θ i P r f sin θ f, r f cos θ f iii When x i, x f U + U, the following correlation of G with G + is shown by r = r, θ = π θ and ϕ = π ϕ. G x f, x i ; E = G + x f, x i ; E e i l ϕ i ϕ f k +k 4 e ik 1+3k k 3 3k 4 ϕ i ϕ f / Incidentally, we can also find the following proposition. 17

Proposition. [The wave function of the MIC-Kepler problem] i When x U +, Ψ + N mω mω N x = P rcos θ, rsin θ πħ ħ k1!k!k 3!k 4! r θ k1 +k 3 r θ cos sin ii When x U, Ψ mω mω N P rsin θ, rcos θ N x = πħ ħ k1!k!k 3!k 4! k1 +k θ 3 k +k [ θ 4 r sin r cos exp iii When x U + U, Ψ N x = Ψ+ N e mω ħ r k +k 4 [ exp ik 1 k k 3 + k 4 ϕ ]. e mω ħ r ik 1 + 3k k 3 3k 4 ϕ x e i l ϕ ]. where N = 0, 1,,, the combination of non-negative integers k 1, k, k 3, k 4 and the polynomial P are the same as those shown in Proposition 1. 18

3. Wigner function of the MIC-Kepler problem We showed the energy-eigenspace of the MIC-Kepler problem in our proceeding as follows. Theorem [The eigenspace of the MIC-Kepler problem] Its eigenspace associated with the negative energy E N = mk ħ N + N = 0, 1,, is spanned by f N u, ρ = 1N πħ 4 e N+ L na 4b + 3 b 3 L n b 4b + 1 b 1 L n c 4b + b L n d 4b + 4 b 4 where n a, n b, n c, n d N {0}, l Z s.t. n a + n d N + l n b + n c N l i.e. l N N and l are simultaneously even or odd. The dimension is N + l + 1 N l + 1 = N + l + N l + 4. 19

In the above-mentioned theorem, L n X denotes the Laguerre polynomial of degree n s.t. n L n X = 1 α n! α! n α! Xα, L n X ξ n = 1 1 ξ exp ξ 1 ξ X Further, α=0 n=0 4b + 3 b 3 = mω ħ u 1 + u + 1 mħω ρ 1 + ρ + ħ u 1ρ u ρ 1. 4b + 1 b 1 = mω ħ u 1 + u + 1 mħω ρ 1 + ρ ħ u 1ρ u ρ 1 4b + b = mω ħ u 3 + u 4 + 1 mħω ρ 3 + ρ 4 ħ u 3ρ 4 u 4 ρ 3 4b + 4 b 4 = mω ħ u 3 + u 4 + 1 mħω ρ 3 + ρ 4 + ħ u 3ρ 4 u 4 ρ 3. We reduce the eigenfunction f N u, ρ on T Ṙ 4 to that on T Ṙ 3 with the above-mentioned local polar coordinates. 0

Proposition 3-1. [The Wigner function of the MIC-Kepler problem] Suppose x U + U, i f N r, θ, ϕ, p r, p θ, p ϕ = 1N πħ 4 e N+ [ C N + L na A + mk r1 + cos θ [ N + L nc B E + mk r1 cos θ ii f N r, θ, ϕ, p r, p θ, p ϕ = 1N πħ 4 e N+ [ L na N + mk L nc N + mk [ Ã + B + C r1 cos θ Ẽ r1 + cos θ ] ] ] ] N + L nb mk N + L nd mk L nb N + mk L nd N + mk [ [ [ A + B + D r1 + cos θ F r1 cos θ Ã D + r1 cos θ B F + r1 + cos θ where p x dx + p y dy + p z dz = p r dr + p θ dθ + p ϕ dϕ = p r d r + p θ d θ + p ϕ d ϕ. [ 1 ] ] ] ]

Proposition 3-. [The Wigner function of the MIC-Kepler problem] Functions A, B, C, D, E and F on T U + U are as follows. 1 cos θ Ar, θ, ϕ, p r, p θ, p ϕ p r r1 + cos θ p θ r 1 + cos θ Br, θ, ϕ, p r, p θ, p ϕ p r r1 cos θ + p θ { r mk Cr, θ, ϕ, p r, p θ, p ϕ p ϕ + r1 + cos θ ħn + + µ r { mk Dr, θ, ϕ, p r, p θ, p ϕ p ϕ r1 + cos θ ħn + µ r { mk Er, θ, ϕ, p r, p θ, p ϕ p ϕ + r1 cos θ ħn + µ r { mk Fr, θ, ϕ, p r, p θ, p ϕ p ϕ r1 cos θ ħn + + µ r } } } }

Proposition 3-3. [The Wigner function of the MIC-Kepler problem] Functions Ã, B, C, D, Ẽ and F on T U + U are as follows. 1 + cos θ Ã r, θ, ϕ, p r, p θ, p ϕ p r r1 cos θ + p θ r 1 cos θ B r, θ, ϕ, p r, p θ, p ϕ p r r1 + cos θ p θ { r mk C r, θ, ϕ, p r, p θ, p ϕ p ϕ r1 cos θ ħn + + µ r } { mk D r, θ, ϕ, p r, p θ, p ϕ p ϕ + r1 cos θ ħn + µ r } { mk Ẽ r, θ, ϕ, p r, p θ, p ϕ p ϕ r1 + cos θ ħn + µ r } { mk F r, θ, ϕ, p r, p θ, p ϕ p ϕ + r1 + cos θ ħn + + µ r } 3

Proposition 3-4. [The Wigner function of the MIC-Kepler problem] Using the following equivalences : we verify Then we have r = r, cos θ = cos θ, p r = p r, p θ = p θ, p ϕ = p ϕ Ã = A, B = B C = C, D = D, Ẽ = E, F = F. f N r, θ, ϕ, p r, p θ, p ϕ = f N r, θ, ϕ, p r, p θ, p ϕ. References [1] Bayen F., Flato M., Fronsdal C., Lichnerowicz A. and Sternheimer D., Deformation Theory and Quantization. II. Physical Applications, Ann.Phys.111 1978 111 151. 4

[] Fujii K. and Funahashi K., Feynman,, 50, 1. 1999, pp 77 9. [3] Gracia-Bondía J., Hydrogen Atom in the Phase-Space Formulation of Quantum Mechanics, Phys.Rev.A 30 1984 no., 691 697. [4] Hoang L., On the Green Function for the MIC-Kepler Problem, Izv.Akad.Nauk Belarusi, Ser.Fiz.-Mat.Nauk 199 no., 76 80. [5] Hoang L., Komarov L. and Romanova T., On the Coulomb Green Function, J.Phys.A: Math.Gen. 1989 1543 155. [6] Iwai T., On a Conformal Kepler Problem and its Reduction, J.Math.Phys. 1981 no. 8, 1633 1639. [7] Iwai T. and Uwano Y., The Four-dimensional Conformal Kepler Problem Reduces to the Three-dimensional Kepler Problem with a Centrifugal Potential and Dirac s Monopole Field. Classical Theory, J.Math.Phys. 7 1986 no. 6, 153 159. 5

[8] Iwai T. and Uwano Y., The Quantised MIC-Kepler Problem and Its Symmetry Group for Negative Energies, J.Phys.A: Math.Gen. 1 1988 4083 4104. [9] Kanazawa T. and Yoshioka A., Star Product and its Application to the MIC-Kepler Problem, Journal of Geometry and Symmetry in Physics, 5 01 57 75. [10] Kanazawa T., A Specific Illustration of Section derived from -unitary Evolution Function, RIMS Research Institute for Mathematical Sciences Kôkyûroku 1774 01 January, pp 17 191. [11] Moreno C. and Silva J., Star-Products, Spectral Analysis, and Hyperfunctions, In: Conférence Moshé Flato 1999, vol., G.Dito and D.Sternheimer Eds, Kluwer Academic Publishers, Netherlands 000, pp 11 4. [1] Zachos C., Fairlie D. and Curtright T., Quantum Mechanics in Phase Space, World Scientific, Singapore 005. 6